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Abstract

This paper introduces SMAUG-T, a lattice-based post-quantum key exchange
algorithm. SMAUG-T is designed by merging two prior algorithms SMAUG and
TiGER. The algorithm is based on the hardness of the MLWE and MLWR problems
defined in the module lattice and using sparse secret chosen by SMAUG.

Along with the original SMAUG parameter sets, we introduce a TiMER (Tiny
SMAUG using Error Reconciliation) parameter set suitable for the IoT environment.
In terms of size, SMAUG-T achieves ciphertext and public key that is up to 14% and
19% smaller than Kyber, respectively. From a performance perspective, encapsulation
demonstrates high efficiency, achieving up to 60% faster than Kyber in the constant-
time C implementation and up to 70% in the AVX2 implementation.
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1 Introduction
SMAUG-T is an efficient post-quantum Key Encapsulation Mechanism (KEM) whose
security is based on the hardness of the lattice problems. SMAUG-T follows the approaches
using both Learning-With-Errors (LWE) and Learning-With-Roundings (LWR) variants in
recent constructions of post-quantum KEMs such as Lizard [25] and RLizard [51]. Using
the two lattice problems, SMAUG-T bases its security on their module variant problems
as in Kyber [15] or Saber [32]: the public key does not leak the secret key information
by the hardness of Modulue-LWE (MLWE) problem, and the ciphertext protects sharing
keys based on the hardness of Modulue-LWR (MLWR) problem.

SMAUG-T consists of the underlying Public Key Encryption (PKE) scheme SMAUG-
T.PKE and the KEM scheme SMAUG-T.KEM. SMAUG-T.PKE has INDistinguishability
under Chosen Message Attack (IND-CPA), which can be converted to SMAUG-T.KEM
scheme with INDistinguishability under adaptive Chosen Ciphertext Attack (IND-CCA2),
through the Fujisaki–Okamoto (FO) transform.

1.1 Design rationale
The design rationale of SMAUG-T aims is to achieve small ciphertext and public key
with low computational cost while maintaining security against various attacks. In more
detail, we target the following practicality and security requirements considering real
applications:

Practicality:

• Both the public key and ciphertext, especially the latter, which is transmitted more
frequently, need to be short in order to minimize communication costs.

• As the key exchange protocol is frequently required on various personal devices, a
KEM algorithm with low computational costs is more feasible than a high-cost one.

• A small secret key is desirable in restricted environments such as embedded or IoT
devices since managing the secure zone is crucial to prevent physical attacks on
secret key storage.

Security:

• Security should be concretely guaranteed concerning the attacks on the underlying
assumptions, say lattice attacks.

• The low enough Decryption Failure Probability (DFP) is essential to avoid the
attacks boosting the failure and exploiting the decryption failures [45, 29].

• As KEMs are widely used in various devices and systems, countermeasures against
implementation-specific attacks should also be considered.
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MLWE and MLWR.

SMAUG-T is constructed on the hardness of MLWE and MLWR problems and follow
the key structure of Lizard [25] and Ring-Lizard (RLizard) [51]. Since LWE problem
has been a well-studied problem for the last two decades, there are many LWE-based
schemes (e.g., FrodoKEM [16]). Ring and module LWE problems (RLWE and MLWE)
are variants defined over structured lattices and regarded as hard as LWE. Many schemes
base their security on RLWE/MLWE (e.g., NewHope [4], Kyber [15] and Saber [32]) for
efficiency reasons. We chose the module structure, which enables us to fine-tune security
and efficiency in a much more scalable way, unlike standard and ring versions. Since
MLWR problem is regarded as hard as MLWE problem unless we overuse the same secret
to generate the samples [14], we chose to use MLWR samples for the encryption. By
basing the MLWR, we reduce the ciphertext size by log 𝑞/log 𝑝 than MLWE instances so
that more efficient encryption and decryption are possible.

Quantum Fujisaki–Okamoto transform.

SMAUG-T consists of key encapsulation mechanisms SMAUG-T.KEM, and public key
encryption schemes SMAUG-T.PKE. On top of the PKE schemes, we construct the
KEM schemes using the Fujisaki–Okamoto (FO) transform [37, 38]. Line of works
on FO transforms in the quantum random oracle model [13, 43, 46, 55] make it possible
to analyze the quantum security, i.e., in the Quantum Random Oracle Model (QROM). In
particular, we use the FO transform with implicit rejection and no ciphertext contributions
(FO ̸⊥𝑚) following [44].

Sparse secret key and ephemeral secret.

We design the key generation algorithm based on MLWE problem using sparse secret. We
use sparse ternary polynomials for the secret key and the ephemeral polynomial vectors
based on the hardness reduction on the LWE problem using sparse secret [24]. We
take advantage of the sparsity, e.g., significantly smaller secret keys. In particular, the
small secret makes SMAUG-T more feasible in IoT devices having restricted resources.
Specifically, we choose to use a fixed Hamming weight for the secret keys and a non-fixed
Hamming weight for the ephemeral secret, a sparse version of the Centered Binomial
Distribution (CBD), for secure implementation.

Choice of moduli.

All our parameter sets use powers of two moduli. This choice makes SMAUG-T enjoy
faster encapsulation using simple bit shiftings, easy uniform samplings, and scalings. The
power-of-two moduli makes it hard to apply the Number Theoretic Transform (NTT) on
the polynomial multiplications. However, by embedding the power-of-two arithmetic into
a larger NTT prime arithmetic, SMAUG-T achieves fast speeds.

Negligible decapsulation failures.

Since we base the security on the lattice problems, noise is inherent. Thus decryption
result of a SMAUG-T.PKE ciphertext could be different from the original message. We
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balance the sizes, DFP, and security of SMAUG-T by fine-tuning the parameters while
maintaining the DFP to be negligible. In addition, additional parameter set TiMER uses
the D2 encoding and error reconciliation as in NewHope [4, 54], to further decrease the
DFP and the sizes.

SMAUG-T.

We give estimated security and sizes for SMAUG-T parameter sets in Table 1, where the
complete version of it can be found in Section 5.2. The sizes are given in bytes, and DFP
is given logarithm base two.

Parameters sets TiMER SMAUG-T Mode 1 SMAUG-T Mode 3 SMAUG-T Mode 5
Target security 1 1 3 5
(𝑛, 𝑘) (256, 2) (256, 2) (256, 3) (256, 4)
𝑞 1024 1024 2048 2048

(𝑝, 𝑝′) (256, 8) (256, 32) (512, 16) (512, 128)
Classical core-SVP 119.7 119.7 180.2 250.1
Quantum core-SVP 105.4 105.4 158.6 221.0
Classical gates count 152.1 152.1 212.5 282.6

DFP -161.0 -118.3 -179.2 -194.2
Secret key size 832 832 1312 1728

Public key 672 672 1088 1440
Ciphertext 608 672 992 1376

Table 1: Security and sizes for SMAUG-T parameter sets.

1.2 Advantages and limitations
Advantages.

The security of SMAUG-T relies on the hardness of the lattice problems MLWE and
MLWR, which enable balancing between security and efficiency. In terms of sizes,
SMAUG-T has smaller ciphertext sizes compared to Kyber or Saber, which is the smallest
ciphertext size among the recent practical lattice-based KEMs. In terms of DFP, SMAUG-T
achieves low enough DFP, which is less than or similar to that of Saber. SMAUG-T param-
eter sets do not use Error Correction Code (ECC) to avoid possible side-channel attacks,
except for the TiMER parameter set. TiMER benefits from the single-bit error correcting
D2 encoding, which is masking-friendly from its constructions. Implementation-wise,
encapsulation and decapsulation of SMAUG-T can be done efficiently using NTT. Each
sub-procedure are masking friendly, against the physical attacks. We give the constant-time
C reference code and AVX optimization, which validates the completeness and efficiency
of SMAUG-T.

Limitations.

We use MLWR problem, which has been studied shorter than MLWE or LWE problems;
however, it has a security reduction to MLWE. MLWE problem with a sparse secret has
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a similar issue but has been studied much longer and is used in various applications, e.g.,
homomorphic encryptions. As we use MLWE problem for the secret key security, larger
public key sizes than Saber are inherent. It can be seen as a trade-off between the public
key size versus performance with a smaller secret key size.
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2 Preliminaries

2.1 Notation
We denote matrices with bold and upper case letters (e.g., A) and vectors with bold type
and lower case letters (e.g., b). Unless otherwise stated, the vector is a column vector.

We define a polynomial ring R = Z[𝑥]/(𝑥𝑛 + 1) where 𝑛 is a power of 2 integers and
denote a quotient ring by R𝑞 = Z[𝑥]/(𝑞, 𝑥𝑛 + 1) = Z𝑞 [𝑥]/(𝑥𝑛 + 1) for a positive integer 𝑞.

For an integer 𝜂, we denote the set of polynomials of degree less than 𝑛with coefficients
in [−𝜂, 𝜂] ∩Z as 𝑆𝜂. Let 𝑆𝜂 be a set of polynomials of degree less than 𝑛 with coefficients
in [−𝜂, 𝜂) ∩Z. We denote a uniform distribution over a discrete set𝐶 as𝑈 (𝐶). We denote
a zero-centered discrete Gaussian distribution with standard deviation 𝜎 as DZ,𝜎. We
define Rényi divergence of order 𝛼 between two probability distributions 𝑃 and 𝑄 such
that Supp(𝑃) ⊆ Supp(𝑄) as

𝑅𝛼 (𝑃∥𝑄) = ©­«
∑︁

𝑥∈Supp(𝑃)

𝑃(𝑥)𝛼
𝑄(𝑥)𝛼−1

ª®¬
1/(𝛼−1)

,

where Supp(𝐷) for a distribution 𝐷 is defined as Supp(𝐷) = {𝑥 ∈ 𝐷 : 𝐷 (𝑥) ≠ 0}. We
denote a binomial distribution with a parameter 𝑛 and a probability 𝑝 as 𝐵(𝑛, 𝑝). We
denote the Centered Binomial Distribution (CBD) with a parameter 𝑑 as CBD𝑑 , where the
samples range from −𝑑 to 𝑑.

2.2 Lattice assumptions
We define some well-known lattice assumptions MLWE and MLWR on the structured
Euclidean lattices.

Definition 1 (Decision-MLWE𝑛,𝑞,𝑘,ℓ,𝜂). For positive integers 𝑞, 𝑘, ℓ, 𝜂 and the dimension
𝑛 of R, we say that the advantage of an adversary A solving the decision-MLWE𝑛,𝑞,𝑘,ℓ,𝜂
problem is

AdvMLWE
𝑛,𝑞,𝑘,ℓ,𝜂 (A) =

��Pr
[
𝑏 = 1 | A← R𝑘×ℓ𝑞 ; b← R𝑘𝑞 ; 𝑏 ← A(A, b)

]
− Pr

[
𝑏 = 1 | A← R𝑘×ℓ𝑞 ; (s, e) ← 𝑆ℓ𝜂 × 𝑆𝑘𝜂 ; 𝑏 ← A(A,A · s + e)

] ��
Definition 2 (Decision-MLWR𝑛,𝑝,𝑞,𝑘,ℓ,𝜂). For positive integers 𝑝, 𝑞, 𝑘, ℓ, 𝜂 with 𝑞 ≥ 𝑝 ≥ 2
and the dimension 𝑛 of R, we say that the advantage of an adversary A solving the
decision-MLWR𝑛,𝑝,𝑞,𝑘,ℓ,𝜂 problem is

AdvMLWR
𝑛,𝑝,𝑞,𝑘,ℓ,𝜂 (A) =

��Pr
[
𝑏 = 1 | A← R𝑘×ℓ𝑝 ; b← R𝑘𝑞 ; 𝑏 ← A(A, b)

]
− Pr

[
𝑏 = 1 | A← R𝑘×ℓ𝑞 ; s← 𝑆ℓ𝜂; 𝑏 ← A(A, ⌊𝑝/𝑞 · A · s⌉)

] ��
2.3 Public key encryption and key encapsulation mechanism
We recap the formalisms of PKE and KEM.
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Definition 3 (PKE). A public key encryption scheme is a tuple of PPT algorithms PKE =

(KeyGen,Enc,Dec) with the following specifications:

• KeyGen: a probabilistic algorithm that outputs a public key pk and a secret key sk;

• Enc: a probabilistic algorithm that takes as input a public key pk and a message 𝜇
and outputs a ciphertext ct;

• Dec: a deterministic algorithm that takes as input a secret key sk and a ciphertext
ct and outputs a message 𝜇.

Let 0 < 𝛿 < 1. We say that it is (1− 𝛿)-correct if for any (pk, sk) generated from KeyGen
and 𝜇,

𝑃𝑟 [Dec(sk,Enc(pk, 𝜇)) ≠ 𝜇] ≤ 𝛿,
where the probability is taken over the randomness of the encryption algorithm. We call
the above probability decryption failure probability (DFP). In addition, we say that it is
correct in the (Q)ROM if the probability is taken over the randomness of the (quantum)
random oracle, modeling the hash function.

Definition 4 (KEM). A key encapsulation mechanism scheme is a tuple of PPT algorithms
KEM = (KeyGen,Encap,Decap) with the following specifications:

• KeyGen: a probabilistic algorithm that outputs a public key pk and a secret key sk;

• Encap: a probabilistic algorithm that takes as input a public key pk and outputs a
sharing key 𝐾 and a ciphertext ct;

• Decap: a deterministic algorithm that takes input a secret key sk and a ciphertext
ct and outputs a sharing key 𝐾 .

The correctness of KEM is defined similarly to that of PKE.

We give the advantage function for a IND-CPA attacker against PKE.

Definition 5 (IND-CPA security of PKE). For a (quantum) adversary A against a public
key encryption scheme PKE = (KeyGen,Enc, Dec), we define the IND-CPA advantage
of A = (A1,A2) as follows:

AdvIND-CPA
PKE (A) =

���� Pr
(pk,sk)

[
𝑏 = 𝑏′

���� (𝜇0, 𝜇1, st) ← A1(pk); 𝑏 ← {0, 1};
ct← Enc(pk, 𝜇𝑏); 𝑏′← A2(pk, ct, st)

]
− 1

2

���� .
The probability is taken over the randomness of A and (pk, sk) ← KeyGen(1𝜆).

We then define two advantage functions for IND-CPA and IND-CCA2 attackers.

Definition 6 (IND-CPA and IND-CCA security of KEM). For a (quantum) adversary A
against a key encapsulation mechanism KEM = (KeyGen,Encap, Decap), we define the
IND-CPA advantage of A as follows:

AdvIND-CPA
KEM (A) =

���� Pr
(pk,sk)

[
𝑏 = 𝑏′

���� 𝑏 ← {0, 1}; (𝐾0, ct) ← Encap(pk);
𝐾1 ← K; 𝑏′← A(pk, ct, 𝐾𝑏)

]
− 1

2

���� .
The probability is taken over the randomness of A and (pk, sk) ← KeyGen(1𝜆). The
IND-CCA advantage of A is defined similarly except that the adversary can query
Decap(sk, ·) oracle on any ciphertext ct′(≠ ct).
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We can then define the (quantum) security notions of PKE and KEM in the (Q)ROM
as follows.

Definition 7 ((Q)ROM security of PKE and KEM). For 𝑇, 𝜖 > 0, we say that a scheme
S ∈ {PKE,KEM} is (𝑇, 𝜖)-ATK secure in the (Q)ROM if for any (quantum) adversary A
with runtime ≤ 𝑇 given classical access to O and (quantum) access to a random oracle 𝐻,
it holds that AdvATK

S (A) < 𝜖 , where

O =


Enc if S = PKE and ATK ∈ {OW-CPA, IND-CPA},
Encap if S = KEM and ATK = IND-CPA,
Encap,Decap(sk, ·) if S = KEM and ATK = IND-CCA.

2.4 Fujisaki–Okamoto transform
Fujiskai and Okamoto proposed a novel generic transform [37, 38] that turns a weakly
secure PKE scheme into a strongly secure PKE scheme in the Random Oracle Model
(ROM), and various variants have been proposed to deal with tightness, non-correct
PKEs, and in the quantum setting, i.e., QROM. Here, we recall the FO transformation for
KEM as introduced by Dent [31] and revisited by Hofheinz et al. [43], Bindel et al. [12],
and Hövelmanns et al. [44].

The original FO transforms FO⊥𝑚 constructs a KEM from a deterministic PKE, i.e.,
a de-randomized version. The encapsulation randomly samples a message 𝑚 and uses
the message’s hash value 𝐺 (𝑚) as randomness for encryption, generating a ciphertext.
The sharing key 𝐾 = 𝐻 (𝑚) is generated by hashing (with different hash functions) the
message. In the decapsulation, it first decrypts the ciphertext and recovers the message,
𝑚′. If it fails to decrypt, it outputs ⊥. If the “re-encryption" of the recovered message is
not equal to the received ciphertext, it also outputs ⊥. The sharing key can be generated
by hashing the recovered message.

In the quantum setting, however, the FO transform with “implicit rejection" (FO ̸⊥𝑚)
has a tighter security proof than the original version, which implicitly outputs a pseudo-
random sharing key if the re-encryption fails. We recap the QROM proof of Bindel et
al. [12] allowing the KEMs constructed over non-perfect PKEs to have IND-CCA security.

Theorem 8 ([12], Theorem 1 & 2). Let 𝐺 and 𝐻 be quantum-accessible random oracles,
and the deterministic PKE is 𝜖-injective. Then the advantage of IND-CCA attackerA with
at most 𝑄Dec decryption queries and 𝑄𝐺 and 𝑄𝐻 hash queries at depth at most 𝑑𝐺 and
𝑑𝐻 , respectively, is

AdvIND-CCA
KEM (A) ≤ 2

√︂
(𝑑𝐺 + 2)

(
AdvIND-CPA

PKE (B1) + 8(𝑄𝐺 + 1)/|M|
)

+AdvDF
PKE(B2) + 4

√︁
𝑑𝐻𝑄𝐻/|M| + 𝜖,

where B1 is an IND-CPA adversary on PKE and B2 is an adversary against finding a
decryption failing ciphertext, returning at most 𝑄Dec ciphertexts.
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3 Design choices
In this section, we explain the design choices for SMAUG-T.

3.1 MLWE public key and MLWR ciphertext
One of the core designs of SMAUG-T uses the MLWE hardness for its secret key secu-
rity and MLWR hardness for its message security. This choice is adapted from Lizard
and RLizard, which use LWE/LWR and RLWE/RLWR, respectively. Using both LWE
and LWR variant problems makes the conceptual security distinction between the secret
key and the ephemeral sharing key: a more conservative secret key with more efficient
en/decapsulations. This can be viewed as a trade-off between “conservative“ and “effi-
cient” designs. Combined with the sparse secret, bringing the LWE-based key generation
to the LWR-based scheme enables balancing the speed and the DFP.

3.1.1 Public key

Public key of SMAUG-T consists of a vector b over a polynomial ring R𝑞 and a matrix A,
which can be viewed as an MLWE sample,

(A, b = −A⊤s + e) ∈ R𝑘×𝑘𝑞 × R𝑘𝑞 ,

where s is a ternary secret polynomial with hamming weight ℎ𝑠, and e is an error sampled
from discrete Gaussian distribution with standard deviation𝜎. We now specify the uniform
matrix sampling algorithm for A ∈ R𝑘×𝑘𝑞 in Figure 1. It is adapted from the pseudorandom
generator gen in Saber [30].

expandA(seed): ⊲ seed ∈ {0, 1}256

1: buf← XOF(seed)
2: for 𝑖 from 0 to 𝑘 − 1 do
3: A[𝑖] = bytes_to_Rq(buf + polybytes · 𝑖) ⊲ Convert to ring elements
4: return A

Figure 1: Uniform random matrix sampler, expandA.

We note that the public key of SMAUG-T consists of b and the seed of A.

3.1.2 Ciphertext

The ciphertext of SMAUG-T is a tuple of a vector c1 ∈ R𝑘𝑝 and a polynomial 𝑐2 ∈ R𝑝′ .
The ciphertext is generated by multiplying a random vector r to the public key; then it is
scaled and rounded as,

c =

[
c1
𝑐2

]
=

⌊
𝑝

𝑞
·
(

A
b⊤

)
· r
⌉
+ 𝑝
𝑡
·
[

0
𝜇

]
,

Along with the public key, it can be treated as an MLWR sample added by a scaled message
as (A′, ⌊𝑝/𝑞 · A′ · r⌉) + (0, 𝜇′), where A′ is a concatenated matrix of A and b⊤.
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The ciphertext can be further compressed by scaling the second component 𝑐2 by 𝑝′/𝑝,
resulting in a shorter ciphertext but a larger error. We note that the public key can be
compressed with the same technique. However, it introduces a more significant error, so
we do not compress the public key in SMAUG-T.

We call the random vector r the ephemeral secret, which is a sparse ternary vector.
Note that the secret and the ephemeral secret are both sparse ternary vectors; however, we
sample them from different distributions using different samplers.

3.2 Sparse secret
We use the sparse ternary distribution for the randomnesses, s and r. In the following, we
will discuss the advantages of the sparse secret and give the sampling algorithm. Notably,
we use two different sampling algorithms for the sparse secrets: HWT, a fixed Hamming
weight sampler for the secret key s, and spCBD, a non-fixed Hamming weight sampler for
ephemeral secret r, respectively.

3.2.1 Advantage of using sparse secret

The sparse secret is widely used in homomorphic encryption to reduce the noise propaga-
tion during the homomorphic operations [40, 23, 18] and to speed up the computations.
As the lattice-based KEM schemes have inherent decryption error from LWE or LWR
noise, the sparse secret can lower this decryption error and improve the performance of
KEMs.

Concretely, the decryption error can be expressed as ⟨e, r⟩ + ⟨e1, s⟩ + 𝑒2, where s is a
secret key, r is a randomness used for encryption, e← 𝜒𝑘

𝑝𝑘
is a noise added in public key,

and (e1, 𝑒2) ← 𝜒𝑘+1
𝑐𝑡 is a noise added in ciphertext. As the vectors r and s are ternary,

each coefficient of the decryption error is a signed addition of ℎ𝑟 variables from 𝜒𝑝𝑘 and
ℎ𝑠 + 1 variables from 𝜒𝑐𝑡 . The magnitude of the decryption error depends greatly on the
Hamming weights ℎ𝑟 and ℎ𝑠; thus, we can take advantage of the sparse secrets.

On the other hand, as the sparse secret reduces the secret key entropy, the hardness
of the lattice problem may be decreased. For the security of LWE problem using sparse
secret, a series of works have been done, including [24] for asymptotic security based
on the reductions to worst-case lattice problems, and [58, 34, 11] for concrete security.
Independent of the secret distribution, the module variant (MLWE) is regarded as hard as
LWE problem with appropriate parameters, including a smaller modulus. We also exploit
the reductions from ordinary MLWE to MLWE using sparse secret or small errors [19].
The MLWR problem also has a simple reduction from MLWE independent of the secret
distribution, and its concrete security is heuristically discussed in [30].

Since SMAUG-T uses a sparse secret key s and a sparse randomness r, the security of
SMAUG-T is based on the hardness of MLWE and MLWR problems using sparse secret.
For the specific parameters, we exploit the lattice-estimator [1], which covers most of the
recent lattice attacks, and also consider some attacks not included in the estimator. Using
a smaller modulus, SMAUG-T can maintain high security, as in Kyber or Saber.
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3.2.2 Hamming weight sampler

Our Hamming weight sampler, HWTℎ, is a shuffling-based algorithm that originated
from [35], which has no bias on its output and can be realized in a constant-time im-
plementation. This algorithm outperforms other constant-time samplers, such as the
sorting-based one or the bounded-rejection-based one. We first describe a subroutine of
the shuffling-based sampler in Figure 2, which generates unbiased random integers. An
array of integers si from an input seed array where si𝑖 is uniformly sampled from integers
[0, 1, ..., 𝑛 − 𝑖] without bias.

REJ_SAMPLE_MOD(rand): ⊲ rand is an array of 16-bit integers
1: 𝑗 = 𝑛
2: t = 𝑡0, 𝑡1, ..., 𝑡𝑛−1 = 0, 0, ..., 0
3: for 𝑖 from 0 to 𝑛 − 1 do
4: 𝑤 = 2𝐿 mod (𝑛 − 𝑖)
5: 𝑚 = rand𝑖 · (𝑛 − 𝑖)
6: 𝑙 = 𝑚 mod 2𝐿
7: while 𝑙 < 𝑤 do
8: 𝑚 = rand 𝑗 · (𝑛 − 𝑖), 𝑗 = 𝑗 + 1
9: 𝑙 = 𝑚

10: t𝑖 = 𝑚 ≫ 𝐿

11: return t

Figure 2: Algorithm for generating unbiased uniformly random integers

HWTℎ (seed):
1: v = 𝑣0, 𝑣1, ..., 𝑣𝑛−1 = 0, 0, ..., 0
2: buf, sign= PRF(seed)
3: si = REJ_SAMPLE_MOD(buf)
4: 𝑐0 = 𝑛 − ℎ
5: for 𝑖 from 0 to 𝑛 − 1 do ⊲ Binary fixed-weight sampling
6: 𝑡 = (si𝑖 − 𝑐0) ≫ 15
7: 𝑐0 = 𝑐0 + 𝑡0, v𝑖 = 1 + 𝑡
8: for 𝑖 from 0 to 𝑛 − 1 do ⊲ Transform to ternary
9: v𝑖 = (−v𝑖) ∧ ((sign𝑖 ∧ 0x02) − 1)

10: return v

Figure 3: Ternary fixed Hamming weight sampling by shuffling

Then, we introduce the Hamming weight sampler algorithm in Figure 3, which per-
forms a ternary fixed-weight sampling by shuffling, which is slightly modified from [35].
This process generates binary fixed-weight as stated in lines 5 to 11, then transforms to
ternary representation using the random bits in sign generated in line 3.
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3.2.3 Sparse CBD sampler

Inspired by the efficient CBD sampler from New Hope [4] (and many other KEM
schemes) and the approximate discrete Gaussian sampler from SMAUG [22], we intro-
duce a boolean-based efficient sparse ternary sampler, which we call sparse CBD sampler
(spCBD).

The spCBD sampler takes input a probability 𝑟 < 1/2 and outputs a signed bit from
{−1, 0, 1} with a probability mass function 𝑓 : {−1, 0, 1} → [0, 1] given as

𝑓 (−1) = 𝑓 (1) = 𝑟, 𝑓 (0) = 1 − 2𝑟 .

This can be naturally extended to a vector of signed bits, where each coordinate follows
the same distribution. The resulting vector is a sparse ternary vector. However, as each
coordinate is probabilistically sampled, the vector’s Hamming weight is not a fixed value.
The Hamming follows the binomial distribution as

ℎ ∼ 𝐵(𝑛, 2𝑟) ,

where ℎ is the Hamming weight and 𝑛 is the length of the vector.
We remark that, especially when the denominator of the probability 𝑟 is a power-of-

two integer, say 2𝑘 , the spCBD sampler can be efficiently instantiated by sampling 𝑘 + 1
random bits and applying only the boolean operations. We present two spCBD samplers
we will use, which randomly sample from the spCBD distribution with the probability
parameter 𝑟 = 1/8 and 𝑟 = 3/16 in Figures 4.

spCBD1/8:
1: 𝑎, 𝑏, 𝑐 ← {0, 1}
2: 𝑡 ← 𝑎 ∧ 𝑏

3: sign← ((𝑐 ≪ 1) ∧ 0x02) − 1
4: return 𝑡 · sign ⊲ Distribution: {−1: 1/8, 0: 3/4, 1: 1/8}

spCBD3/16:
1: 𝑎, 𝑏, 𝑐, 𝑑 ← {0, 1}
2: 𝑡 ← 𝑎 ∧ 𝑏 ∨ 𝑐
3: sign← ((𝑑 ≪ 1) ∧ 0x02) − 1
4: return 𝑡 · sign ⊲ Distribution: {−1: 3/16, 0: 5/8, 1: 3/16}

Figure 4: Sparse CBD sampler for 𝑟 = 1/8 and 3/16.

We further note that the distribution spCBD1/4 is equal to CBD with a parameter
𝑑 = 1, i.e., CBD1, which outputs a ternary secret.

3.3 Discrete Gaussian noise
3.3.1 Using approximate discrete Gaussian noise

Our design choice for the noise distribution in MLWE follows the conventional dis-
crete Gaussian distribution, but with approximated CDTs following the approaches in
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FrodoKEM [16]. As a result, we use a discrete Gaussian noise for the public key gen-
eration, which is approximated to a narrow distribution. As this approximated discrete
Gaussian noise is used only for the public key, we can efficiently bound the security
loss from above. Considering the narrow discrete Gaussian noise, we give a theoretical
justification based on Rényi divergence to guarantee the security of SMAUG-T.

In SMAUG-T, the narrow discrete Gaussian noise is used only for the public key
generation. So, the difference in the noise distribution only affects the distinguishing
advantage between the games 𝐺2 and 𝐺3 in the proof of Theorem 11. Then, the bound
for the distinguishing advantage can also be expressed as(

AdvMLWE
𝑛,𝑞,𝑘,𝑘,DZ,𝜎

(B2) · 𝑅𝛼 (dGaussian𝜎∥DZ,𝜎)𝑛𝑘
)1−1/𝛼

,

assuming the pseudorandomness of dGaussian𝜎. This is due to Lemma 5.5 in [3]. We
note that the key generation calls dGaussian only 𝑛𝑘 times and that the public key is
generated only once.

The advantage bound for SMAUG-T parameter set (see Section 5.2) can be computed
directly using the given formula; for TiMER parameter set (Resp. SMAUG-T128, 192,
and 256), the advantage increases by 1.09 (Resp. 1.09, 1.64, and 2.20) bits with 𝛼 = 500.
Opposed to the estimated security based on the bound AdvMLWE

𝑛,𝑞,𝑘,𝑘,dGaussian𝜎
(B2) given

in Section 5.2, this new bound provides a more conservative security preventing some
possible future attacks that target the noise distribution.

This modification will slightly decrease only the speed of key generation by less than
1.1x.

We also note that the narrow Gaussian noise is already considered when estimating
the concrete security (given in Section 5.2) using the explained estimators. The analysis
here provides a more conservative security, preventing possible future attacks that target
the noise distribution. We also note that in the core-SVP methodology, we only focus on
the estimated attack cost of the underlying MLWE and MLWR problems, not based on the
security reductions (as done in most of the NIST-submitted schemes) for a fair comparison
to Kyber.

3.3.2 dGaussian sampler

We construct dGaussian, a constant-time approximate discrete Gaussian noise sampler,
upon a Cumulative Distribution Table (CDT) but is not used during sampling, as it is
expressed with bit operations.

We first scale the discrete Gaussian distribution and make a CDT approximating the
discrete Gaussian distribution. We choose an appropriate scaling factor based on the
analysis in [49, 16] using Rényi divergence. We then deploy the Quine–McCluskey
method1 and apply logic minimization technique on the CDT. As a result, even though our
dGaussian is constructed upon CDT, it is expressed with bit operations and is constant-
time.

We describe dGaussian algorithm with 𝜎 = 1.0625 in Figure 5. The algorithm is
easily parallelizable and suitable for IoT devices as their memory requirement is low.

1We use the python package, from https://github.com/dreylago/logicmin.
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dGaussian1.0625(𝑥):
Require: 𝑥 = 𝑥0𝑥1𝑥2𝑥3𝑥4𝑥5𝑥6𝑥7𝑥8𝑥9 ∈ {0, 1}10

1: 𝑠 = 𝑠1𝑠0 = 00 ∈ {0, 1}2
2: 𝑠0 = 𝑥0𝑥1𝑥2𝑥3𝑥4𝑥5𝑥7𝑥8
3: 𝑠0 += (𝑥0𝑥3𝑥4𝑥5𝑥6𝑥8) + (𝑥1𝑥3𝑥4𝑥5𝑥6𝑥8) + (𝑥2𝑥3𝑥4𝑥5𝑥6𝑥8)
4: 𝑠0 += (𝑥2𝑥3𝑥6𝑥8) + (𝑥1𝑥3𝑥6𝑥8)
5: 𝑠0 += (𝑥6𝑥7𝑥8) + (𝑥5𝑥6𝑥8) + (𝑥4𝑥6𝑥8) + (𝑥7𝑥8)
6: 𝑠1 = (𝑥1𝑥2𝑥4𝑥5𝑥7𝑥8) + (𝑥3𝑥4𝑥5𝑥7𝑥8) + (𝑥6𝑥7𝑥8)
7: 𝑠 = (−1)𝑥9 · 𝑠 ⊲ · is the arithmetic multiplication
8: return 𝑠

Figure 5: Discrete Gaussian sampler with 𝜎 = 1.0625, dGaussian𝜎.

3.4 Polynomial Multiplication
Despite the sparsity of the secret keys in SMAUG-T, a naive approach to take advantage of
the sparsity may expose the scheme to a side-channel attack that exploits the time-variant
of executions for polynomial multiplication. Well-known multiplication algorithms that
can be implemented with constant-time are the Number Theoretic Transform (NTT) and
Toom–Cook multiplication.

The moduli of SMAUG-T are all power-of-two integers to efficiently handle rounding
by bit shifting and result in non-biased rounding error. To adopt NTT for multiplications
in SMAUG-T, the polynomial should be transformed to NTT-friendly ring by switching the
modulus. Conversely, the Toom–Cook multiplication is well-suited for handling arbitrary
polynomial rings, as its foundation lies in a divide-and-conquer strategy that reduces
the problem into smaller sub-problems. This approach ultimately relies on classical
polynomial multiplication techniques (i.e., schoolbook multiplication) for base cases of
sufficiently small size. These multiplications are commonly used in lattice-based PQC
schemes, and the performance of these two algorithms varies depending on the degree of
the polynomials, the algorithm’s parameters, and the operating hardware architecture.

Toom–Cook and Karatsuba

The Toom–Cook [27, 59] and the Karatsuba [47] multiplications are efficient algorithms
for large integers that split operands and perform multiplications and additions on smaller
parts, resulting in lower time complexity. Both achieve sub-quadratic time complexity
𝑂 (𝑛1+𝑒) in the bit-length 𝑛 where 0 < 𝑒 < 1, and can be utilized for the multiplications of
polynomials of large degrees.

The Karatsuba multiplication for computing 𝑐(𝑥) = 𝑎(𝑥)𝑏(𝑥) divides each of degree
𝑛 polynomials 𝑎(𝑋) and 𝑏(𝑥) into two sub-polynomials of degree 𝑛

2 . For instance, 𝑎(𝑥) is
split into 𝑎(𝑥) = 𝑎0(𝑥) + 𝑎1(𝑥)𝑥 𝑛

2 , where 𝑎0(𝑥) and 𝑎1(𝑥) are defined as

𝑎0(𝑥) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2 + · · · + 𝑎 𝑛

2−1𝑥
𝑛
2−1

𝑎1(𝑥) = 𝑎 𝑛
2
+ 𝑎 𝑛

2+1𝑥 + 𝑎 𝑛
2+2𝑥

𝑛
2+2 + · · · + 𝑎𝑛−1𝑥

𝑛
2−1.

The Karatsuba multiplication computes 𝑐(𝑥) with three 𝑛
2 -degree multiplications and

some additions rather than 4 polynomial multiplications as follows:
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𝑐(𝑥) = 𝑎0(𝑥)𝑏0(𝑥)

+
((
𝑎0(𝑥) + 𝑎1(𝑥)

) (
𝑏0(𝑥) + 𝑏1(𝑥)

)
−
(
𝑎0(𝑥) + 𝑏0(𝑥)

) (
𝑎1(𝑥) + 𝑏1(𝑥)

))
𝑥𝑛/2

+ 𝑎1(𝑥)𝑏1(𝑥)𝑥𝑛.

The nested polynomial multiplications can be handled by applying Karatsuba mul-
tiplication recursively until the degree of input polynomials are sufficiently small to be
executed by the naive multiplication method yielding Θ(𝑛log2 3) time complexity by the
master theorem for divide-and-conquer recurrences.

Toom–Cook multiplication generalizes Karatsuba multiplication in a way that it splits
the degree-𝑛 polynomials into 𝑘 sub-polynomials and handles degree- 𝑛

𝑘
polynomials in

an appropriate manner. It is also possible to compute the multiplications of the sub-
polynomials by Karatsuba multiplication. The time complexity of 𝑘-way Toom–Cook
multiplication is Θ(𝑛log𝑘 (2𝑘−1)) by the master theorem.

Due to its ability to efficiently handle multiplications on polynomial rings that are not
well-suited for NTT, several PQC algorithms, such as those in [33], [41], adopt Toom–
Cook multiplication. As in [10], a 256-degree polynomial in SMAUG-T is split into 𝑘 = 4
parts by Toom–Cook, requiring 7 multiplications of 64-degree sub-polynomials. The sub-
polynomials are further split by Karatsuba with threshold degree 16. With this choice of
𝑘 and the threshold degree for Karatsuba, 256-degree polynomial multiplication requires
63 polynomial multiplications for degree 16.

Number Theoretic Transform

The NTT is a widely used method for efficient multiplication in lattice-based cryptog-
raphy that uses polynomial rings since its quasi-linear complexity 𝑂 (𝑛 · 𝑙𝑜𝑔𝑛). For two
polynomials 𝑎(𝑥), 𝑏(𝑥) ∈ R𝑞 the product 𝑎(𝑥) · 𝑏(𝑥) can be computed as follows where
NTT−1 denotes the inverse of NTT and ◦ is an element-wise multiplication in Z𝑞.

NTT−1(NTT(𝑎(𝑥)) ◦ NTT(𝑏(𝑥))).

However, NTT has a limitation that requires using an NTT-friendly ring. Specifically,
the parameter 𝑛 should be a power-of-two integer, then the modulus 𝑞 must be a prime that
is 1 modulo 2𝑛 to ensure that Z𝑞 contains primitive 𝑛-th or 2𝑛-th root of unity. Despite
its efficiency advantages, some schemes are unable to leverage the NTT due to their use
of NTT-unfriendly rings, such as those employing power-of-two modulus or a prime 𝑛.
Notable examples of such schemes include Saber, NTRU, and SMAUG-T.

On the other hand, it is still possible to use NTT for the polynomial arithmetic in
these schemes by embedding the modulus into the NTT prime ring. [26] shows that this
approach is more efficient for Saber and NTRU than Toom–Cook in SIMD environments
such as AVX2. An efficient AVX2 implementation using this approach is also feasible for
SMAUG-T. For the modulus 𝑞 such that 𝑛 ∤ (𝑞 − 1), we represent coefficients within the
range [− 𝑞2 ,

𝑞

2 ). Considering that the maximum value of multiplication result coefficient is
𝑛 · 𝑞2/4, if we find an NTT prime 𝑄 satisfying 𝑄 > 𝑛 · 𝑞2/2 and 𝑛| (𝑄 − 1), we can use
NTT-based multiplication in R𝑄 and recover correct result in R𝑞. If 𝑄 becomes too large,
it may exceed the 16-bit data type typically used for coefficient. In such cases, by using
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the Chinese Remainder Theorem (CRT), the product of multiple NTT primes 𝑞𝑖 can be
used as sufficiently large 𝑄. For SMAUG-T, 𝑞0 = 7,681 and 𝑞1 = 10,753 can be used as
NTT primes.

3.5 FO transform, FO̸⊥𝑚
We construct SMAUG-T upon the FO transform with implicit rejection and without ci-
phertext contribution to the sharing key generation, say FO ̸⊥𝑚. This choice makes the
encapsulation and decapsulation algorithm efficient since the sharing key can be directly
generated from a message. The public key is additionally fed into the hash function with
the message to avoid multi-target decryption failure attacks. The IND-CCA security of the
resulting KEM in the QROM is well-studied in [43, 44, 12].

3.6 D2 encoding
An additional parameter, TiMER, uses D2 encoding. D2 is one of the reconciliation
techniques that reduces bandwidth requirements, which was used in NewHope [4]. D2
lowers the decryption failure rate and reduces the ciphertext size by changing the error
bound. In Figure 6, we give the description of D2.

D2Enc(𝜇 ∈ {0, . . . , 255}16):
1: v← R𝑞
2: for 𝑖 from 0 to 15 do
3: for 𝑗 from 0 to 7 do
4: mask← ((𝜇[𝑖] ≫ 𝑗) & 1
5: 𝜐8∗𝑖+ 𝑗+0 ← mask & (𝑞/2)
6: 𝜐8∗𝑖+ 𝑗+128 ← mask & (𝑞/2)
7: return v ∈ R𝑞

D2Dec(v ∈ R𝑞):
1: 𝜇← {0, . . . , 255}16

2: for 𝑖 from 0 to 255 do
3: 𝑡 ← |(𝜐𝑖+0 mod 𝑞) − (𝑞 − 1)/2|
4: 𝑡 ← 𝑡 + |(𝜐𝑖+128 mod 𝑞) − (𝑞 − 1)/2|
5: 𝑡 ← 𝑡 − 𝑞/2
6: 𝑡 ← 𝑡 ≫ 15
7: 𝜇[𝑖 ≫ 3] ← 𝜇[𝑖 ≫ 3] | (𝑡 ≪ (𝑖 & 7))
8: return 𝜇 ∈ {0, . . . , 255}16

Figure 6: Description of D2 encoding

To ensure robustness against errors, each bit of the 128-bit message 𝜇 ∈ {0, ..., 255}16

is encoded into 2 coefficients by D2Enc. The decoding function D2Dec maps 2 coefficients
back to the original key bit. For example, for 𝑛 = 256, take 2 coefficients (each in the
range {0, ..., 𝑞 − 1}), subtract 𝑞/2 from each of them, accumulate their absolute values,
and set the key bit to 0 if the sum is larger than 𝑞/2 or to 1 otherwise.

16



4 The SMAUG-T

4.1 Specification of SMAUG-T.PKE
We now describe the public key encryption scheme SMAUG-T.PKE in Figure 7 with the
following building blocks:

• Pseudo random function PRF for generating seedA, seedsk, and seede,

• Uniform random matrix sampler expandA for deriving A from seedA,

• Discrete Gaussian sampler dGaussian𝜎 for deriving a MLWE noise e with standard
deviation 𝜎 from seede,

• Hamming weight sampler HWTℎ for deriving a sparse ternary s with Hamming
weight ℎ = ℎ𝑠 from seedsk

• Sparse CBD sampler spCBD𝑟 for deriving a sparse ternary r with a probability
parameter 𝑟 from seedr

KeyGen(1𝜆):
1: A← R𝑘×𝑘𝑞

2: s← HWTℎ𝑠 ∈ 𝑆𝑘𝜂
3: e← 𝐷̃𝜎 ∈ R𝑘
4: b = −A⊤ · s + e ∈ R𝑘𝑞
5: return pk = (A, b), sk = s

Enc(pk, 𝜇): ⊲ pk = (A, b), 𝜇 ∈ R𝑡
1: r← spCBD𝑟 ∈ 𝑆𝑘𝜂
2: c1 = ⌊𝑝/𝑞 · A · r⌉ ∈ R𝑘𝑝
3: 𝑐2 = ⌊𝑝′/𝑞 · ⟨b, r⟩ + 𝑝′/𝑡 · 𝜇⌉ ∈ R𝑝′
4: return ct = (c1, 𝑐2)

Dec(sk, c): ⊲ sk = s, c = (c1, 𝑐2)
1: 𝜇′ = ⌊𝑡/𝑝 · ⟨c1, s⟩ + 𝑡/𝑝′ · 𝑐2⌉ ∈ R𝑡
2: return 𝜇′

Figure 7: Description of SMAUG-T.PKE

Randomness Generation and Seed. Note that, in Figure 7, the key generation uses some
randomness for generating A, s, and e, and the encryption uses some randomness for
generating r. Thus, for implementation validation purposes, 256-bit seeds can be input
to PKE.KeyGenand PKE.Enc. The seed for PKE.KeyGencan then be extended to two
256-bit seeds; one can be input to HWT and 𝐷̃𝜎 and can be used for generating s and e,
and the other can be used for sampling A. The seed for PKE.Enccan be input to spCBD
and can be used for generating r.
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TiMER Parameter. One of the four parameter sets of SMAUG-T, namely, TiMER, has
slightly different features compared to SMAUG-T128 parameter set; the rest are exactly
the same as other parameters:

• Reduced message space: 𝜇← D2Enc(𝜇) ∈ {0, 1}256.

• After decryption, the message needs to be decoded via D2Dec.

In the below, we then prove the completeness of SMAUG-T.PKE.

Theorem 9 (Completeness of SMAUG-T.PKE). Let A, b, s, e, and r are defined as in
Figure 7. Let the moduli 𝑡, 𝑝, 𝑝′, and 𝑞 satisfy 𝑡 | 𝑝 | 𝑞 and 𝑡 | 𝑝′ | 𝑞. Let e1 ∈ R𝑘Q
and 𝑒2 ∈ RQ be the rounding errors introduced from the scalings and roundings of
A · r and b𝑇 · r. That is, e1 =

𝑞

𝑝
(⌊ 𝑝
𝑞
· A · r⌉ mod 𝑝) − (A · r mod 𝑞) and 𝑒2 =

𝑞

𝑝′ (⌊
𝑝′

𝑞
· ⟨b, r⟩⌉ mod 𝑝′) − (⟨b, r⟩ mod 𝑞). Let 𝛿 = Pr

[
∥⟨e, r⟩ + ⟨e1, s⟩ + 𝑒2∥∞ > 𝑞

2𝑡
]
,

where the probability is taken over the randomness of the encryption. Then SMAUG-
T.PKE in Figure 7 is (1 − 𝛿)-correct. That is, for every message 𝜇 and every key-pair
(pk, sk) returned by KeyGen(1𝜆), the decryption fails with a probability less than 𝛿.

Proof. By the definition of e1 and 𝑒2, it holds that c1 =
𝑝

𝑞
· (A · r + e1) mod 𝑝 and

𝑐2 =
𝑝′

𝑞
·(⟨b, r⟩ + 𝑒2)+ 𝑝

′

𝑡
·𝜇 mod 𝑝′, where the coefficients of e1 and 𝑒2 are inZ∩(− 𝑞

2𝑝 ,
𝑞

2𝑝 ]
and Z ∩ (− 𝑞

2𝑝′ ,
𝑞

2𝑝′ ], respectively. Thus, the decryption of the ciphertext (c1, 𝑐2) can be
written as⌊

𝑡

𝑝
· ⟨c1, s⟩ +

𝑡

𝑝′
· 𝑐2

⌉
mod 𝑡 =

⌊
𝑡

𝑞
(⟨A · r, s⟩ + ⟨e1, s⟩ + ⟨b, r⟩ + 𝑒2) + 𝜇

⌉
mod 𝑡

=

⌊
𝑡

𝑞

(
⟨A⊤ · s + b, r⟩ + ⟨e1, s⟩ + 𝑒2

)
+ 𝜇

⌉
mod 𝑡

= 𝜇 +
⌊
𝑡

𝑞
(⟨e, r⟩ + ⟨e1, s⟩ + 𝑒2)

⌉
mod 𝑡.

This is equal to 𝜇 if and only if every coefficient of ⟨e, r⟩ + ⟨e1, s⟩ + 𝑒2 is in the interval
[− 𝑞2𝑡 ,

𝑞

2𝑡 ). It concludes the proof. □

Note, it can be trivially proven that the use of D2 encoding in TiMER parameter set
does not change the completeness of SMAUG-T.

4.2 Specification of SMAUG-T.KEM
We introduce the key encapsulation mechanism SMAUG-T.KEM in Figure 8. SMAUG-
T.KEM is designed following the Fujisaki–Okamoto transform with implicit rejection
using the non-perfectly correct public key encryption SMAUG-T.PKE. The construction
of SMAUG-T.KEM involves the use of the following symmetric primitives:

• Hash function 𝐻 for hashing a public key,

• Hash function 𝐺 for deriving a sharing key and a seed.
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KeyGen(1𝜆):
1: (pk, sk′) ← SMAUG-T.PKE.KeyGen(1𝜆)
2: 𝑑 ← {0, 1}256

3: return pk, sk = (sk′, 𝑑, pk)

Encap(pk): ⊲ pk = (seedA, b)
1: 𝜇← {0, 1}256

2: (𝐾, seed) ← 𝐺 (𝜇, 𝐻 (pk))
3: ct← SMAUG-T.PKE.Enc(pk, 𝜇; seed)
4: return ct, 𝐾

Decap(sk, ct): ⊲ sk = (sk′, 𝑑, pk)
1: 𝜇′ = SMAUG-T.PKE.Dec(sk′, ct)
2: (𝐾′, seed′) ← 𝐺 (𝜇′, 𝐻 (pk))
3: ct′ = SMAUG-T.PKE.Enc (pk, 𝜇′; seed′)
4: (𝐾̂, · ) ← 𝐺 (𝑑, 𝐻 (ct))
5: if ct ≠ ct′ then
6: 𝐾′← 𝐾̂

7: return 𝐾′

Figure 8: Description of SMAUG-T.KEM

Randomness Generation and Seed. Note that, in Figure 8, the key generation uses some
randomness for generating the keys and 𝑑, and the encapsulation uses some randomness to
generate 𝜇. Thus, for implementation validation purposes, we can separate the algorithms
KEM.KeyGen, KEM.Encap, and KEM.Decap into internal and external algorithms, re-
spectively. The 256-bit seeds can be input to the internal algorithms for KEM.KeyGenand
KEM.Encap; two 256-bit seeds to KEM.KeyGenfor 𝑑 and PKE.KeyGen and one 256-
bit seed to KEM.Encap for 𝜇. The external algorithms then need to wrap the internal
algorithms and should securely sample the seeds.

TiMER Parameter. As in the SMAUG-T.PKE, we can easily construct the TiMER
parameter set, which uses the TiMER parameter set of SMAUG-T.PKE in a black-box
manner, with the following change:

• Reduced randomness space and entropy for 𝜇, from {0, 1}256 to {0, 1}128

The Fujisaki–Okamoto transform used in Figure 8 defers from the FO ̸⊥𝑚 transform
in [44] in encapsulation and decapsulation. When generating the sharing key and random-
ness, SMAUG-T’s Encap utilizes the hashed public key, which prevents certain multi-target
attacks. As for Decap, if ct ≠ ct′ holds, an alternative sharing key should be re-generated
so as not to leak failure information against Side-Channel Attacks (SCA). However, even
when the failure information is leaked, security can still rely on the explicit FO transform
FO⊥𝑚, recently treated in [43] with a competitive bound.

We also remark that the randomly chosen message 𝜇 should be hashed in the envi-
ronments using a non-cryptographic Random Number Generator (RNG) system. A True
Random Number Generator (TRNG) is recommended to sample the message 𝜇 in such
devices.
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We now show the completeness of SMAUG-T.KEM based on the completeness of the
underlying public key encryption scheme, SMAUG-T.PKE.

Theorem 10 (Completeness of SMAUG-T.KEM). We borrow the notations and assump-
tions from Theorem 9 and Figure 8. Then SMAUG-T.KEM in Figure 8 is also (1 − 𝛿)-
correct. That is, for every key-pair (pk, sk) generated by KeyGen(1𝜆), the shared keys 𝐾
and 𝐾′ are identical with probability larger than 1 − 𝛿.

Proof. The shared keys 𝐾 and 𝐾′ are identical if the decryption succeeds. Assuming
the pseudorandomness of the hash function 𝐺, the probability of being 𝐾 ≠ 𝐾′ can be
bounded by the DFP of SMAUG-T.PKE. The completeness of SMAUG-T.PKE (Theorem 9)
concludes the proof. □

4.3 Security proof
When proving the security of the KEMs constructed using FO transform in the (Q)ROM,
on typically relies on the generic reductions from one-wayness or IND-CPA security
of the underlying PKE. In the ROM, SMAUG-T.KEM has a tight reduction from the
IND-CPA security of the underlying PKE, SMAUG-T.PKE. However, like other lattice-
based constructions, the underlying PKE has a chance of decryption failures, which
makes the generic reduction unapplicable [55] or non-tight [43, 44, 12] in the QROM.
Therefore, we prove the IND-CCA security of SMAUG-T.KEM based on the non-tight
QROM reduction of [12] as explained in Section 2 by proving the IND-CPA security of
SMAUG-T.PKE.

Theorem 11 (IND-CPA security of SMAUG-T.PKE). Assuming pseudorandomness of the
underlying sampling algorithms, the IND-CPA security of SMAUG-T. PKE can be tightly
reduced to the decisional MLWE and MLWR problems. Specifically, for any IND-CPA-
adversary A of SMAUG-T.PKE, there exist adversaries B0, B1, B2, and B3 attacking
the pseudorandomness of XOF, and the pseudorandomness of sampling algorithms, the
hardness of MLWE, and the hardness of MLWR, respectively, such that,

AdvIND-CPA
SMAUG-T.PKE(A) ≤ AdvPR

XOF(B0) + AdvPR
expandA,HWT,dGaussian(B1)

+ AdvMLWE
𝑛,𝑞,𝑘,𝑘 (B2) + AdvMLWR

𝑛,𝑝,𝑞,𝑘+1,𝑘 (B3).

The secret distribution terms omitted in the last two advantages (of B1 and B2) are
uniform over ternary polynomials with Hamming weights ℎ𝑠 and ℎ𝑟 , respectively. The
error distribution term omitted in the advantage of B2 is a pseudorandom distribution
following the corresponding CDT.

Proof. The proof proceeds by a sequence of hybrid games from 𝐺0 to 𝐺4 defined as
follows:

• 𝐺0: the genuine IND-CPA game,

• 𝐺1: identical to 𝐺0, except that the XOF is truly random,

• 𝐺2: identical to 𝐺1, except that the sampling algorithms are changed into truly
random samplings,

20



• 𝐺3: identical to 𝐺2, except that b is randomly chosen from R𝑘𝑞 ,

• 𝐺4: identical to 𝐺3, except that the ciphertext is randomly choosen from R𝑘𝑝 × R𝑝′ .
As a result, the public key and the ciphertexts are truly random.

We denote the advantage of the adversary on each game 𝐺𝑖 as Adv𝑖, where Adv0 =

AdvIND-CPA
SMAUG-T.PKE(A) and Adv4 = 0. Then, it holds that

|Adv0 − Adv1 | ≤ AdvPR
XOF(B0),

for some adversary B0 against the pseudorandomness of the extendable output function.
Given that the only difference between the transcripts viewed in hybrid games 𝐺1 and 𝐺2
is the randomness sampling, it can be concluded that

|Adv1 − Adv2 | ≤ AdvPR
expandA,HWT,dGaussian(B1),

for some adversary, B1 attacking the pseudorandomness of at least one of the samplers.
The difference in the games 𝐺2 and 𝐺3 is in the way the polynomial vector b is sampled.
In 𝐺2, it is sampled as part of an MLWE sample, whereas in 𝐺3, it is randomly selected.
Thus, the difference in the advantages Adv2 and Adv3 can be bounded by AdvMLWE

𝑛,𝑞,𝑘,𝑘 (B2),
where B2 is an adversary distinguishing the MLWE samples from random. In the hybrids
𝐺3 and 𝐺4, the only difference is in the way the ciphertexts are generated; they are either
randomly chosen from R𝑘𝑝 × R𝑝′ or generated to be (c1, ⌊𝑝′/𝑝 · 𝑐2⌉), where[

c1
𝑐2

]
=

⌊
𝑝

𝑞
·
(

A
b⊤

)
· r
⌉
+ 𝑝
𝑡
·
[

0
𝜇

]
.

If an adversary A can distinguish the two ciphertexts, we can construct an adversary B3
distinguishing the MLWR sample from random: for given a sample (A, b) ∈ R (𝑘+1)×𝑘

𝑞 ×
R𝑘+1
𝑝 , B3 rewrites b as (b1, 𝑏2) ∈ R𝑘𝑝 × R𝑝, computes (b1, ⌊𝑝′/𝑝 · 𝑏2⌉), and use A to

decide the ciphertext type. The output of A will be the output of B3. Therefore, we can
conclude the proof by observing that

|Adv3 − Adv4 | ≤ AdvMLWR
𝑛,𝑝,𝑞,𝑘+1,𝑘 (B3). □

Again, the D2 encoding does not introduce any changes in the above proof, as the
encoded messages are added to a full random MLWR instances, assuming the MLWR
hardness.

The classical IND-CCA security of SMAUG-T.KEM is then obtained directly from FO
transforms [43] in the classical random oracle model. Theorem 8 implies the quantum
IND-CCA security of SMAUG-T.KEM in the quantum random oracle model.

The TiMER parameter set is well-suited for lightweight IoT environments thanks to
its smaller ciphertext size. However, the use of D2 encoding and the smaller randomness
space may affect security in the future. For better-ensuring security when using TiMER
parameter set, it is recommended to limit the number of Encap/Decap by considering the
operating environment.
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5 Parameter selection and concrete security
In this section, we first give a concrete security analysis of SMAUG-T and provide the
parameter sets.

5.1 Concrete security estimation
We exploit the best-known lattice attacks to estimate the concrete security of SMAUG-T.

5.1.1 Core-SVP methodology

Most of the known attacks are essentially finding a nonzero short vector in Euclidean
lattices, using the Block–Korkine– Zolotarev (BKZ) lattice reduction algorithm [21, 42,
56]. BKZ has been used in various lattice-based schemes [2, 15, 60, 36]. The security of
the schemes is generally estimated as the time complexity of BKZ in core-SVP hardness
introduced in [4]. It depends on the block size 𝛽 of BKZ reporting the best performance.
According to Becker et al. [8] and Chailloux et al. [20], the 𝛽-BKZ algorithm takes
approximately 20.292𝛽+𝑜(𝛽) and 20.257𝛽+𝑜(𝛽) time in the classical and quantum setting,
respectively. The polynomial factors and 𝑜(𝛽) terms in the exponent are ignored. We
use the lattice estimator [1] to estimate the concrete security of SMAUG-T in core-SVP
hardness.

5.1.2 Beyond Core-SVP methodology

In addition to lattice reduction attacks, we also take into consideration the cost of other
types of attacks, e.g., algebraic attacks like the Arora-Ge attack or Coded-BKW attacks,
and their variants. In general, these attacks have considerably higher costs and memory
requirements compared to previously introduced attacks.

MLWE with fixed Hamming weight secret. We also focus on the attacks not considered
in the lattice estimator, specifically those that target sparse secret, such as Meet-LWE [53]
attack. This attack is inspired by Odlyzko’s Meet-in-the-Middle approach and involves
using representations of ternary secrets in additive shares. The asymptotic attack com-
plexity is claimed as S0.25; however, it is far from the estimated attack costs in SMAUG-T
parameter sets. Even the estimated cost has a significant gap with the real attack, due to
the hidden costs behind the estimation.

MLWE with spCBD. When using spCBD, the number of non-zero coefficients is not
fixed. Attacks like May’s Meet-LWE [53] or Lee et al. [50] cannot be directly applied. As
the distribution of ℎ follows the binomial distribution centered at 𝑛 · 2𝑟, an attacker can
guess ℎ = 𝑛 · 2𝑟 or a value close to it and apply the attack. The probability of a correct
guess is (

𝑛

ℎ

)
· (2𝑟)ℎ · (1 − 2𝑟)𝑛−ℎ ,

which should be considered for the attack cost estimation. We note the value achieves the
maximum when ℎ = ⌊𝑛 · 2𝑟⌋. Therefore, one can estimate the total cost of MLWE with
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spCBD secret as

min
ℎ

{
ATKℎ(𝑛

ℎ

)
· (2𝑟)ℎ · (1 − 2𝑟)𝑛−ℎ

}
, (1)

where ATKℎ is the attack cost of [50] for MLWE with a secret having a fixed Hamming
weight of ℎ. For a rough estimation, we follow [50] and assume the attack cost ATKℎ is
greater than

(𝑛
ℎ

)0.21, the secret space size to the power of 0.21, resulting in an asymptotic
lower bound of the attack cost of

min
ℎ

{
1(𝑛

ℎ

)0.79 · (2𝑟)ℎ · (1 − 2𝑟)𝑛−ℎ

}
. (2)

Depending on the parameters, the use of spCBD increases the attack cost compared to
a fixed Hamming weight of ℎ = 𝑛 · 2𝑟 but also decreases the DFP in practice.

We summarize the costs of the algebraic and combinatorial attacks in Table 2. Attack
costs for Arora-Ge and Coded-BKW are estimated with lattice estimator [1]. The estimated
cost of Arora-Ge attack on SMAUG-T256 is not determined by lattice-estimator, outputting
∞, which is at least a thousand bits of security. The costs for the Meet-LWE attack are
estimated with a python script2 based on May’s analysis [53], best among Rep-1 and
Rep-2. In addition, we also consider the attack of Lee et al. [50] and its variant.3 The
hardness of an MLWE sample with the secret of a fixed Hamming weight is given based
on the analysis of [50]. For the hardness of an MLWR sample with the secret of non-fixed
weight spCBD sampler, we applied a variant of the attack as described in Section 5.1.2:
We first find ℎ that minimizes the Equation 2 (ℎ = 102, 102, 384, 352) then we calculate
the attack cost based on the Equation 1. However, as we are unaware of Lee et al.’s attack
cost estimator exactly for each ℎ, we give a lower bound of our attack based on their
analysis. By using the ATKℎ′ that we know (ℎ′ = 100, 100, 264, 348), satisfying ℎ′ < ℎ so
that ATKℎ > ATKℎ′ holds. This means that we only give a lower bound of the attack cost
estimation, which can be improved using the estimator of Lee et al.

Refined estimation in terms of gate count. Beyond the (relatively) older Core-SVP
methods, Kyber (ML-KEM), Dilithium (ML-DSA), FrodoKEM, and HAETAE also adopt
refined gate-count–based security estimations, enabling direct comparison with NIST’s
security requirements of 2143, 2207, and 2272 for levels 1, 3, and 5, respectively. This
approach incorporates recent advances in lattice sieving, progressive BKZ, improved
BKZ simulation, and dimension-for-free techniques, yielding more accurate estimates of
attack costs. As a result, the evaluated security levels align more closely with NIST’s
categories and reflect the current state of knowledge regarding the practical complexity of
lattice attacks.

The estimated results are summarized in Table 2, estimated using a script4 adapted
from the one5 used for Kyber, Dilithium, and FrodoKEM. The estimated gate counts exceed
the NIST’s requirements for each level.

2The script can be found on the team SMAUG-T website: http://kpqc.cryptolab.co.kr/
3We remark that the attack of Lee et al. and its cost estimation is not yet verified; however, it is worth

adding such a countermeasure to the scheme against the attacks.
4Available at https://github.com/hmchoe0528/refined-estimate-smaugt.
5Available at https://github.com/lducas/leaky-LWE-Estimator/tree/NIST-round3/

NIST-round3.
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Parameters sets TiMER SMAUG-T Mode 1 SMAUG-T Mode 3 SMAUG-T Mode 5
Security level 1 1 3 5

Classical core-SVP 119.7 119.7 180.2 250.1
Algebraic & Combinatorial attacks (in log2)

Arora-Ge time 693.6 693.6 - -
(mem) (553.0) (553.0) (908.9) -

BKW time 144.7 144.7 213.7 269.0
(mem) (132.7) (132.7) (202.1) (257.0)

Meet-LWE time 177.2 177.2 295.6 401.4
(mem) (157.4) (157.4) (259.1) (353.1)

Lee et al. [50]∗ time (148, 132) (148, 132) (236, 241) (309, 317)
Refined Est. gates (152, 152) (152, 152) (212, 219) (282, 286)

Table 2: Attack costs beyond Core-SVP. The estimated cost of the Arora-Ge attack
sometimes overflowed, implying that it requires at least 21000 of operations. For the attack
of Lee et al., we apply our modifications detailed in Sections 5.1.2, where the estimated
costs are given for both keys (MLWE) and ciphertexts (MLWR).

5.1.3 MLWE hardness

We estimated the cost of the best-known attacks for MLWE, including primal attack,
dual attack, and their hybrid variations, in the core-SVP hardness. We remark that any
MLWE𝑛,𝑞,𝑘,ℓ,𝜂 instance can be viewed as an LWE𝑞,𝑛𝑘,𝑛ℓ,𝜂 instance. Although the MLWE
problem has an additional algebraic structure compared to the LWE problem, no attacks
currently take advantage of this structure. Therefore, we assess the hardness of the MLWE
problem based on the hardness of the corresponding LWE problem. We also consider
the distributions of secret and noise when estimating the concrete security of SMAUG-T.
We have also analyzed the costs of recent attacks that aim to target the MLWE problem
with sparse secrets. Our narrow discrete Gaussian sampler’s tail bound is considered in
estimating the security using the lattice estimator.

5.1.4 MLWR hardness

To measure the hardness of the MLWR problem, we treat it as an MLWE problem since
no known attack utilizes the deterministic error term in the MLWR structure. Banerjee et
al. [7] provided the reduction from the MLWE problem to the MLWR problem, which was
subsequently improved in [5, 6, 14]. Basically, for given an MLWR sample (A, ⌊𝑝/𝑞 ·A ·s⌉
mod 𝑝) with uniformly chosen A← R𝑘𝑞 and s← Rℓ𝑝, it can be expressed as (A, 𝑝/𝑞 · (A ·s
mod 𝑞) + e mod 𝑝). The MLWR sample can be converted to an MLWE sample over R𝑞
by multiplying 𝑞/𝑝 as (A, b = A · s+𝑞/𝑝 · e mod 𝑞). Assuming that the error term in the
resulting MLWE sample is a random variable, uniformly distributed within the interval
(−𝑞/2𝑝, 𝑞/2𝑝], we can estimate the hardness of the MLWR problem as the hardness of
the corresponding MLWE problem.

5.2 Parameter sets
The SMAUG-T is parameterized by various integers such as 𝑛, 𝑘, 𝑞, 𝑝, 𝑝′, 𝑡, ℎ𝑠 and ℎ𝑟 ,
as well as a standard deviation 𝜎 > 0 for the discrete Gaussian noise. Our main focus
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when selecting these parameters is to minimize the ciphertext size while maintaining
security. We first set our ring dimension to 𝑛 = 256 and plaintext modulus to 𝑡 = 2 to
have a 256-bit (for SMAUG-T128, 192, 256) or 128-bit (for TiMER) message space. The
sharing-key space is 256-bit for all the parameter sets. Then, we search for parameters
with enough security to offer the smallest ciphertext size. Starting from parameters with
a tiny ciphertext size, we increase the ciphertext size, ℎ𝑠, 𝑟, and 𝜎, then search for the
parameters with enough security. Once we have a candidate, we compute the DFP. If
it is low enough, we can choose the compression parameter 𝑝′, but if not, we continue
searching for appropriate parameters. If the DFP is low enough, the compression factor
𝑝′ can be set to a smaller integer.

Parameters sets TiMER SMAUG-T128 SMAUG-T192 SMAUG-T256
Security level 1 1 3 5

𝑛 256 256 256 256
𝑘 2 2 3 4

(𝑞, 𝑝, 𝑡) (1024, 256, 2) (1024, 256, 2) (2048, 512, 2) (2048, 512, 2)
𝑝′ (compression) 8 32 16 128
ℎ𝑠 (HWT for s) 140 140 264 348
𝑟 (spCBD for r) 1/8 1/8 1/4 3/16
𝜎 (𝐷̃𝜎 for errors) 1.0625 1.0625 1.0625 1.0625
Classical core-SVP 119.7 119.7 180.2 250.1
Quantum core-SVP 105.4 105.4 158.6 221.0

Beyond core-SVP 132 132 214 269
#Gates (Ref. Est.) 152 152 212 282

DFP -161.0 -118.3 -179.2 -194.2
Public key 672 672 1088 1440
Ciphertext 608 672 992 1376

Table 3: Parameters for SMAUG-T. Classical and quantum security is given in core-SVP
hardness. The DFP (in log2) and sizes (in bytes) are also given in advance.

Table 3 outlines the whole set of recommended parameters corresponding to NIST’s
security levels 1, 3, and 5. For security levels 3 and 5, we can not find the parameters with
𝑞 = 1024, so we use 𝑞 = 2048. Especially, the standard deviation 𝜎 = 1.0625 is the same
across the whole parameter sets.

TiMER, an additional parameter set, further investigates the room for efficiency, intro-
ducing the D2 encoding to SMAUG-T Mode 1. It has a 64-byte smaller ciphertext size
than SMAUG-T Mode 1. TiMER sufficiently lowers DFP through D2 encoding and error
reconciliation techniques. Thanks to this lowered DFP, 𝑝′ was reduced from 32 to 8,
further compressing the ciphertext.

The core-SVP hardness is estimated via the lattice estimator [1] using the cost model
“ADPS16” introduced in [4] and “MATZOV” [52]. In the table, the smaller cost is
reported. We assumed that the number of 1s is equal to the number of −1s for simplicity,
which conservatively underestimates security.

The security beyond core-SVP is estimated via the lattice estimator [1] and the Python
script implementing the Meet-LWE attack cost estimation. It shows the lowest attack costs
among coded-BKW, Arora-Ge, and Meet-LWE attack and their variants.

25



5.3 Decryption failure probability
Our primary goal is to push the efficiency of the lattice-based KEMs to the limit while
maintaining roughly the same level of security, so we follow the frameworks given in
Kyber and Saber. We set the DFPs as small as ≈ 2−𝜆 for a desired security parameter 𝜆,
except for the SMAUG-T Mode 5 parameter set. We set the DFP of SMAUG-T Mode 5 at
least much smaller than that of Kyber and Saber.

The impact of DFP on the security of KEM is still being investigated. However, we
can justify why our choice is sufficient for real-world scenarios, focusing on SMAUG-T
Mode 5. To do so, we make the following assumptions:

1. Each key pair has a limit of 𝑄limit = 264 decryption queries, as specified in NIST’s
proposal call.

2. There are approximately 233 people worldwide, each with hundreds of devices. Each
device has thousands of usable public keys broadcasted for KEM.

3. We introduce an observable probability and assume it is far less than 2−20. Even
though the decryption failure occurs, it can only be used for an attack when ob-
served. Attackers can observe it through a side-channel attack, which enables the
observation of decapsulation failures in the mounted device or through direct com-
munications after key derivation. This allows the detection of decryption failures
with a communication per key pair. We assume the two cases can occur much
less than 2−20, as they require physically mounted devices or communications with
shared keys.

Based on these assumptions, we can deduce that the number of observable decryption
failures can be upper bounded by 264+33+10+12 · 2−20 = 299. Based on the best-known
(multi-target) attacks for Saber [28, Figure 7a], the quantum cost for finding a single
failing ciphertext that may lead to a successful attack of SMAUG-T Mode 5 is expected to
be much higher than 2300, as desired6. Regardless of the attack cost estimated above, the
scenario of checking the failures in more than 240 different devices is already way too far
from the real-world attack scenario.

6Specifically, the number of observable failures must be larger than 1/𝛽 in [28] to observe at least one
failing ciphertext. That is, 𝛽 should be smaller than 2−93. When this is assumed, the quantum cost is then
1/𝛽
√
𝛼, given in the x-axis.
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6 Implementation
In this section, we consider the implementation of SMAUG-T and present the perfor-
mance for each parameter set. We provide a few C implementations: The constant-time
reference implementation of SMAUG-T parameter sets can be found in the reference_-
implementation, and an optimized implementation utilizing AVX2 intrinsics on In-
tel(R) is included in the optimized_implementation. Our implementations, along
with the supporting scripts, are accessible on our website: www.kpqc.cryptolab.co.
kr/smaug-t.

6.1 Performance
In the reference implementation and additional implementation, we instantiate the hash
functions𝐺, 𝐻, the extendable output function XOF, and the pseudo-random function PRF
with the following symmetric primitives: 𝐺 and PRF are instantiated with SHAKE256,
𝐻 is instantiated with SHA3-256, XOF is instantiated with SHAKE128.

Table 4 presents the performance results of SMAUG-T. For a fair comparison, we
also performed measurements on the same system with identical settings of the reference
implementation of Kyber 7. All benchmarks are obtained on one core of an Intel(R)
Core(TM) i7-10700K CPU processor with a clock speed of 3.80GHz. The benchmarking
machine has 64 GB of RAM and runs Debian GNU/Linux with Linux kernel version
5.4.0. The implementation is compiled with gcc version 11.4.0, and the compiler flags as
indicated in the Makefile included in the submission package.

Cycles (ref) Cycles (AVX2)
Schemes KeyGen Encap Decap KeyGen Encap Decap

TiMER 110 1 100 1 135 1 - - -
SMAUG-T Mode 1 110 1 100 1 136 1 38 1 23 1 35 1
Kyber512 128 1.2 158 1.6 187 1.4 27 0.7 39 1.7 29 0.8
SMAUG-T Mode 3 219 1 204 1 253 1 57 1 46 1 61 1
Kyber768 209 1 255 1.3 286 1.1 44 0.8 65 1.4 44 0.7
SMAUG-T Mode 5 357 1 334 1 414 1 77 1 65 1 86 1
Kyber1024 321 0.9 369 1.1 414 1 60 0.8 79 1.2 63 0.7

Table 4: Median kilocycle counts of 1000 executions for SMAUG-T and Kyber (and
their ratios). “ref” refers to the reference C implementation, while “AVX2” refers to the
implementation with AVX2 intrinsics.

7From github.com/pq-crystals/kyber (518de24)
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7 Side Channel Analysis
SMAUG-T is a scheme based on MLWE and MLWR that has many similarities to Kyber
and Saber. As a result of the NIST competition, much research has been conducted on side-
channel analysis and countermeasures for Kyber and Saber [17, 9]. These previous findings
can also be applied to SMAUG-T. Therefore, we decided to focus our analysis on the
characteristic designs in which SMAUG-T differs from Kyber or Saber. While KpqC round
1 focused on timing attacks, power/EM-based attacks are becoming increasingly critical
with advanced attack techniques and tools, necessitating proactive countermeasures. In
particular, the recently announced clustering attack [57] has become a more lethal threat
due to the small number of traces and advances in deep learning technology. Thus, we
discuss the security of SMAUG-T against physical attacks based on power/EM.

7.1 Timing analysis
Samplers

At present, SMAUG-T has been carefully implemented to avoid time variations such as
branches with respect to secrets. For key generation, a shuffling-based constant-time and
unbiased fixed-weight sampler has been used as the fixed-weight sampler. Furthermore,
for ephemeral randomness in encapsulation/decapsulation, we propose a new constant-
time sparse CBD sampler. This sampler is constructed solely from bit operations, making
it highly secure and efficient for implementation. Previous PQC algorithms utilizing
Gaussian noises have employed various Gaussian samplers. However, designing Gaussian
samplers that operate in constant-time is challenging, and BLISS has suffered from timing
attacks [39]. We adopted dGaussian𝜎, a constant-time implementation well-known for
its efficacy, into SMAUG-T to mitigate timing attacks.

D2 encoding and error reconciliation

As mentioned earlier, D2 encoding and error reconciliation were used in NewHope, and
due to modulus reduction, the D2 implementation was not constant-time. In NewHope,
they solved this problem with constant-time Barrett reduction. On the other hand, in
TiMER, since the modulus is all powers of 2, the modulus reduction can be replaced by a
shift operation, eliminating the attack surface.

7.2 Differential analysis
dGaussian𝜎 sampler

Potential vulnerabilitie related to Power/EM-based SCA for dGaussian𝜎 was reported
during KpqC round 1. There were no specific attack scenario and applying this vulner-
ability in real-world environments may be challenging; however, recent advancements in
deep-learning and clustering technologies suggest that this attack could become a practical
vulnerability. Therefore, we applied a countermeasure to dGaussian𝜎 to prevent these
attacks. In the public key generation process of SMAUG-T, the dGaussian𝜎 function
produces integer intermediate values within the range of [-3, 3] when generating Gaussian
errors. The significant hamming weight difference between positive and negative values
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distinguishes these values into two sets. (ex, {-3, -2, -1} / {0, 1, 2, 3}) With this distinction
and linear algebraic approach, there is the possibility of recovering secret keys or reducing
candidates.

Therefore, countermeasures are necessary. First, we consider masking techniques.
However, designing a general random masking scheme efficiently in situations with nu-
merous nonlinear bit-operations can be challenging and may incur significant overhead.
For example, Krausz et al. [48] have recently proposed masking methods for the fixed
hamming weight sampler; their efficiency is lacking, so we see it as future work. Hiding
can be considered as another countermeasure. This attack involves logic that categorizes
coefficients during the key generation process, making it difficult to distinguish which
coefficients belong to which set is sufficient to respond effectively. Therefore, applying
hiding would be more effective than masking. The errors are calculated in Figure 5 and
then stored sequentially in each index. We applied the Fisher-Yates shuffle algorithm only
to the corresponding loops and the loops where those values are utilized. In environments
such as TLS, key generation is typically performed on servers with high-performance ca-
pabilities and operates less frequently than encryption. Therefore, such countermeasures
will have a minimal impact on the cryptographic system.

D2 encoding and error reconciliation

There has reported the vulnerability related to power analysis caused by differences in
the Hamming weight of the 𝑚𝑎𝑠𝑘 variable in the D2 encoding process. This attack was
complemented in TiGER v2.1 by changing the 𝑚𝑎𝑠𝑘 variable to 1 and 0 and applying a
countermeasure to minimize the Hamming weight difference. TiMER also prevents such
vulnerability with the same countermeasure.
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