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Abstract

NTRU was the first practical public-key encryption scheme based on lattice problems over poly-
nomial rings and has remained resilient against cryptanalysis for several decades. However, classical
NTRU and its variants face several limitations, such as difficulty in achieving a negligible worst-case
correctness error with a moderate modulus, complex message sampling such as fixed hamming weight
sampling, and relatively slower performance compared to other lattice-based schemes.

In this work, we propose a new NTRU-based key encapsulation mechanism, called NTRU+, which
addresses the aforementioned drawbacks. NTRU+ is constructed by sequentially applying two generic
transformations, ACWC2 and FO

⊥
(a variant of the Fujisaki–Okamoto transformation), where the former

enables negligible worst-case correctness error and the latter enables chosen-ciphertext security without
requiring re-encryption. Both ACWC2 and FO

⊥
leverage a randomness-recovery algorithm unique to

NTRU and a novel message-encoding method called the semi-generalized one-time pad (SOTP). In
particular, SOTP supports messages sampled from natural bit-string spaces with arbitrary distributions.
We provide three parameter sets for NTRU+ and present implementation results using NTT-friendly
rings over cyclotomic trinomials.

Keywords: NTRU, RLWE, Lattice-based cryptography, Post-quantum cryptography.

1 Introduction

The NTRU encryption scheme [19] was introduced in 1998 by Hoffstein, Pipher, and Silverman as the
first practical public-key encryption scheme based on lattice problems over polynomial rings. Its security
relies on the NTRU problem [19], which has remained resilient against significant cryptanalytic attacks for
over two decades. This longer history, compared to other lattice-based problems such as Ring-LWE and
Module-LWE, has been regarded as an important factor in NTRU being selected as a finalist in the NIST
PQC standardization process. Although the finalist NTRU [10] was not selected by NIST among the first
four quantum-resistant cryptographic algorithms, it still offers several distinct advantages over other lattice-
based schemes such as KYBER [34] and Saber [13]. Specifically, NTRU provides (1) a compact ciphertext
structure consisting of a single polynomial and (2) potentially faster encryption and decryption without
requiring coefficient sampling for the public key polynomial.

*Korea University, Seoul, Korea. Email: yoswuk@korea.ac.kr.
†Sangmyung University, Seoul, Korea. Email: jhpark@smu.ac.kr.
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The central design principle of NTRU is described over the ring Rq = Zq[x]/⟨f(x)⟩, where q is a
positive integer and f(x) is a polynomial. The public key is generated as h = pg/(pf ′+1) ∈ Rq1, where g
and f ′ are sampled from a narrow distribution ψ, and p is a positive integer that is smaller than and co-prime
to q (e.g., p = 3). The corresponding private key is f = pf ′ + 1. To encrypt a message m sampled from the
message spaceM′, one samples two polynomials r and m, with coefficients drawn from the distribution ψ,
and computes the ciphertext c = hr + m in Rq. An (efficient) encoding method may be used to encode
m ∈M′ into m and r ∈ Rq. Alternatively, one may directly sample m and r from ψ, where m is regarded
as the message to be encrypted. To decrypt the ciphertext c, one computes cf in Rq, recovers m by deriving
the value cf modulo p, and (if necessary) decodes m to obtain the message m. The decryption of NTRU
works correctly if all the coefficients of the polynomial p(gr+ f ′m) +m are less than q/2. Otherwise, the
decryption fails, and the probability of failure is referred to as the correctness (or decryption) error.

In the context of chosen-ciphertext attacks, NTRU, like other public-key encryption schemes, must guar-
antee a negligible worst-case correctness error. This requirement is essential to prevent the leakage of secret
key information through adversarial decryption queries, as observed in attacks on lattice-based encryption
schemes [12, 22]. Roughly speaking, the worst-case correctness error refers to the maximum probability
of decryption failure taken over all possible messages. It reflects the possibility that an adversary A may
maliciously craft messages and randomness rather than sampling them from their intended distributions. In
the case of NTRU, a decryption failure on a ciphertext c = hr +m informs A that at least one coefficient
of p(gr+ f ′m) +m is greater than or equal to q/2. Therefore, ifA has control over r and m, even a single
decryption failure may leak information about g and f ′.

When designing NTRU, two approaches can be used to achieve negligible worst-case correctness error.
One is to draw m and r directly from the distribution ψ while setting the modulus q to be relatively large.
Choosing a larger q guarantees, with high probability, that all coefficients of p(gr+ f ′m) +m are less than
q/2 for nearly all inputs m and r, although this comes at the cost of increased key and ciphertext sizes. This
approach is used by the third-round finalist NTRU [10], whose parameters achieve perfect correctness (i.e.,
the worst-case correctness error becomes zero for all possible m and r). In contrast, the other approach [16]
uses an encoding method in which a message m ∈M′ is used as a seed to sample m and r according to ψ.
Under the Fujisaki–Okamoto (FO) transformation [17], decrypting a ciphertext c requires re-encrypting m
by following the same sampling process used in encryption. Thus, any ill-formed ciphertext that violates the
sampling rule will always fail to decrypt, implying that m and r must be honestly sampled byA according to
ψ. Consequently, by preventing A from controlling m and r, the NTRU scheme with the encoding method
achieves a worst-case correctness error that is close to its average-case correctness error.

Based on the above observation, [16] proposed generic (average-case to worst-case) transformations2

that make the average-case correctness error of an underlying scheme close to the worst-case error of the
transformed scheme. One of their transformations (denoted by ACWC) is based on an encoding method
called the generalized one-time pad (denoted by GOTP). Roughly speaking, ACWC works as follows: a
message m ∈ M′ is first used to sample r and m1 according to ψ, and then m2 = GOTP(m,G(m1))
is computed using a hash function G. Finally, m is constructed as m1 ∥m2. If GOTP acts as a sampling
function such that its output follows ψ, then m and r are generated from m according to ψ, which can be
verified during decryption using the FO transformation. Specifically, for two inputs m and G(m1) that are
sampled from {−1, 0, 1}λ for some integer λ, m2 ∈ {−1, 0, 1}λ is computed by doing the component-
wise addition modulo 3 on the ternary strings m and G(m1). Thus, if G(m1) follows a uniformly random
distribution over {−1, 0, 1}λ, then m is hidden in m2 due to the one-time pad property.

1Alternatively, the public key can be generated as h = pg/f , but we use h = pg/(pf ′ + 1) for more efficient decryption.
2They proposed two transformations, ACWC0 and ACWC, but we focus on ACWC, which does not increase the ciphertext size.
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Scheme NTRU[10] NTRU-B [16] NTRU+

NTT-friendly No Yes Yes
Correctness error Perfect Worst-case Worst-case
(m, r)-encoding No Yes Yes

Message set m, r← {−1, 0, 1}n m← {−1, 0, 1}λ m← {0, 1}n
Message distribution Uniform/Fixed-weight Uniform Arbitrary

CCA transform DPKE + SXY variant ACWC + FO⊥ ACWC2 + FO
⊥

Assumptions NTRU, RLWE NTRU, RLWE NTRU, RLWE
Tight reduction Yes No Yes

n: polynomial degree of the ring. λ: length of the message. DPKE: deterministic public-key encryption.

SXY variant: SXY transformation [33] described in the NTRU finalist.

Table 1: Comparison to previous NTRU constructions

However, an ACWC based on GOTP has two disadvantages in terms of security reduction and message
distribution. First, [16] showed that ACWC converts a one-way CPA (OW-CPA) secure underlying scheme
into a transformed one that remains OW-CPA secure, although the security reduction is loose3 and causes
an additional loss factor of qG, the number of random oracle queries. Second, ACWC requires that even
the message m ∈ M′ follow a specific distribution because the security analysis of ACWC requires GOTP
to have the additional randomness-hiding property, meaning that G(m1) should also be hidden from the
output m2. Indeed, the NTRU instantiation from ACWC, called ‘NTRU-B’ [16], requires that m be chosen
uniformly at random fromM′ = {−1, 0, 1}λ. Notably, it is difficult to generate exactly uniformly random
samples from {−1, 0, 1} in constant time due to rejection sampling. Therefore, it was an open problem [16]
to construct a new transformation that permits a different, more easily sampled distribution of a message
while relying on the same security assumptions.

1.1 Our Results

We propose a new practical NTRU construction called ‘NTRU+’ that addresses the two drawbacks of the
previous ACWC. To achieve this, we introduce a new generic ACWC transformation, denoted as ACWC2,
which utilizes a simple encoding method. By using ACWC2, NTRU+ achieves a worst-case correctness
error close to the average-case error of the underlying NTRU. Additionally, NTRU+ requires the message
m to be drawn from M′ = {0, 1}n (for a polynomial degree n), following an arbitrary distribution with
high min-entropy, and is proven to be tightly secure under the same assumptions as NTRU-B, the NTRU
and RLWE assumptions. To achieve chosen-ciphertext security, NTRU+ relies on a novel FO-equivalent
transform without re-encryption, which makes the decryption algorithm of NTRU+ faster than in the or-
dinary FO transform. In terms of efficiency, we use the idea from [31] to apply the Number Theoretic
Transform (NTT) to NTRU+ and therefore instantiate NTRU+ over a ring Rq = Zq[x]/⟨f(x)⟩, where
f(x) = xn−xn/2+1 is a cyclotomic trinomial. By selecting appropriate (n, q) and ψ, we suggest three pa-
rameter sets for NTRU+ and provide the implementation results for NTRU+ in each parameter set. Table 1
lists the main differences between the previous NTRU constructions [10, 16] and NTRU+. In the following
section, we describe our technique, focusing on these differences.

3[16] introduced the q-OW-CPA security notion, where an adversary outputs a set Q of size at most q and wins if the correct
message corresponding to a challenged ciphertext is in Q. We believe that q-OW-CPA leads to a security loss of q.
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ACWC0[16] ACWC[16] ACWC2

Message encoding No GOTP SOTP

Message distribution Arbitrary Uniform Arbitrary
Ciphertext expansion Yes No No

Transformation OW-CPA→ IND-CPA OW-CPA→ OW-CPA OW-CPA→ IND-CPA
Tight reduction No No Yes

Underlying PKE Any Any
Injective + RR +

AC-MR + VC-MR
{AC, VC}-MR: {arbitrary ciphertext, valid ciphertext} message-recoverable. RR: randomness-recoverable.

Table 2: Comparison to previous ACWC transformations

ACWC2 Transformation with Tight Reduction. ACWC2 is a new generic transformation that enables
the aforementioned conversion from average-case to worst-case correctness error. To apply ACWC2, the
underlying scheme must satisfy injectivity, arbitrary-ciphertext and valid-ciphertext message-recoverability
(AC-MR and VC-MR), and randomness-recoverability (RR) properties that are all inherent to NTRU.4 Ad-
ditionally, ACWC2 introduces an encoding method called the semi-generalized one-time pad (denoted by
SOTP). In contrast to the ACWC in [16], ACWC2 equipped with SOTP = (Encode,Decode) works as
follows: first, a message m ∈ M′ is used to sample r according to ψ, and then m = Encode(m,G(r))
is computed, where the coefficients follow ψ, using a hash function G. When decrypting a ciphertext
c = Enc(pk,m; r) under a public key pk, m is recovered by the usual decryption algorithm, and using
m, r is also recovered by a randomness-recovery algorithm. Finally, applying Decode to m and G(r) yields
the original message m.

The VC-MR property of the underlying scheme allows ACWC2 to transform an OW-CPA secure scheme
into an IND-CPA secure one without any significant security loss. The proof idea is straightforward: unless
an IND-CPA adversary A queries the target randomness r to the (classical) random oracle G, A obtains
no information about the challenge message mb due to the message-hiding property of SOTP. However,
for each query ri made by A to G (i = 1, . . . , qG), a reductionist can verify whether ri corresponds to the
OW-CPA challenge ciphertext by using the message-recovery algorithm. Consequently, the reductionist can
identify the exact ri among the qG queries if A has queried it to G. In this security analysis, it is sufficient
for SOTP to satisfy only the message-hiding property, making it simpler than GOTP, which must ensure
both message-hiding and randomness-hiding.

Table 2 compares the previous ACWC transformations with our new ACWC2. In addition to ACWC
based on GOTP, [16] proposed another generic transformation, denoted by ACWC0, which does not use any
message-encoding method. In ACWC0, a bit-string message m is encrypted as (Enc(pk,m; r),F(m)⊕m)
using a hash function F. This approach causes ciphertext expansion due to the additional term F(m) ⊕
m, a redundancy that does not appear in either ACWC or ACWC2. Like ACWC2, ACWC0 transforms an
OW-CPA secure scheme into an IND-CPA secure one, but its security reduction is not as tight as that of
ACWC2. Furthermore, neither ACWC0 nor ACWC2 requires any specific message distribution, whereas
ACWC requires m ∈ M′ to be sampled uniformly fromM′. In terms of applicability, while ACWC0 and
ACWC are applicable to any OW-CPA secure scheme, ACWC2 applies specifically to those that additionally
satisfy injectivity, AC-MR, VC-MR, and RR.

4In the decryption of NTRU with pk = h, given (pk, c,m), the randomness r is recovered as r = (c − m)h−1. Similarly,
given (pk, c, r), the message m is recovered as m = c− hr.
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OW-CPA
PKE

IND-CPA
PKE

IND-CCA
KEM

IND-CCA
KEM

GenNTRU[ψn
1 ] CPA-NTRU+ CCA-NTRU+ NTRU+

ACWC2
FO⊥ FO

⊥

Th. 3.6 (ROM) Th. 4.1 (ROM) Th. 4.3 (ROM)

Th. 3.7 (QROM) Th. 4.2 (QROM) Th. 4.4 (QROM)

average-case
correctness error ≈ worst-case

correctness error w/ re-encryption w/o re-encryption

: tight security reduction : non-tight security reduction

Figure 1: Overview of security reductions for KEM

FO-Equivalent Transform without Re-encryption. To achieve chosen-ciphertext (IND-CCA) security,
we apply the generic transform FO⊥ to the ACWC2-derived scheme, which is IND-CPA secure. As with
other FO-transformed schemes, the resulting scheme from ACWC2 and FO⊥ is still required to perform
re-encryption in the decryption process to check if (1) (m, r) are correctly generated from m and (2) a
(decrypted) ciphertext c is correctly encrypted from (m, r). However, by using the RR property of the
underlying scheme, we further remove the re-encryption process from FO⊥. Instead, the more advanced
transform (denoted by FO

⊥
) simply checks whether r from the randomness-recovery algorithm is the same

as the (new) randomness r′ created from m. We show that FO
⊥

is functionally identical to FO⊥ by proving
that the randomness-checking process in FO

⊥
is equivalent to the re-encryption process FO⊥. The equiva-

lence proof relies mainly on the randomness-recoverability of the underlying schemes. As a result, although
the RR property seems to incur some additional decryption cost, it ends up making the decryption algorithm
faster than the original FO transform. Figure 1 presents an overview of security reductions from OW-CPA
to IND-CCA.

Simple SOTP Instantiation with More Convenient Sampling Distributions. As mentioned previously,
ACWC2 is based on an efficient construction of SOTP = (Encode,Decode) that takesm and G(r) as inputs
and outputs m = Encode(m,G(r)). In particular, computing m = Encode(m,G(r)) requires that each
coefficient of m should follow ψ, while preserving the message-hiding property. To achieve this, we set
ψ as the centered binomial distribution (CBD) ψk with k = 1, which is easily obtained by subtracting
two uniformly random bits from each other. For a polynomial degree n and hash function G : {0, 1}∗ →
{0, 1}2n, m is chosen from the message spaceM′ = {0, 1}n for an arbitrary distribution (with high min-
entropy) and G(r) = y1 ∥ y2 ∈ {0, 1}n × {0, 1}n. SOTP then computes m̃ = (m ⊕ y1) − y2 by bit-wise
subtraction and assigns each subtraction value of m̃ to the coefficient of m. By the one-time pad property,
it is easily shown that m ⊕ y1 becomes uniformly random in {0, 1}n (and thus message-hiding) and each
coefficient of m follows ψ1. Since r is also sampled from a hash value of m according to ψ1, all sampling
distributions in NTRU+ are easy to implement. We can also expect that, similar to the case of ψ1, the
SOTP is expanded to sample a centered binomial distribution reduced modulo 3 (i.e., ψ2) by summing up
and subtracting more uniformly random bits.

NTT-Friendly Rings Over Cyclotomic Trinomials. NTRU+ is instantiated over a polynomial ringRq =
Zq[x]/⟨f(x)⟩, where f(x) = xn − xn/2 + 1 is a cyclotomic trinomial of degree n = 2i3j . [31] showed
that, with appropriate parameterization of n and q, such a ring can also provide NTT operation essentially
as fast as that over a ring Rq = Zq[x]/⟨xn + 1⟩. Moreover, because the choice of a cyclotomic trinomial is
moderate, it provides more flexibility to satisfy a certain level of security. Based on these results, we choose
three parameter sets for NTRU+, where the polynomial degree n of f(x) = xn − xn/2 + 1 is set to be 768,
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864, and 1152, and the modulus q is 3457 for all cases. Table 7 lists the comparison results between finalist
NTRU [10], KYBER [34], and NTRU+ in terms of security and efficiency. To estimate the concrete security
level of NTRU+, we use the Lattice estimator [1] for the RLWE problem and the NTRU estimator [10] for
the NTRU problem, considering that all coefficients of each polynomial f ′, g, r, and m are drawn according
to the centered binomial distribution ψ1. The implementation results in Table 7 are estimated with reference
and AVX2 optimizations. We can observe that NTRU+ outperforms NTRU at a similar security level.

1.2 Related Works

The first-round NTRUEncrypt [36] submission to the NIST PQC standardization process was an NTRU-
based encryption scheme with the NAEP padding method [23]. Roughly speaking, NAEP is similar to our
SOTP, but the difference is that it does not completely encode m to prevent an adversary A from choosing
m maliciously. This is due to the fact that m := NAEP(m,G(hr)) is generated by subtracting two n-bit
strings m and G(hr) from each other, i.e., m − G(hr) by bit-wise subtraction, and then assigning them to
the coefficients of m. Sincem can be maliciously chosen byA in NTRUEncrypt, m can also be maliciously
chosen, regardless of G(hr).

The finalist NTRU [10] was submitted as a key encapsulation mechanism (KEM) that provides four
parameter sets for perfect correctness. To achieve chosen-ciphertext security, [10] relied on a variant of the
SXY [33] conversion, which also avoids re-encryption during decapsulation. Similar to NTRU+, the SXY
variant requires the rigidity [7] of an underlying scheme and uses the notion of deterministic public-key
encryption (DPKE) where (m, r) are all recovered as a message during decryption. In the NTRU construc-
tion, the recovery of r is conceptually the same as the existence of the randomness-recovery algorithm RRec.
Instead of removing re-encryption, the finalist NTRU needs to check whether (m, r) are selected correctly
from predefined distributions.

In 2019, Lyubashevsky et al. [31] proposed an efficient NTRU-based KEM called NTTRU by applying
NTT to the ring defined by a cyclotomic trinomial Zq[x]/⟨xn−xn/2+1⟩. NTTRU was based on the Dent [14]
transformation without any encoding method, which resulted in an approximate worst-case correctness error
of 2−13, even with an average-case error of 2−1230. To overcome this significant difference, NTTRU was
modified to reduce the message space of the underlying scheme, while increasing the size of the ciphertext.
This modification was later generalized to ACWC0 in [16].

In 2021, Duman et al. [16] proposed two generic transformations, ACWC0 and ACWC, which aim to
make the average-case correctness error of an underlying scheme nearly equal to the worst-case error of
the transformed scheme. Specifically, ACWC introduced GOTP as an encoding method to prevent A from
adversarially choosing m. While ACWC0 is simple, it requires a ciphertext expansion of 32 bytes. On
the other hand, ACWC does not require an expansion of the ciphertext size. The security of ACWC0 and
ACWC was analyzed in both the classical and quantum random oracle models [16]. However, their NTRU
instantiation using ACWC has the drawback of requiring the message m to be chosen from a uniformly
random distribution overM′ = {−1, 0, 1}λ.
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2 Preliminaries

2.1 Basic Notations

The set Zq is defined as {−(q− 1)/2, . . . , (q− 1)/2}, where q is a positive odd integer. Mapping an integer
a from Z to Zq uses the modulo operation, setting x = a mod q as the unique integer in Zq satisfying
q | (x − a). The polynomial ring Rq is defined as Zq[x]/⟨f(x)⟩ with a polynomial f(x). Cyclotomic
trinomials Φ3n(x) = xn − xn/2 +1 where n = 2i · 3j for some positive integers i and j are used as f(x) in
our construction. Polynomials in Rq are denoted in non-italic bold as a, with ai as the i-th coefficient.

For sampling, u ← X indicates that u is sampled uniformly at random from a set X , and u ← D indi-
cates that u is drawn according to a distribution D. The notation u ← Dℓ forms a vector u = (u1, . . . , uℓ)
with each ui drawn independently fromD. Especially, a← D indicates that all coefficients of a polynomial
a are drawn according to a distribution D. Sampling from the centered binomial distribution (CBD) ψk
involves 2k bits that are independent and uniformly random, summing the first k bits and the second k bits
separately, then outputting their difference.

2.2 Public-Key Encryption

Definition 2.1 (Public Key Encryption). A public-key encryption scheme PKE = (Gen,Enc,Dec) with
message spaceM, randomness spaceR, and ciphertext space C consists of the following three algorithms:

• Gen(1λ): The key generation algorithm Gen is a randomized algorithm that takes a security parameter
1λ as input and outputs a pair of public/secret keys (pk, sk).

• Enc(pk,m; r): The encryption algorithm Enc is a randomized algorithm that takes a public key pk,
a message m ∈ M, and randomness r ∈ R as input and outputs a ciphertext c ∈ C. We often write
Enc(pk,m) to denote the encryption algorithm without explicitly mentioning the randomness.

• Dec(sk, c): The decryption algorithm Dec is a deterministic algorithm that takes a secret key sk and a
ciphertext c ∈ C as input and outputs either a message m ∈M or a special symbol⊥/∈M to indicate
that c is not a valid ciphertext.

Correctness. We say that PKE has a (worst-case) correctness error δ [20] if

E
[
max
m∈M

Pr[Dec(sk,Enc(pk,m)) ̸= m]

]
≤ δ,

where the expectation is taken over (pk, sk) ← Gen(1λ) and the choice of the random oracles involved (if
any). We say that PKE has an average-case correctness error δ relative to the distribution ψM overM if

E [Pr [Dec(sk,Enc(pk,m)) ̸= m]] ≤ δ,

where the expectation is taken over (pk, sk)← Gen(1λ), the choice of the random oracles involved (if any),
and m← ψM.

Injectivity. Injectivity of PKE is defined via the following GAME INJ, which is shown in Figure 2, and
the relevant advantage of adversary A is

AdvINJ
PKE(A) = Pr[INJAPKE ⇒ 1].

Unlike the definition of injectivity in [8, 20], we define the injectivity in a computationally-secure sense.
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GAME INJ

1: (pk, sk)← Gen(1λ)
2: (m,m′, r, r′)← A(pk)
3: c = Enc(pk,m; r)
4: c′ = Enc(pk,m′; r′)
5: return J(m,m′, r, r′) ∈M2 ×R2 ∧ (m, r) ̸= (m′, r′) ∧ c = c′K

Figure 2: GAME INJ for PKE

Spreadness. PKE is γ-spread [20] if

min
m∈M,(sk,pk)

(
− logmax

c∈C
Pr

r←ψR
[c = Enc(pk,m; r)]

)
≥ γ,

where the minimum is taken over all key pairs that can be generated by Gen. This definition can be relaxed
by considering an expectation over the choice of (pk, sk). PKE is weakly γ-spread [15] if

− logE
[

max
m∈M,c∈C

Pr
r←ψR

[c = Enc(pk,m; r)]

]
≥ γ,

where the expectation is over (pk, sk)← Gen(1λ).

Randomness-Recoverability. PKE is defined as randomness-recoverable (RR) if there exists an algo-
rithm RRec such that, for all key pairs (pk, sk) ← Gen(1λ), and for any message m ∈ M and for any
ciphertext c ∈ C, the following condition holds:

if r = RRec(pk,m, c) ∈ R, then c = Enc(pk,m; r).

Arbitrary-Ciphertext Message-Recoverability. PKE is arbitrary-ciphertext message-recoverable (AC-
MR) if there exists an algorithm MRec such that, for all key pairs (pk, sk)← Gen(1λ), and for any random-
ness r ∈ R, and for anly ciphertexts c ∈ C,

if m = MRec(pk, r, c) ∈M, then c = Enc(pk,m; r).

Valid-Ciphertext Message-Recoverability. PKE is valid-ciphertext message-recoverable (VC-MR) if
there exists an algorithm MRec such that, for all key pairs (pk, sk) ← Gen(1λ), for any message m ∈ M,
for any randomness r ∈ R, and for any ciphertexts c ∈ C,

if c = Enc(pk,m; r), then MRec(pk, r, c) = m.

Randomness-Uniqueness. PKE is defined as randomness-unique (RU) if for all key pairs (pk, sk) ←
Gen(1λ), and for any message m ∈M and any randomness r, r′ ∈ R, the following condition holds:

if Enc(pk,m; r) = Enc(pk,m; r′), then r = r′.
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GAME OW-CPA
1: (pk, sk)← Gen(1λ)
2: m← ψM
3: c∗ ← Enc(pk,m)
4: m′ ← A(pk, c∗)
5: return Jm = m′K

GAME IND-CPA
1: (pk, sk)← Gen(1λ)
2: (m0,m1)← A0(pk)
3: b← {0, 1}
4: c∗ ← Enc(pk,mb)
5: b′ ← A1(pk, c

∗)
6: return Jb = b′K

Figure 3: GAMES OW-CPA and IND-CPA for PKE

GAME IND-CCA
1: (pk, sk)← Gen(1λ)
2: (K0, c

∗)← Encap(pk)
3: K1 ← K
4: b← {0, 1}
5: b′ ← ADecap(pk, c∗,Kb)
6: return Jb = b′K

Decap(c ̸= c∗)

1: return Decap(sk, c)

Figure 4: GAME IND-CCA for KEM

Definition 2.2 (OW-CPA security of PKE). Let PKE = (Gen, Enc, Dec) be a public-key encryption scheme
with message space M. Onewayness under chosen-plaintext attacks (OW-CPA) for message distribution
ψM is defined via the GAME OW-CPA, as shown in Figure 3, and the advantage function of adversary A is

AdvOW-CPA
PKE (A) := Pr

[
OW-CPAAPKE ⇒ 1

]
.

Definition 2.3 (IND-CPA security of PKE). Let PKE = (Gen, Enc, Dec) be a public-key encryption scheme
with message space M. Indistinguishability under chosen-plaintext attacks (IND-CPA) is defined via the
GAME IND-CPA, as shown in Figure 3, and the advantage function of adversary A is

AdvIND-CPA
PKE (A) :=

∣∣∣∣Pr [IND-CPAAPKE ⇒ 1
]
− 1

2

∣∣∣∣ .
2.3 Key Encapsulation Mechanism

Definition 2.4 (Key Encapsulation Mechanism). A key encapsulation mechanism KEM = (Gen, Encap,
Decap) with a key space K consists of the following three algorithms:

• Gen(1λ): The key generation algorithm Gen is a randomized algorithm that takes a security parameter
λ as input and outputs a pair of public key and secret key, (pk, sk).

• Encap(pk): The encapsulation algorithm Encap is a randomized algorithm that takes a public key pk
as input, and outputs a ciphertext c and a key K ∈ K.

• Decap(sk, c): The decryption algorithm Decap is a deterministic algorithm that takes a secret key sk
and ciphertext c as input, and outputs either a key K ∈ K or a special symbol ⊥/∈ K to indicate that c
is not a valid ciphertext.

10



Correctness. We say that KEM has a correctness error δ if

Pr[Decap(sk, c) ̸= K|(c,K)← Encap(pk)] ≤ δ,

where the probability is taken over the randomness in Encap and (pk, sk)← Gen(1λ).

Definition 2.5 (IND-CCA security of KEM). Let KEM = (Gen, Encap, Decap) be a key encapsulation
mechanism with a key space K. Indistinguishability under chosen-ciphertext attacks (IND-CCA) is defined
via the GAME IND-CCA, as shown in Figure 4, and the advantage function of adversary A is as follows:

AdvIND-CCA
KEM (A) :=

∣∣∣∣Pr [IND-CCAAKEM ⇒ 1
]
− 1

2

∣∣∣∣ .
2.4 Complexity Assumptions

This section outlines complexity assumptions used in NTRU+. Specifically, it introduces the NTRU and
RLWE problems. Unlike the RLWE problem used in ElGamal-type schemes [2], RLWE here is defined in
the computational sense.

Definition 2.6 (The NTRU problem [19]). Let ψ be a distribution over Rq. The NTRU problem NTRUn,q,ψ
is to distinguish h = g(pf ′ + 1)−1 ∈ Rq from u ∈ Rq, where f ′,g ← ψ and u ← Rq. The advantage of
adversary A in solving NTRUn,q,ψ is defined as follows:

AdvNTRUn,q,ψ (A) = Pr[A(h) = 1]− Pr[A(u) = 1].

Definition 2.7 (The RLWE problem [30]). Let ψ be a distribution over Rq. The RLWE problem RLWEn,q,ψ
is to find s from (a,b = as+ e) ∈ Rq ×Rq, where a ← Rq, s, e ← ψ. The advantage of an adversary A
in solving RLWEn,q,ψ is defined as follows:

AdvRLWE
n,q,ψ (A) = Pr[A(a,b) = s].

2.5 Auxiliary Lemmas for the Security Proofs

Lemma 2.8 (Fundamental lemma of game-playing [6, Lemma 1]). Let G and H be identical-until-bad
games, meaning that both games maintain a boolean flag bad initially set to false and behave identically
until bad is set to true. Then, for any adversary A,∣∣Pr[GA ⇒ 1]− Pr[HA ⇒ 1]

∣∣ ≤ Pr[GA sets bad].

Lemma 2.9 (Classical O2H, Theorem 3 from the eprint version of [3]). Let S ⊂ R be random. Let G and
F be random functions satisfying ∀r /∈ S : G(r) = F(r). Let z be a random classical value (S, G, F, z may
have an arbitrary joint distribution). Let C be a quantum oracle algorithm with query depth qG, expecting
input z. Let D be the algorithm that, on input z, samples a uniform i from {1, ..., qG}, runs C right before its
i-th query to F, measures all query input registers, and outputs the set T of measurement outcomes. Then∣∣∣Pr[CG(z)⇒ 1]− Pr[CF(z)⇒ 1]

∣∣∣ ≤ 2qG

√
Pr[S ∩ T ̸= ∅ : T ← DF(z)].

Lemma 2.10 (Generic search problem [4, 25, 26]). Let γ ∈ [0, 1]. Let Z be a finite set. N1 : Z → {0, 1} is
the following function: For each z, N1(z) = 1 with probability pz (pz ≤ γ), and N1(z) = 0 else. Let N2 be
the function with ∀z : N2(z) = 0. If an oracle algorithm A makes at most q quantum queries to N1 (or N2),
then ∣∣∣Pr[b = 1 : b← AN1 ]− Pr[b = 1 : b← AN2 ]

∣∣∣ ≤ 2q
√
γ.
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3 ACWC2 Transformation

We introduce our new ACWC transformation, denoted ACWC2, by presenting ACWC2[PKE, SOTP,G] for
a hash function G, as shown in Figure 5. Let PKE′ = ACWC2[PKE, SOTP,G] be the resulting encryption
scheme. By applying ACWC2 to an underlying PKE, we show that (1) PKE′ achieves a worst-case correct-
ness error that is essentially as small as the average-case error of PKE, and (2) PKE′ attains tight IND-CPA
security provided that PKE is OW-CPA secure.

3.1 SOTP

Definition 3.1. A semi-generalized one-time pad SOTP = (Encode,Decode), with a message space X , a
randomness space U (with corresponding distribution ψU ), and a code space Y (with corresponding distri-
bution ψY ), consists of the following two algorithms:

• Encode(x, u) : The encoding algorithm Encode is a deterministic algorithm that takes a message
x ∈ X and randomness u ∈ U as input, and outputs a code y ∈ Y .

• Decode(y, u) : The decoding algorithm Decode is a deterministic algorithm that takes a code y ∈ Y
and randomness u ∈ U as input, and outputs a message x ∈ X ∪ {⊥}.

It also satisfies the following three properties:

1. Decoding: For all x ∈ X and u ∈ U , Decode(Encode(x, u), u) = x.

2. Message-hiding: For all x ∈ X , Encode(x, u) with u← ψU follows the distribution ψY .

3. Rigid: For all u ∈ U and y ∈ Y such that Decode(y, u) ̸=⊥, we have Encode(Decode(y, u), u) = y.

In contrast to the GOTP defined in [16], SOTP does not need to satisfy an additional randomness-hiding
property, which requires that the output y = Encode(x, u) follow the distribution ψY while simultaneously
revealing no information about the randomness u. The absence of this additional requirement allows SOTP
to be designed more flexibly and efficiently than GOTP. Instead, SOTP is required to be rigid, meaning
that for all u ∈ U and y ∈ Y , if x = Decode(y, u) ̸=⊥, then Encode(x, u) = y.

3.2 ACWC2

Let PKE = (Gen,Enc,Dec) be an underlying public-key encryption scheme with message spaceM and
randomness space R, where messages M ∈ M and randomness r ∈ R are drawn from the distributions
ψM and ψR, respectively. Similarly, let PKE′ = (Gen′,Enc′,Dec′) be the transformed encryption scheme
with message spaceM′ and randomness space R′. Let SOTP = (Encode,Decode) be a semi-generalized
one-time pad, where Encode : M′ × U → M and Decode : M× U → M′ are defined with respect
to distributions ψU and ψM. Let G : R → U be a hash function whose outputs are independently ψU -
distributed. Then PKE′ = ACWC2[PKE, SOTP,G] is described in Figure 5.

Under the condition that Dec(sk, c) in Dec′ yields the same M as in Enc, the deterministic functions
RRec and Decode do not affect the correctness error of PKE′. Thus, the factor that determines the success or
failure of Dec′(sk, c) is the result of Dec(sk, c) within Dec′. This implies that the correctness error of PKE is
directly transferred to that of PKE′, and is eventually determined by how the randomness r ∈ R and message
M ∈ M are sampled in PKE′. We observe that r is drawn according to the distribution ψR and that M is

12



Gen′(1λ)

1: (pk, sk) := Gen(1λ)
2: return (pk, sk)

Enc′(pk,m ∈M′;R ∈ R′)
1: r ← ψR using the randomness R
2: M := Encode(m,G(r))
3: c := Enc(pk,M ; r)
4: return c

Dec′(sk, c)

1: M := Dec(sk, c)
2: r := RRec(pk,M, c)
3: m := Decode(M,G(r))
4: if r /∈ R or m =⊥, return ⊥
5: return m

Figure 5: ACWC2[PKE, SOTP,G]

an SOTP-encoded element inM. Because each output of G is independently ψU -distributed, the message-
hiding property of SOTP ensures that M follows the distribution ψM while hiding m. Consequently, both
M and r are chosen according to their originally intended distributions.

However, since the choice of the random oracle G can affect the correctness error of PKE′, we need to
incorporate this observation into the correctness analysis. Theorem 3.2 shows that, for all but a negligible
fraction of random oracles G, the worst-case correctness of PKE′ (transformed by ACWC2) is close to
the average-case correctness of PKE. This mirrors the idea underlying ACWC, and the proof strategy of
Theorem 3.2 is essentially the same as in [16] (Lemma 3.6 therein), except for slight modifications to the
message distribution.

Theorem 3.2 (Average-Case to Worst-Case Correctness error). Let PKE be RR and have a randomness
space R relative to the distribution ψR. Let SOTP = (Encode,Decode), with Encode : M′ × U → M
and Decode : M× U → M′, be a semi-generalized one-time pad (for distributions ψU and ψM). Let
G : R → U be a random oracle whose outputs are distributed according to ψU . If PKE is δ-average-case-
correct, then PKE′ := ACWC2[PKE, SOTP,G] is δ′-worst-case-correct for

δ′ = δ + ∥ψR∥ ·
(
1 +

√
(ln |M′| − ln∥ψR∥)/2

)
,

where ∥ψR∥ :=
√∑

r ψR(r)
2.

Proof. Taking expectation over G and (pk, sk)← Gen(1λ), the worst-case correctness of PKE′ is

δ′ = E
[
max
m∈M′

Pr[Dec′(sk,Enc′(pk,m)) ̸= m]

]
= E[δ′(pk, sk)],

where δ′(pk, sk) := E[maxm∈M′ Pr[Dec′(sk,Enc′(pk,m)) ̸= m]] is the expectation over G for a fixed key
pair (pk, sk). For any fixed key pair and any positive real t ∈ R+, we have

δ′(pk, sk) = E[ max
m∈M′

Pr[Dec′(sk,Enc′(pk,m)) ̸= m]]

≤ t+ Pr
G

[
max
m∈M′

Pr[Dec′(sk,Enc′(pk,m)) ̸= m] ≥ t
]

(1)

≤ t+ Pr
G

[
max
m∈M′

Pr
r←ψR

[Dec′(sk,Enc(pk,M ; r)) ̸= m] ≥ t
]

≤ t+ Pr
G

[
max
m∈M′

Pr
r←ψR

[Dec(sk,Enc(pk,M ; r)) ̸=M ] ≥ t
]
, (2)
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whereM = Encode(m,G(r)). Note that Equation (1) holds by Lemma 3.4, and Equation (2) holds because

Pr
r←ψR

[Dec′(sk,Enc(pk,M ; r)) ̸= m] ≤ Pr
r←ψR

[Dec(sk,Enc(pk,M ; r)) ̸=M ].

For any fixed key pair and any positive c, let t(pk, sk) := µ(pk, sk)+ ∥ψR∥ ·
√
(c+ ln |M′|)/2, where

µ(pk, sk) := PrM,r[Dec(sk,Enc(pk,M ; r)) ̸=M ]. Then, we can use Lemma 3.5 to argue that

Pr
G

[
max
m∈M′

Pr
r←ψR

[Dec(sk,Enc(pk,M ; r)) ̸=M ] > t(pk, sk)

]
≤ e−c. (3)

To this end, we define

g(m, r, u) = (Encode(m,u), r) and B = {(M, r) ∈M×R | Dec(sk,Enc(pk,M ; r)) ̸=M},

which will be used in Lemma 3.5. Note that Prr←ψR, u←ψU [g(m, r, u) ∈ B] = µ(pk, sk) holds for all
m ∈M′ by the message-hiding property of the SOTP. For all m ∈M′,

Pr
r←ψR, u←ψU

[g(m, r, u) ∈ B] = Pr
r←ψR, u←ψU

[(Encode(m,u), r) ∈ B]

= Pr
r←ψR,M←ψM

[(M, r) ∈ B]

= Pr
r←ψR,M←ψM

[Dec(sk,Enc(pk,M ; r)) ̸=M ]

= µ(pk, sk).

Combining Equation (3) with Equation (2) and taking the expectation yields

δ′ ≤ E
[
µ(pk, sk) + ∥ψR∥ ·

√
(c+ ln |M′|)/2 + e−c

]
= δ + ∥ψR∥ ·

√
(c+ ln |M′|)/2 + e−c,

and setting c := − ln∥ψR∥ yields the claim in the theorem.

Corollary 3.3 (Average-Case to Worst-Case Correctness error). Let PKE be RR and have a randomness
space R relative to the distribution ψR. Let SOTP = (Encode,Decode), with Encode : M′ × U → M
and Decode : M× U → M′, be a semi-generalized one-time pad (for distributions ψU and ψM). Let
G : R → U be a random oracle whose outputs are distributed according to ψU . If PKE is δ-average-case-
correct, then

E
[
max
m∈M′

Pr
r←ψR

[Dec(sk,Enc(pk,M ; r)) ̸=M ]

]
≤ δ′,

where M = Encode(m,G(r)), and

δ′ = δ + ∥ψR∥ ·
(
1 +

√
(ln |M′| − ln∥ψR∥)/2

)
,

with ∥ψR∥ :=
√∑

r ψR(r)
2, where the expectation is over G and (pk, sk)← Gen(1λ).

Proof. The proof is analogous to that of Theorem 3.2, and we omit the detailed argument.
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Lemma 3.4. Let X be a random variable and let f be a non-negative real-valued function with f(X) ≤ 1.
Then, for all t ∈ R+,

E[f(X)] ≤ t+ Pr[f(X) ≥ t].

Proof. By applying the law of total probability and by partitioning the domain of x into the cases where
f(x) < t and f(x) ≥ t, we obtain

E[f(X)] =
∑
x

f(x) Pr[X = x]

=
∑
f(x)<t

f(x) Pr[X = x] +
∑
f(x)≥t

f(x) Pr[X = x]

≤
∑
f(x)<t

tPr[X = x] +
∑
f(x)≥t

f(x) Pr[X = x]

≤ t+
∑
f(x)≥t

f(x) Pr[X = x]

≤ t+
∑
f(x)≥t

Pr[X = x] = t+ Pr[f(X) ≥ t].

The final equality follows from
∑

f(x)≥t Pr[X = x] = Pr[f(X) ≥ t].

Lemma 3.5 (Adapting Lemma 3.7 from [16]). Let g be a function, and let B be a set such that

∀m ∈M′, Pr
r←ψR, u←ψU

[g(m, r, u) ∈ B] ≤ µ (4)

for some µ ∈ [0, 1]. Let G : R → U be a random function whose outputs are independently distributed
according to ψU . Define ∥ψR∥ =

√∑
r ψR(r)

2. Then, for all but an e−c fraction of random functions G,
we have that ∀m ∈M′,

Pr
r←ψR

[g(m, r,G(r)) ∈ B] ≤ µ+ ∥ψR∥ ·
√

(c+ ln |M′|)/2 (5)

for any c ∈ R+.

Proof. For fixed m ∈ M′ and r ∈ R, define pr := Pru←ψU [g(m, r, u) ∈ B]. From Equation (4), we know
that

∑
r ψR(r)pr ≤ µ. For each r, define a random variable Xr whose value is determined as follows: G

chooses a random u = G(r) and then checks whether g(m, r,G(r)) ∈ B; if it does, then we set Xr = 1;
otherwise we set it to zero. Because G is a random function, the probability that Xr = 1 is exactly pr.

The probability of Equation (5) for our particular m is the same as the sum
∑

r ψR(r)Xr, and we use
the Hoeffding bound to show that this value is not significantly larger than µ. We define the random variable
Yr = ψR(r)Xr. Notice that Yr ∈ [0, ψR(r)], and E[

∑
r Yr] = E[

∑
r ψR(r)Xr] =

∑
r ψR(r)pr ≤ µ. By

the Hoeffding bound, we have for all positive t,

Pr[
∑
r

Yr > µ+ t] ≤ exp
(
−2t2∑
ψR(r)

2

)
= exp

(
−2t2

∥ψR∥2

)
. (6)

By setting t ≥ ∥ψR∥ ·
√

(c+ ln |M′|)/2, for a fixed m, Equation (5) holds for all but an e−c · |M′|−1

fraction of random functions G. Applying the union bound yields the claim in the lemma.
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GAMES G0-G2

1: G← (R → U) //G0

2: LG,Lr := ∅ //G1-G2

3: (pk, sk)← Gen(1λ)
4: (m0,m1)← AG

0 (pk)
5: b← {0, 1}
6: r∗ ← ψR
7: M∗ = Encode(mb,G(r

∗)) //G1

8: M∗ ← ψM //G2

9: c∗ ← Enc(pk,M∗; r∗)
10: b′ ← AG

1 (pk, c
∗)

11: return Jb = b′K

G(r) //G1-G2

1: if ∃ (r, u) ∈ LG
2: return u
3: u← ψU
4: LG := LG ∪ {(r, u)}
5: Lr := Lr ∪ {r}
6: return u

Figure 6: GAMES G0–G2 of Theorem 3.6

3.2.1 Security Proof in the ROM

Theorem 3.6 (OW-CPA security of PKE ROM
=⇒ IND-CPA security of ACWC2[PKE, SOTP,G]). Let PKE be

a public-key encryption scheme with AC-MR, VC-MR, and RR properties. For any adversaryA against the
IND-CPA security of ACWC2[PKE, SOTP,G], making at most qG random oracle queries, there exists an
adversary B against the injectivity of PKE and an adversary C against the OW-CPA security of PKE with

AdvIND-CPA
ACWC2[PKE,SOTP,G](A) ≤ AdvINJPKE(B) + AdvOW-CPA

PKE (C),

where the running time of B and C is about Time(A) +O(qG).

Proof. We prove the theorem by constructing adversaries B (Figure 7) and C (Figure 8) fromA = (A0,A1),
where B and C break the injectivity and the OW-CPA security of PKE, respectively, whileA breaks the IND-
CPA security of ACWC2[PKE, SOTP,G].
GAME G0. G0 (see Figure 6) is the original IND-CPA game with ACWC2[PKE, SOTP,G]. By the definition
of the IND-CPA game, ∣∣Pr[GA0 ⇒ 1]− 1

2

∣∣ = AdvIND-CPA
ACWC2[PKE,SOTP,G](A).

GAME G1. G1 is identical to G0 except that the random oracle G is instantiated via lazy sampling rather
than by sampling a full random function in advance. Concretely, we maintain a table LG: upon a query r,
if r has not yet been assigned a value, a fresh u ← ψU is sampled and (r, u) is added to LG; otherwise the
stored value is returned. Also, every input r queried byA is also recorded in the set Lr. Since lazy sampling
is equivalent to a uniform function, we have

Pr[GA0 ⇒ 1] = Pr[GA1 ⇒ 1].

GAME G2. G2 is identical to G1 except that M∗ is sampled directly from ψM rather than being computed
as M∗ = Encode(mb,G(r

∗)). Let BAD1 be the event that A queries G at input r∗ in G2. If BAD1 does not
occur, then G(r∗) is uniform and independent ofA’s view in G1, hence by the message-hiding of SOTP the
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B(pk)
1: LG,Lr := ∅
2: (m0,m1)← AG

0 (pk)
3: b← {0, 1}
4: (M∗, r∗)← ψM × ψR
5: c∗ ← Enc(pk,M∗; r∗)
6: b′ ← AG

1 (pk, c
∗)

7: for r ∈ Lr with r ̸= r∗ do
8: M := MRec(pk, r, c∗)
9: if (M, r) ∈M×R

10: return (M,M∗, r, r∗)
11: (M, r)← ψM × ψR
12: return (M, r,M∗, r∗)

G(r)

1: if ∃ (r, u) ∈ LG
2: return u
3: u← ψU
4: LG := LG ∪ {(r, u)}
5: Lr := Lr ∪ {r}
6: return u

Figure 7: Adversary B for the proof of Theorem 3.6

distribution of M∗ = Encode(mb,G(r
∗)) equals ψM. Therefore, by Lemma 2.8, unless BAD1 occurs the

distributions of G1 and G2 are identical, and∣∣Pr[GA1 ⇒ 1]− Pr[GA2 ⇒ 1]
∣∣ ≤ Pr[BAD1 in GA2 ].

Moreover, in G2 the pair (M∗, r∗) is sampled independently of b, hence

Pr[GA2 ⇒ 1] = 1
2 .

Assume that BAD1 occurs in G2. Let BAD2 be the event that A queries some r ∈ Lr with r ̸= r∗ and
M := MRec(pk, r, c∗) ∈M. Then,

Pr[BAD1 in GA2 ] = Pr[BAD1 ∧ BAD2 in GA2 ] + Pr[BAD1 ∧ ¬BAD2 in GA2 ]

≤ Pr[BAD2 in GA2 ] + Pr[BAD1 ∧ ¬BAD2 in GA2 ].

Assume that the event BAD2 occurs in G2. We construct an adversary B against GAME INJ for PKE as
follows. Given pk from its challenger, B runsAG

0 (pk), samples (M∗, r∗)← ψM×ψR, and generates c∗ ←
Enc(pk,M∗; r∗). It then runs AG

1 (pk, c
∗) while simulating the random oracle G. Since BAD2 occurs, there

exists some r ∈ Lr with r ̸= r∗ such that M := MRec(pk, r, c∗) ∈ M. By the AC-MR property, (M, r) is
a valid pre-image of c∗. Hence, B can identify such an r ̸= r∗ in Lr, compute M := MRec(pk, r, c∗), and
output (M, r,M∗, r∗). Therefore, B breaks GAME INJ for PKE whenever BAD2 occurs. Thus,

Pr[BAD2 in G2] ≤ AdvINJPKE(B).

Assuming that the event BAD1∧¬BAD2 occurs inGA2 , we construct an adversary C against GAME OW-CPA
for PKE as follows. The challenger provides C with (pk, c∗), where c∗ is generated by sampling (M∗, r∗)←
ψM × ψR and computing c∗ ← Enc(pk,M∗; r∗). Upon receiving (pk, c∗), the adversary C runs b ←
AG

0 (pk) and then invokesAG
1 (pk, c

∗), while simulating the random oracle G. Since we assumed that BAD1∧
¬BAD2 occurs, we have r∗ ∈ Lr, and by the VC-MR property it follows thatM∗ = MRec(pk, r∗, c∗) ∈M
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C(pk, c∗)
1: LG,Lr := ∅
2: (m0,m1)← AG

0 (pk)
3: b′ ← AG

1 (pk, c
∗)

4: for r ∈ Lr do
5: M := MRec(pk, r, c∗)
6: if (M, r) ∈M×R
7: return M
8: return M ← ψM

G(r)

1: if ∃ (r, u) ∈ LG
2: return u
3: u← ψU
4: LG := LG ∪ {(r, u)}
5: Lr := Lr ∪ {r}
6: return u

Figure 8: Adversary C for the proof of Theorem 3.6

and c∗ = Enc(pk,M∗; r∗). Moreover, by the assumption ¬BAD2, there exists no r ̸= r∗ such that
M := MRec(pk, r, c∗) ∈M. Thus, C can recover M∗ uniquely. Hence,

Pr[BAD1 ∧ ¬BAD2 in GA2 ] ≤ AdvOW-CPA
PKE (C).

Putting everything together,

AdvIND-CPA
ACWC2[PKE,SOTP,G](A) =

∣∣Pr[GA0 ⇒ 1]− 1
2

∣∣
≤

1∑
i=0

∣∣Pr[GAi ⇒ 1]− Pr[GAi+1 ⇒ 1]
∣∣+ ∣∣Pr[GA2 ⇒ 1]− 1

2

∣∣
≤ Pr[BAD2 in G2] + Pr[BAD1 ∧ ¬BAD2 in GA2 ]

≤ AdvINJPKE(B) + AdvOW-CPA
PKE (C).

3.2.2 Security Proof in the QROM

Theorem 3.7 (OW-CPA security of PKE QROM
=⇒ IND-CPA security of ACWC2[PKE, SOTP,G]). Let PKE

be a public-key encryption scheme with AC-MR, VC-MR, and RR properties. For any quantum adversary
A against the IND-CPA security of ACWC2[PKE, SOTP,G] with query depth at most qG, there exists a
quantum adversary B against the injectivity of PKE and a quantum adversary C against the OW-CPA security
of PKE with

AdvIND-CPA
ACWC2[PKE,SOTP,G](A) ≤ 2qG

√
AdvINJPKE(B) + AdvOW-CPA

PKE (C),

where the running time of B and C is bounded by Time(A) +O(qG).

Proof. To prove the theorem, we consider a sequence of games G0 through G7, defined in Figures 9, 10,
and 11. We first analyze the transition from G0 to G2, and then apply Lemma 2.9 to bound the hop from G2

to G3. A detailed description of the security proof is given below.
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GAME G0

1: G← (R→ U)
2: (pk, sk)← Gen(1λ)
3: (m0,m1)← AG

0 (pk)
4: b← {0, 1}
5: r∗ ← ψR
6: M∗ ← Encode(mb, G(r

∗))
7: c∗ ← Enc(pk,M∗; r∗)
8: b′ ← AG

1 (pk, c
∗)

9: return Jb = b′K

Figure 9: GAME G0 for Theorem 3.7

GAME G0. G0 (see Figure 9) is the original IND-CPA game with ACWC2[PKE, SOTP,G]. By definition,
we have ∣∣∣∣Pr[GA0 ⇒ 1]− 1

2

∣∣∣∣ = AdvIND-CPA
ACWC2[PKE,SOTP,G](A).

GAME G1. We define G1 in the same way as G0, except that part of the challenger’s logic is encapsulated
into an algorithm CG. In addition, before CG runs adversary A, we sample r∗ ← ψR and make a classical
query u := G(r∗). As these changes are only conceptual, it follows that

Pr[GA0 ⇒ 1] = Pr[GA1 ⇒ 1].

GAME G2. We define G2 in the same way as G1, except that we change the way G is defined. Instead of
choosing G uniformly, we sample F and u uniformly and then set G := F(r∗ := u). In other words, G is
identical to F except that it returns u on input r∗. Since the distribution of (G, u) remains the same, we have

Pr[GA1 ⇒ 1] = Pr[GA2 ⇒ 1].

GAME G3. We define G3 in the same way as G2, except that algorithm C has oracle access to F instead
of G. Recall that in G2 the oracle G is defined as F(r∗ := u), which coincides with F on all inputs except
r∗, i.e., they differ only on the set S := {r∗}. This is exactly the setting of Lemma 2.9 with the set S and
auxiliary input z := (r∗, u). Hence, by applying the lemma with algorithm C, we obtain∣∣Pr[GA2 ⇒ 1]− Pr[GA3 ⇒ 1]

∣∣ ≤ 2qG
√

Pr[G4 ⇒ 1].

Moreover, since the random value u is only used in Encode(mb, u), the message-hiding property of SOTP
implies that M∗ is independent of mb. Hence,

Pr[GA3 ⇒ 1] =
1

2
.

GAME G4 and G5. We define G4 in the same way as G3, except that it is arranged according to Lemma 2.9.
We then define G5 in the same way as G4, except that we change the way M∗ is determined. Instead of
computing M∗ = Encode(mb, u), we sample M∗ ← ψM. In G4, however, since u is sampled from ψU and
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GAMES G1-G5

1: G← (R → U) //G1

2: r∗ ← ψR
3: u := G(r∗) //G1

4: F← (R→ U) //G2-G5

5: u← ψU //G2-G5

6: G := F(r∗ := u) //G2-G5

7: w ← CG(r∗, u) //G1-G2

8: w ← CF(r∗, u) //G3

9: T ← DF(r∗, u) //G4-G5

10: return w //G1-G3

11: return Jr∗ ∈ T K //G4-G5

CG(r∗, u)
1: (pk, sk)← Gen(1λ)
2: (m0,m1)← AG

0 (pk)
3: b← {0, 1}; //G1-G4

4: M∗ = Encode(mb, u); //G1-G4

5: M∗ ← ψM ; //G5

6: c∗ ← Enc(pk,M∗; r∗)
7: b′ ← AG

1 (pk, c
∗)

8: return Jb = b′K
DF(r, u)

1: i← {1, · · · , qG}
2: Run CF(r∗, u) till i-th query
3: T ← measure F-query
4: return T

Figure 10: GAMES G1-G5 for the proof of Theorem 3.7

used only for Encode(mb, u), the message-hiding property of SOTP ensures that M∗ = Encode(mb, u) is
distributed according to ψM. Hence,

Pr[GA4 ⇒ 1] = Pr[GA5 ⇒ 1].

GAME G6. We define G6 in the same way as G5, except that the challenger’s procedure is rearranged as
shown in Figure 11. Since this change is only conceptual, we have

Pr[GA5 ⇒ 1] = Pr[GE6 ⇒ 1].

Let BAD be the event that there exists r ∈ T with r ̸= r∗ and M := MRec(pk, r, c∗) ∈M. Then,

Pr[GE6 ⇒ 1] = Pr[GE6 ⇒ 1 ∧ BAD in GE6 ] + Pr[GE6 ⇒ 1 ∧ ¬BAD in GE6 ]

≤ Pr[BAD in GE6 ] + Pr[GE6 ⇒ 1 ∧ ¬BAD in GE6 ]

GAME G7a. We defineG7a by wrapping the generation of (M∗, r∗) and c∗ into the adversaryB. Also, unlike
G6, after E outputs T , B searches for some r ∈ T with r ̸= r∗ such that M = MRec(pk, r, c∗) ∈ M, and
outputs (M,M∗, r, r∗) if such an r exists. Otherwise, it samples random (M, r) and outputs (M,M∗, r, r∗).
Suppose such an r exists. By AC-MR, the pair (M, r) is a valid pre-image of c∗. Since (M∗, r∗) is also a
pre-image of c∗ and r ̸= r∗, the tuple (M,M∗, r, r∗) is a valid solution to the injectivity game. Therefore,
we have

Pr[BAD in GE6 ] = Pr[GB7a ⇒ 1].

Moreover, by definition, G7a is exactly the INJ game for PKE run with adversary B; hence

Pr[GB7a ⇒ 1] = AdvINJPKE(B).

GAME G7b. We define G7b in the same way as G6, except that algorithm C explicitly outputs (M, r) and
the game returns 1 if (M∗, r∗) = (M, r). (see Figure 11). If there exist r∗ ∈ T and there does not exist
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GAMES G6

1: (pk, sk)← Gen(1λ)
2: (M∗, r∗)← ψM × ψR
3: c∗ ← Enc(pk,M∗; r∗)
4: T ← E(pk, c∗)
5: return Jr∗ ∈ T K

E(pk, c∗)
1: i← {1, · · · , qG}
2: Run until i-th F-query:
3: AF

1(pk)
4: AF

2(pk, c
∗)

5: T ←measure F-query
6: return T

GAMES G7a

1: (pk, sk)← Gen(1λ)
2: (M,M∗, r, r∗)← B(pk)
3: c = Enc(pk,M ; r)
4: c′ = Enc(pk,M∗; r∗)

5: return
s
(M,M∗, r, r∗) ∈M2 ×R2

∧ (M, r) ̸= (M∗, r∗) ∧ c = c′

{

B(pk)
1: (M∗, r∗)← ψM × ψR
2: c∗ ← Enc(pk,M∗; r∗)
3: T ← E(pk, c∗)
4: for r ∈ T with r ̸= r∗ do
5: if M = MRec(pk, r, c∗) ∈M
6: return (M,M∗, r, r∗)
7: (M, r)← ψM × ψR
8: return (M, r,M∗, r∗)

GAMES G7b

1: (pk, sk)← Gen(1λ)
2: (M∗, r∗)← ψM × ψR
3: c∗ ← Enc(pk,M∗; r∗)
4: M ← C(pk, c∗)
5: return JM∗ =MK

C(pk, c∗)
1: T ← E(pk, c∗)
2: for r ∈ T do
3: if M = MRec(pk, r, c∗) ∈M
4: return (M, r)
5: return (M, r)← ψM × ψR

Figure 11: GAMES G6-G7 for the proof of Theorem 3.7

r ∈ T with r ̸= r∗ and M = MRec(pk, r, c∗) ∈ M, by VC-MR, we can recover r∗ = MRec(pk, r∗, c∗).
Therefore, we have

Pr[GE6 ⇒ 1 ∧ ¬BAD in GE6 ] = Pr[GC7b ⇒ 1].

By definition, G7b is exactly the OW-CPA game for PKE run with adversary C; hence

Pr[GE7 ⇒ 1] = AdvOW-CPA
PKE (C).

Combining all (in)equalities and bounds, we obtain

AdvIND-CPA
ACWC2[PKE,SOTP,G](A) ≤ 2qG

√
AdvINJPKE(B) + AdvOW-CPA

PKE (C),

which concludes the proof.

21



3.2.3 Spreadness of PKE′

Theorem 3.8. If PKE is (weakly) γ-spread, SOTP has the message hiding property, and G is modeled as a
random oracle, then PKE′ = ACWC2[PKE, SOTP,G] is (weakly) γ-spread.

Proof. For a fixed (pk, sk) and m, we consider the probability PrR←R′,G[c = Enc′(pk,m;R)] for any
ciphertext c. Since G is modeled as a random oracle, the probability is taken over the random choice of G.
Given that r is sampled as r ← ψR using the randomness R← R′, the probability can be rewritten as

Pr
R←R′,G

[c = Enc′(pk,m;R)] = Pr
r←ψR,G

[c = Enc(pk,Encode(m,G(r)); r)].

By the law of total probability on possible r ← ψR, we have:

Pr
r←ψR,G

[c = Enc(pk,Encode(m,G(r)); r)] =
∑
ri∈R

Pr
G
[c = Enc(pk,Encode(m,G(ri)); ri)] Pr

r←ψR
[r = ri].

Since G(ri) isψU -distributed, the message hiding property of SOTP ensures that the outputM = Encode(m,G(ri))
is ψM-distributed over the random choice of G:∑

ri∈R
Pr
G
[c = Enc(pk,Encode(m,G(ri)); ri)] Pr

r←ψR
[r = ri]

=
∑
ri∈R

Pr
u←ψU

[c = Enc(pk,Encode(m,u); ri)] Pr
r←ψR

[r = ri]

=
∑
ri∈R

Pr
M←ψM

[c = Enc(pk,M ; ri)] Pr
r←ψR

[r = ri].

For the ease of analysis, we define an indicator function I(pk,M, r, c) = Jc == Enc(pk,M ; r)K. Then,∑
ri∈R

Pr
M←ψM

[c = Enc(pk,M ; ri)] Pr
r←ψR

[r = ri]

=
∑
ri∈R

∑
Mj∈M

I(pk,Mj , ri, c) Pr
M←ψM

[M =Mj ] Pr
r←ψR

[r = ri]

=
∑

Mj∈M

∑
ri∈R

I(pk,Mj , ri, c) Pr
r←ψR

[r = ri] Pr
M←ψM

[M =Mj ]

=
∑

Mj∈M
Pr

r←ψR
[c = Enc(pk,Mj ; r)] Pr

M←ψM
[M =Mj ].

Considering Prr←ψR [c = Enc(pk,Mj ; r)] as the γ-spreadness of PKE on any message Mj , the γ′-
spreadness of PKE′ is upper-bounded as follows:

Pr
R←R′,G

[c = Enc′(pk,m;R)] =
∑

Mj∈M
Pr

r←ψR
[c = Enc(pk,Mj ; r)] · Pr

M←ψM
[M =Mj ]

≤ 2−γ ·
∑

Mj∈M
Pr

M←ψM
[M =Mj ] = 2−γ .

By averaging over (pk, sk), the weak γ′-spreadness of PKE′ is also obtained.
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4 IND-CCA Secure KEM from ACWC2

4.1 FO Transform with Re-encryption

One can apply the Fujisaki-Okamoto transformation FO⊥ to the IND-CPA secure PKE′, as shown in Fig-
ure 5, to obtain an IND-CCA secure KEM. Figure 12 shows the resultant KEM := FO⊥[PKE′,H] =
(Gen,Encap,Decap), where H is a hash function (modeled as a random oracle). Regarding the correctness
error of KEM, KEM preserves the worst-case correctness error of PKE′, as Decap works correctly as long
as Dec′ is performed correctly. Regarding the IND-CCA security of KEM, we can use the previous results
[20] and [15], which are stated in Theorems 4.1 and 4.2, respectively. By combining these results with
Theorems 3.6 and 3.7, we can achieve the IND-CCA security of KEM in the classical/quantum random
oracle model. In the case of the quantum random oracle model (QROM), we need to further use the fact that
IND-CPA security generically implies OW-CPA security.

Encap(pk)

1: m←M
2: (R,K) := H(m)
3: c := Enc′(pk,m;R)

- r ← ψR using the randomness R
- M := Encode(m,G(r))
- c := Enc(pk,M ; r)

4: return (K, c)

Decap(sk, c)

1: m′ := Dec′(sk, c)
- M ′ = Dec(sk, c)
- r′ = RRec(pk,M ′, c)
- m′ = Decode(M ′,G(r′))
- if r′ /∈ R or m′ =⊥, return ⊥
- return m′

2: (R′,K ′) := H(m′)
3: if m′ =⊥ or c ̸= Enc′(pk,m′;R′), return ⊥
4: else, return K ′

Figure 12: KEM = FO⊥[PKE′,H]

Theorem 4.1 (IND-CPA security of PKE′ ROM
=⇒ IND-CCA security of KEM [20]). Let PKE′ be a public-key

encryption scheme with a message spaceM. Let PKE′ has (worst-case) correctness error δ and is (weakly)
γ-spread. For any adversaryAmaking at most qD decapsulation and qH hash queries, against the IND-CCA
security of KEM, there exists an adversary B against the IND-CPA security of PKE′ with

AdvIND-CCA
KEM (A) ≤ 2(AdvIND-CPA

PKE′ (B) + qH
|M|

) + qD2
−γ + qHδ,

where the running time of B is about that of A.

Theorem 4.2 (OW-CPA security of PKE′ QROM
=⇒ IND-CCA security of KEM [15]). Let PKE′ have (worst-

case) correctness error δ and be (weakly) γ-spread. For any quantum adversary A, making at most qD
decapsulation and qH (quantum) hash queries against the IND-CCA security of KEM, there exists a quantum
adversary B against the OW-CPA security of PKE′ with

AdvIND-CCA
KEM (A) ≤2q

√
AdvOW-CPA

PKE′ (B) + 24q2
√
δ + 24q

√
qqD · 2−γ/4,

where q := 2(qH + qD) and Time(B) ≈ Time(A) +O(qH · qD · Time(Enc) + q2).

23



4.2 FO-Equivalent Transform Without Re-encryption

The aforementioned FO⊥ requires the Decap algorithm to perform re-encryption to check if ciphertext c
is well-formed. Using m′ as the result of Dec′(sk, c), a new randomness R′ is obtained from H(m′), and
Enc′(pk,m′;R′) is computed and compared with the (decrypted) ciphertext c. Even if m′ is the same as
m used in Encap, it does not guarantee that Enc′(pk,m′;R′) = c without computing R′ and performing
re-encryption. In other words, there could exist many other ciphertexts {ci} (including c as one of them), all
of which are decrypted into the same m′ but generated with distinct randomness {R′}. In FO⊥ (and other
FO transformations), there is still no way to find the same c (honestly) generated in Encap other than by
comparing Enc′(pk,m′;R′) and c. In the context of chosen-ciphertext attacks (using the inequality such as
c ̸= Enc′(pk,m′;R′)), it is well known that decapsulation queries using {ci} can leak information on sk,
particularly in lattice-based encryption schemes.

However, we demonstrate that FO⊥ based on ACWC2 can eliminate the need for ciphertext comparison
c = Enc′(pk,m′;R′) in Decap, and instead replace it with a simpler and more efficient comparison r′ = r′′.
To do this, we first change Decap of Figure 12 into that of Figure 13, which are conceptually identical
to each other. Rather, the change has the effect of preventing reaction attacks that can occur by returning
distinct output errors of Decap. Next, we suggest the new FO⊥ conversion based on ACWC2, denoted as
FO
⊥

, as shown in Figure 14. In FO
⊥

, r′ and r′′ are values generated during the execution of Decap, where
r′ is the output of RRec(pk,M ′, c) and r′′ is computed from the randomness R′ of H(m′). The only change
compared to FO⊥ in Figure 13 is the boxed area, while the remaining parts remain the same. By proving
that the two conditions r′ /∈ R and c = Enc′(pk,m′;R′) are equivalent to the equality r′ = r′′ (where
r′′ ← ψR with the randomness R′), we can show that both FO⊥ and FO

⊥
work identically and thus achieve

the same level of IND-CCA security.

Decap(sk, c)

1: M ′ = Dec(sk, c)
2: r′ = RRec(pk,M ′, c)
3: m′ = Decode(M ′,G(r′))
4: (R′,K ′) := H(m′)

5: ifm′ ̸=⊥ and r′ ∈ R and c = Enc′(pk,m′;R′)

6: return K ′

7: else
8: return ⊥

Figure 13: Modified KEM = FO⊥[PKE′,H]

Decap(sk, c)

1: M ′ = Dec(sk, c)
2: r′ = RRec(pk,M ′, c)
3: m′ = Decode(M ′,G(r′))
4: (R′,K ′) := H(m′)

5: r′′ ← ψR with the randomness R′

6: if m′ ̸=⊥ and r′ = r′′

7: return K ′

8: else
9: return ⊥

Figure 14: KEM′ = FO
⊥
[PKE′,H]

4.2.1 Security Proof in the ROM

Theorem 4.3. Let KEM be a key encapsulation mechanism defined in Figure 12, and let KEM′ be another
mechanism defined in Figure 14, both constructed based on PKE. Assume that PKE is randomness recover-
able and randomness unique, has an average-case correctness error δ, and ensures that outputs of Dec always
belong toM and that SOTP is rigid. For any adversary A making at most qD decapsulation and qH hash
queries against the IND-CCA security of KEM′, there exists an adversary B against the IND-CCA security
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of KEM with

AdvIND-CCA
KEM′ (A) ≤ AdvIND-CCA

KEM (B) + (qH + qD)δ
′,

where δ′ = δ + ∥ψR∥ · (1 +
√

(ln |M′| − ln∥ψR∥)/2), and ∥ψR∥ :=
√∑

r ψR(r)
2.

Proof. The security proof begins by analyzing hybrid games with a fixed key pair (pk, sk). A detailed
explanation of the security proof is provided below.
GAME G0. G0 is the original IND-CCA game against KEM′ with a fixed key pair (pk, sk).
GAME G1. In contrast to G0, the Decap oracle in G1 is modified. Instead of returning K ′ when m′ ̸=⊥
and r′ = r′′, K ′ is now returned if m′ ̸=⊥, r′ ∈ R, and c = c′. Note that G1 is the original IND-CCA game
against KEM with a fixed key pair (pk, sk). For ease of analysis, for each sk and m ∈M, we define

R′bad(sk,m) :=
{
R ∈ R′ : Dec(sk,Enc(pk,M ; r)) ̸=M,

where r = Sample(R;R) and M = Encode(m,G(r))
}
.

and R′good(sk,m) := R′ \ R′bad(sk,m). Additionally, we define δ(sk,m) := |R′bad(sk,m)|/|R′| and
δsk := maxm∈M δ(sk,m).

Assuming (R,K) = H(m) ∈ R′good(sk,m)×K for all m that are queried to H, we now show that the
changes in G1 do not impact adversary A, as the conditions actually imply each other.

Assume that m′ ̸=⊥ and r′ = r′′ hold for a ciphertext c in the Decap oracle. Given the rigidity
of the SOTP, the condition m′ = Decode(M ′,G(r′)) ̸=⊥ implies M ′ = Encode(m′,G(r′)), and thus
M ′ = Encode(m′,G(r′′)). Moreover, since r′ = r′′ and r′′ is sampled from ψR using the randomness R′, it
follows that r′ ∈ R. Additionally, since M ′ = Dec(sk, c) is withinM and r′ = RRec(pk,M ′, c) is also in
R, the RR property of the PKE ensures that c = Enc(pk,M ′; r′) = Enc(pk,Encode(m′,G(r′′)); r′′) = c′.

Conversely, assume thatm′ ̸=⊥, r′ ∈ R, and c = c′ hold in the Decap oracle. SinceM ′ = Dec(sk, c) is
withinM and r′ = RRec(pk,M ′, c) is inR, the RR property of the PKE ensures that c = Enc(pk,M ′; r′).
Additionally, since c = c′ = Enc(pk,Encode(m′,G(r′′)); r′′) where r′′ is sampled using R′ from the
pair (R′,K ′) = H(m′), by the definition of H, it follows that M ′ = Dec(sk, c) = Encode(m′,G(r′′)).
Consequently, this implies that c = Enc(pk,M ′; r′′). Since c = Enc(pk,M ′; r′) = Enc(pk,M ′; r′′), the
randomness uniqueness of PKE implies r′ = r′′.

GAMES G0-G1

1: G← (R → U)
2: H← (M′ → R′ ×K)
3: (pk, sk)← Gen(1λ)
4: (K0, c

∗)← Encap(pk)
5: K1 ← K
6: b← {0, 1}
7: b′ ← AG,H,Decap(pk, c∗,Kb)
8: return Jb = b′K

Decap(sk, c)

1: M ′ = Dec(sk, c)
2: r′ = RRec(pk,M ′, c)
3: m′ = Decode(M ′,G(r′))
4: (R′,K ′) := H(m′)
5: r′′ ← ψR with the randomness R′

6: c′ = Enc(pk,Encode(m′,G(r′′)); r′′) //G1

7: if m′ ̸=⊥ and r′ = r′′ //G0

8: if m′ ̸=⊥ and r′ ∈ R and c = c′ //G1

9: return K ′
10: else, return ⊥

Figure 15: GAMES G0-G1 for the proof of Theorem 4.3
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Since these two conditions imply each other, assuming that (R,K) = H(m) belongs toR′good(sk,m)×
K for all m that are queried to H, by Lemma 2.8, the following holds:∣∣Pr[GA0 ⇒ 1]− Pr[GA1 ⇒ 1]

∣∣ ≤ (qH + qD)δsk (7)

Therefore, by the triangular inequality, the following holds:

AdvIND-CCA
KEM′,sk (A) =

∣∣Pr[GA0 ⇒ 1]− 1/2
∣∣

≤
∣∣Pr[GA0 ⇒ 1]− Pr[GA1 ⇒ 1]

∣∣+ ∣∣Pr[GA1 ⇒ 1]− 1/2
∣∣

≤AdvIND-CCA
KEM,sk (A) + (qH + qD)δsk.

By taking the expectation over (pk, sk) ← Gen(1λ) and applying Corollary 3.3, we obtain the desired
bound.

4.2.2 Security Proof in the QROM

Theorem 4.4. Let KEM be the key encapsulation mechanism defined in Figure 12, and let KEM′ be the
mechanism defined in Figure 14, both constructed from the same public-key encryption scheme PKE. As-
sume that PKE is randomness recoverable and randomness unique, has average-case correctness error δ,
and ensures that the outputs of Dec always lie inM and that SOTP is rigid. For any quantum adversary A
making at most qD decapsulation queries and qH (quantum) hash queries against the IND-CCA security of
KEM′, there exists a quantum adversary B against the IND-CCA security of KEM with

AdvIND-CCA
KEM′ (A) ≤ AdvIND-CCA

KEM (B) + 4 · (qH + qD)
√
δ′,

where δ′ = δ + ∥ψR∥ · (1 +
√

(ln |M′| − ln∥ψR∥)/2), and ∥ψR∥ :=
√∑

r ψR(r)
2.

Proof. The security proof proceeds via a sequence of hybrid games, analyzed for a fixed key pair (pk, sk).
A detailed explanation of the security proof is provided below.
GAME G0. G0 is the original IND-CCA game against KEM′ with a fixed key pair (pk, sk).
GAME G1. Unlike G0, G1 uses the function H′ instead of H. The function H′ takes a message m as input
and selects randomness from the set R′good, which consists of all randomness that do not cause decryption
errors when encrypting m under the public key pk. Specifically, for a fixed secret key sk and m ∈ M, we
define

R′bad(sk,m) :=
{
R ∈ R′ : Dec(sk,Enc(pk,M ; r)) ̸=M,

where r = Sample(R;R) and M = Encode(m,G(r))
}
.

andR′good(sk,m) := R′ \R′bad(sk,m). The function H′ is defined as a random function such that H′(m) is
sampled uniformly fromR′good(sk,m)×K. We denote by ΩH′ the set of all possible choices of H′. Finally,
we define δ(sk,m) := |R′bad(sk,m)|/|R′| and δsk := maxm∈M δ(sk,m).

Note that distinguishing between G0 and G1 is equivalent to distinguishing between H from H′. In
particular, we construct an adversary B that distinguishes H from H′. This adversary uses the accessible
oracle H̃ (either H or H′), simulates the view of A, and outputs the same results as in games G0 and G1.
When H̃ = H, BH̃(sk) perfectly simulates G0, so Pr[1 ← BH(sk)] = Pr[GA0 ⇒ 1]. Similarly, when
H̃ = H′, BH̃(sk) simulates G1, yielding Pr[1← BH′

(sk)] = Pr[GA1 ⇒ 1]. Therefore,

|Pr[GA0 ⇒ 1]− Pr[GA1 ⇒ 1]| = |Pr[1← BH(sk)]− Pr[1← BH′
(sk)]|. (8)
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GAMES G0-G3

1: G← (R → U)
2: H← (M′ → R′ ×K) //G0, G3

3: H′ ← ΩH′ //G1-G2

4: (pk, sk)← Gen(1λ)
5: (K0, c

∗)← Encap(pk)
6: K1 ← K
7: b← {0, 1}
8: b′ ← AG,H,Decap(pk, c∗,Kb) //G0, G3

9: b′ ← AG,H′,Decap(pk, c∗,Kb) //G1-G2

10: return Jb = b′K

Decap(sk, c)

1: M ′ = Dec(sk, c)
2: r′ = RRec(pk,M ′, c)
3: m′ = Decode(M ′,G(r′))
4: (R′,K ′) := H(m′)
5: r′′ ← ψR with the randomness R′

6: c′ = Enc(pk,Encode(m′,G(r′′)); r′′) //G2-G3

7: if m′ ̸=⊥ and r′ = r′′ //G0-G1

8: if m′ ̸=⊥ and r′ ∈ R and c = c′ //G2-G3

9: return K ′
10: else, return ⊥

Figure 16: GAMES G0-G3 for the proof of Theorem 4.4

CN(sk)
1: Select 2qH-wise functions f1 and f2
2: b← BH̃(sk)
3: return b

H̃(m)

1: if N(m) = 0
2: R← R′good(sk,m) with the randomness f1(m)
3: else
4: R← R′bad(sk,m) with the randomness f1(m)
5: K ← K with randomness f2(m)
6: return (R,K)

Figure 17: CN(sk) for the proof of Theorem 4.4

Next, we demonstrate that any adversary B distinguishing H from H′ can be converted into an adversary
C distinguishing N1 from N2. Specifically, N1 is a function where N1(m) is sampled from the Bernoulli
distribution Bδ(sk,m), meaning Pr[N1(m) = 1] = δ(sk,m) and Pr[N1(m) = 0] = 1 − δ(sk,m). In
contrast, N2 is a constant function that always outputs 0. For any adversary BH(sk), we construct an
adversary CN(sk) as described in Figure 17. Importantly, C simulates H̃ = H when N = N1 and H̃ = H′

when N = N2. Thus, Pr[1 ← CN1 ] = Pr[1 ← BH] and Pr[1 ← CN2 ] = Pr[1 ← BH′
]. Therefore, by

Lemma 2.10 ∣∣∣Pr[1← BH(sk)]− Pr[1← BH′
(sk)]

∣∣∣ (9)

=
∣∣∣Pr[1← CN1(sk)]− Pr[1← CN2(sk)]

∣∣∣ ≤ 2 · (qH + qD)
√
δsk. (10)

Therefore, by combining Equations (8)–(10),∣∣Pr[GA0 ⇒ 1]− Pr[GA1 ⇒ 1]
∣∣ ≤ 2 · (qH + qD)

√
δsk. (11)

GAME G2. In contrast to G1, the Decap oracle in G2 is modified. Instead of returning K ′ when m′ ̸=⊥
and r′ = r′′, K ′ is now returned if m′ ̸=⊥, r′ ∈ R, and c = c′. We can show that this modification does not
affect the adversary A by proving that these two conditions actually imply each other.
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Assume that m′ ̸=⊥ and r′ = r′′ hold for a ciphertext c in the Decap oracle. Given the rigidity of
the SOTP, the condition m′ = Decode(M ′,G(r′)) ̸=⊥ implies M ′ = Encode(m′,G(r′)), and thus M ′ =
Encode(m′,G(r′′)). Moreover, since r′ = r′′ holds and r′′ is sampled from ψR using the randomness R′, it
follows that r′ ∈ R. Additionally, since M ′ = Dec(sk, c) is withinM and r′ = RRec(pk,M ′, c) is also in
R, the RR property of the PKE ensures that c = Enc(pk,M ′; r′) = Enc(pk,Encode(m′,G(r′′)); r′′) = c′.

Conversely, assume thatm′ ̸=⊥, r′ ∈ R, and c = c′ hold in the Decap oracle. SinceM ′ = Dec(sk, c) is
withinM and r′ = RRec(pk,M ′, c) is inR, the RR property of the PKE ensures that c = Enc(pk,M ′; r′).
Additionally, since c = c′ = Enc(pk,Encode(m′,G(r′′)); r′′) where r′′ is sampled using R′ from the
pair (R′,K ′) = H(m′), by the definition of H, it follows that M ′ = Dec(sk, c) = Encode(m′,G(r′′)).
Consequently, this implies that c = Enc(pk,M ′; r′′). Since c = Enc(pk,M ′; r′) = Enc(pk,M ′; r′′), the
randomness uniqueness of PKE implies r′ = r′′.

Since these two conditions imply each other, the following holds:∣∣Pr[GA1 ⇒ 1]− Pr[GA2 ⇒ 1]
∣∣ = 0. (12)

GAME G3. Unlike G2, G3 uses the function H instead of H′. Note that G3 is the original IND-CCA game
against KEM with a fixed key pair (pk, sk). By the similar analysis between G0 and G1, the following
holds: ∣∣Pr[GA2 ⇒ 1]− Pr[GA3 ⇒ 1]

∣∣ ≤ 2 · (qH + qD)
√
δsk. (13)

By combining Equations (11)-(13) with the triangle inequality, the following holds:

AdvIND-CCA
KEM′,sk (A) =

∣∣Pr[GA0 ⇒ 1]− 1/2
∣∣

≤
∣∣Pr[GA0 ⇒ 1]− Pr[GA1 ⇒ 1]

∣∣+ ∣∣Pr[GA1 ⇒ 1]− Pr[GA2 ⇒ 1]
∣∣

+
∣∣Pr[GA2 ⇒ 1]− Pr[GA3 ⇒ 1]

∣∣+ ∣∣Pr[GA3 ⇒ 1]− 1/2
∣∣

≤AdvIND-CCA
KEM,sk (A) + 4 · (qH + qD)

√
δsk.

By taking the expectation over (pk, sk)← Gen(1λ) and applying corollary 3.3 yields the required bound of
the theorem.
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5 NTRU+

5.1 GenNTRU[ψn1 ] (=PKE)

Figure 18 defines GenNTRU[ψn1 ] relative to the distribution ψn1 over Rq. Since GenNTRU[ψn1 ] must sat-
isfy both MR and RR for our ACWC2 transformation, Figure 18 also includes two auxiliary algorithms,
RRec and MRec. We observe that RRec(h,m, c) is required during ACWC2, because r must be recovered
from a ciphertext c once the corresponding message m is obtained. The RR property ensures that this
randomness-recovery process works well, because for a ciphertext c = Enc(h,m, r) = hr +m, we have
RRec(h,m, c) = (c − m)h−1 = r ∈ R. On the other hand, MRec(h, r, c) is used only in the IND-
CPA security proof of the ACWC2-transformed scheme. The security analysis requires that for a challenge
ciphertext c∗ = Enc(h,m∗, r∗) = hr∗ + m∗, the algorithm MRec(h, r∗, c∗) returns the corresponding
message m∗ if the queried randomness r∗ was used for c∗. The MR property guarantees that once r∗ is
given, MRec(h, r∗, c∗) = c∗ − hr∗ = m∗ ∈M.

Gen(1λ)

1: repeat
2: f ′ ← ψn1
3: f = 3f ′ + 1
4: until f is invertible in Rq
5: repeat
6: g← ψn1
7: until g is invertible in Rq
8: h = 3gf−1

9: return (pk, sk) = (h, f)

Enc(h,m← ψn1 ; r← ψn1 )

1: return c = hr+m

Dec(f , c)

1: return m = (cf mod q) mod 3

RRec(h,m, c)

1: return r = (c−m)h−1

MRec(h, r, c)

1: return m = c− hr

Figure 18: GenNTRU[ψn1 ] with average-case correctness error

5.1.1 Security Proofs

Theorem 5.1 (OW-CPA security of GenNTRU[ψn1 ]). For any adversary A, there exist adversaries B and C
such that

AdvOW-CPA
GenNTRU[ψn

1 ]
(A) ≤ AdvNTRUn,q,ψn

1
(B) + AdvRLWE

n,q,ψn
1
(C).

Proof. We complete our proof through a sequence of games G0 to G1. Let A be the adversary against the
OW-CPA security experiment.
GAME G0. In G0, we have the original OW-CPA game with GenNTRU[ψn1 ]. By the definition of the
advantage function of the adversary A against the OW-CPA game, we have

AdvOW-CPA
GenNTRU[ψn

1 ]
(A) = Pr[GA0 ⇒ 1].

GAME G1. In G1, the public key h in Gen is replaced by h← Rq. Therefore, distinguishing G1 from G0 is
equivalent to solving the NTRUn,q,ψn

1
problem. More precisely, there exists an adversary B with the same

running time as A such that ∣∣Pr[GA0 ⇒ 1]− Pr[GA1 ⇒ 1]
∣∣ ≤ AdvNTRUn,q,ψn

1
(B).
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Since h is now uniformly random in Rq, G1 is equivalent to solving an RLWEn,q,ψn
1

problem. Therefore,

Pr[GA1 ⇒ 1] = AdvRLWE
n,q,ψn

1
(C).

Combining all the probabilities completes the proof.

5.1.2 Average-Case Correctness Error

We analyze the average-case correctness error δ relative to the distribution ψM = ψR = ψn1 using the
template provided in [31]. We can expand cf in the decryption algorithm as follows:

cf = (hr+m)f = (3gf−1r+m)(3f ′ + 1) = 3(gr+mf ′) +m.

For a polynomial p in Rq, let pi be the i-th coefficient of p, and let |pi| denote the absolute value of pi.
Then, ((cf)i mod q) mod 3 = mi if the following inequality holds:∣∣3(gr+mf ′) +m

∣∣
i
≤ q − 1

2
,

where all coefficients of each polynomial are distributed according to ψn1 . Let ϵi be

ϵi = Pr

[∣∣3(gr+mf ′) +m
∣∣
i
≤ q − 1

2

]
.

Assuming that each coefficient is independent, we have

Pr [Dec(sk,Enc(pk,m)) ̸= m] = 1−
n−1∏
i=0

ϵi. (14)

Because the coefficients of m have size at most one,

ϵi = Pr

[∣∣3(gr+mf ′) +m
∣∣
i
≤ q − 1

2

]
≥ Pr

[∣∣3(gr+mf ′)
∣∣
i
+ |m|i ≤

q − 1

2

]
≥ Pr

[∣∣3(gr+mf ′)
∣∣
i
+ 1 ≤ q − 1

2

]
= Pr

[∣∣gr+mf ′
∣∣
i
≤ q − 3

6

]
:= ϵ′i.

Therefore,

Pr [Dec(sk,Enc(pk,m)) ̸= m] = 1−
n∏
i=0

ϵi ≤ 1−
n∏
i=0

ϵ′i := δ.

Now, we analyze ϵ′i = Pr
[
|gr+mf ′|i ≤

q−3
6

]
. To achieve this, we analyze the distribution of gr+mf ′.

Following the analysis in [31], we observe that for i ∈ [n/2, n], the degree-i coefficient of gr +mf ′ is the
sum of n independent random variables:

c = ba+ b′(a+ a′) ∈ {0,±1,±2,±3}, where a, b, a′, b′ ← ψ1. (15)
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±3 ±2 ±1 0

1/128 1/32 23/128 9/16

Table 3: Probability distribution of c = ab+b′(a+a′)

±2 ±1 0

1/64 3/16 19/32

Table 4: Probability distribution of c′ = ab+ a′b′

Additionally, for i ∈ [0, n/2−1], the degree-i coefficient of gr+mf ′ is the sum of n−2i random variables
c (as in Equation (15)), and 2i independent random variables c′ of the form:

c′ = ba+ b′a′ ∈ {0,±1,±2} where a, b, a′, b′ ← ψ1. (16)

Computing the probability distribution of this sum can be done via convolution (i.e., polynomial multiplica-
tion). Define the polynomial:

ρi(X) =


∑3n

j=−3n ρi,jX
j =

(∑3
j=−3 θjX

j
)n

for i = [n/2, n− 1],∑3n−2i
j=−(3n−2i) ρi,jX

j =
(∑3

j=−3 θjX
j
)n−2i(∑2

j=−2 θ
′
jX

j
)2i

for i = [0, n/2− 1],
(17)

where θj = Pr [c = j] (see Table 3) and θ′j = Pr [c′ = j] (see Table 4). Let ρi,j be the probability that the
degree-i coefficient of gr+mf ′ is j. Then, ϵ′i can be computed as:

ϵ′i =

{
2 ·

∑3n
j=(q+3)/6 ρi,j for i ∈ [n/2, n− 1] ,

2 ·
∑3n−2i

j=(q+3)/6 ρi,j for i ∈ [0, n/2− 1] ,

using the symmetry ρi,j = ρi,−j . Substituting ϵ′i into Equation (14) yields the average-case correctness error
δ of GenNTRU[ψn1 ].

5.1.3 Injectivity

The injectivity of GenNTRU[ψn1 ] can be easily shown as follows: if there exists an adversary that can yield
two inputs (m1, r1) and (m2, r2) such that Enc(h,m1; r1) = Enc(h,m2; r2), the equality indicates that
(r1 − r2)h+ (m1 −m2) = 0, where r1 − r2 and m1 −m2 still have small coefficients of length, at most
2
√
n. For a lattice set

L⊥0 := {(v,w) ∈ Rq ×Rq : hv +w = 0 (in Rq)},

(r1−r2,m1−m2) becomes an approximate shortest vector in L⊥0 . Thus, if the injectivity is broken against
GenNTRU[ψn1 ], we can solve the approximate shortest vector problem (SVP) (of length at most 2

√
n) over

L⊥0 . It is well-known [16] that the approximate SVP over L⊥0 is at least as hard as the NTRUn,q,ψn
1

problem
(defined above). Hence, if the NTRUn,q,ψn

1
assumption holds, then the injectivity of GenNTRU[ψn1 ] also

holds.

5.1.4 Spreadness

Lemma 5.2 (Spreadness). GenNTRU[ψn1 ] is n-spread.

Proof. For a fixed message m and ciphertext c, there exists at most one r such that c = Enc(h,m; r).
Suppose there exist r1 and r2 such that c = Enc(h,m; r1) = Enc(h,m; r2). Based on this assumption,
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hr1+m = hr2+m holds. By subtracting m and multiplying h−1 on both sides of the equation, we obtain
r = r′. Therefore, there exists at most one r such that c = Enc(h,m; r).

For fixed m, to maximize Pr[Enc(h,m; r) = c], we need to choose c such that c = Enc(h,m; r) for
r = 0. Since there exists only one r such that c = Enc(h,m; r), we have Pr[Enc(h,m; r) = c] = 2−n.
Since this holds for any (pk, sk)← Gen(1λ) and m ∈M, GenNTRU[ψn1 ] is n-spread.

5.1.5 Randomness-Recoverability

Lemma 5.3. GenNTRU[ψn1 ] is randomness recoverable.

Proof. Suppose r = RRec(h,m, c) = (c − m)h−1 ∈ R = {−1, 0, 1} for m ∈ M = {−1, 0, 1}
and c ∈ C = Rq. Then, multiplying h and then adding m to both sides of r = (c − m)h−1 leads to
c = hr+m = Enc(h,m; r).

5.1.6 Message-Recoverability

Lemma 5.4. GenNTRU[ψn1 ] is AC-MR.

Proof. Suppose m = MRec(h, r, c) = c − hr ∈ M = {−1, 0, 1}n for r ∈ R = {−1, 0, 1}n and
c ∈ C = Rq. Then, adding hr to both sides of m = c− hr leads to c = hr+m = Enc(h,m; r).

Lemma 5.5. GenNTRU[ψn1 ] is VC-MR.

Proof. Suppose that c = Enc(h,m; r) = hr+m with m ∈ M = {−1, 0, 1}n and r ∈ R = {−1, 0, 1}n.
When we apply MRec to (h, r, c), we obtain MRec(h, r, c) = c− hr = (hr+m)− hr = m. Therefore,
whenever c is a valid ciphertext of m under randomness r, the algorithm MRec recovers m exactly, as
required by VC-MR. Hence GenNTRU[ψn1 ] is VC-MR.

5.1.7 Randomness-Uniqueness

Lemma 5.6. GenNTRU[ψn1 ] is randomness unique.

Proof. Suppose c = Enc(h,m; r) = hr + m and c′ = Enc(h,m; r′) = hr′ + m satisfy c = c′. Then,
hr+m = hr′+m. Since h is invertible, we can conclude that r = r′ by subtracting m and then multiplying
both sides of the equation by h.

5.2 CPA-NTRU+ (=PKE ′)

5.2.1 Instantiation of SOTP

We introduce an instantiation of SOTP = (Encode,Decode), where Encode :M′×U →M and Decode :
M × U → M′, with M′ = {0, 1}n, U = {0, 1}2n, and M = {−1, 0, 1}n, along with distributions
ψU = U2n and ψM = ψn1 as shown in Figure 19, which is used for ACWC2. We note that, following [28],
the values of y + u2 generated by Decode should be checked to determine whether they are 0 or 1.

Message-Hiding and Rigidity Properties of SOTP. It is easily shown that SOTP is message-hiding
because of the one-time pad property, particularly for part x⊕ u1. That is, unless u1 is known, the message
x ∈M′ is unconditionally hidden from y ∈M. Similarly, x⊕u1 becomes uniformly random over {0, 1}n,
regardless of the message distribution ψM′ , and thus the resulting y follows ψn1 . In addition, we can easily
check that SOTP is perfectly rigid as long as y + u2 ∈ {0, 1}n.
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Encode(x ∈M′, u← U2n)

1: u = (u1, u2) ∈ {0, 1}n × {0, 1}n
2: y = (x⊕ u1)− u2 ∈ {−1, 0, 1}n
3: return y

Decode(y ∈M, u ∈ U2n)

1: u = (u1, u2) ∈ {0, 1}n × {0, 1}n
2: if y + u2 /∈ {0, 1}n, return ⊥
3: x = (y + u2)⊕ u1 ∈ {0, 1}n
4: return x

Figure 19: SOTP instantiation for NTRU+

5.2.2 CPA-NTRU+ (=PKE ′)

We obtain CPA-NTRU+ := ACWC2 [GenNTRU[ψn1 ],SOTP, G] by applying ACWC2 from Section 3 to
GenNTRU[ψn1 ]. Because the underlying GenNTRU[ψn1 ] provides injectivity, AC-MR, VC-MR, and RR
properties, Theorems 3.6 and 3.7 provide us with the IND-CPA security of the resulting CPA-NTRU+
in the classical and quantum random oracle models, respectively. Regarding the correctness error, Theo-
rem 3.2 shows that the worst-case correctness error of CPA-NTRU+ and the average-case correctness error
of GenNTRU[ψn1 ] differ by the amount of ∆ = ∥ψR∥ · (1 +

√
(ln |M′| − ln∥ψR∥)/2), where ψR andM′

are specified by ψn1 and {0, 1}n, respectively. For instance, when n = 768, we obtain about ∆ = 2−1083.

Gen′(1λ)

1: (pk, sk) := GenNTRU[ψn1 ].Gen(1
λ)

- repeat
- f ′,g← ψn1
- f = 3f ′ + 1

- until f is invertible in Rq
- repeat

- g← ψn1
- until g is invertible in Rq
- (pk, sk) = (h = 3gf−1 mod q, f)

2: return (pk, sk)

Enc′(pk,m ∈ {0, 1}n;R← {0, 1}2n)
1: r← ψn1 using the randomness R
2: m = Encode(m,G(r))
3: c = GenNTRU[ψn1 ].Enc(pk,m; r)

- c = hr+m
4: return c

Dec′(sk, c)

1: m = GenNTRU[ψn1 ].Dec(sk, c)
- m = (cf mod q) mod 3

2: r = RRec(pk, c,m)
- r = (c−m)h−1

3: m = Decode(m,G(r))
4: if m =⊥ or r /∈ {−1, 0, 1}n, return ⊥
5: return m

Figure 20: CPA-NTRU+

Spreadness Properties of CPA-NTRU+. To achieve IND-CCA security of the KEM and PKE via FO
⊥

and FO
⊥
PKE, we need to show the spreadness of CPA-NTRU+. The spreadness can be easily obtained by

combining Lemma 3.8 with Lemma 5.2.

5.3 NTRU+

Finally, we achieve IND-CCA secure KEM by applying FO
⊥

to CPA-NTRU+. We denote such KEM by
NTRU+ := FO

⊥
[CPA-NTRU+,H]. Figure 21 shows the resultant NTRU+, which is the basis of our

implementation in the next section. By combining Theorems 4.1, 4.2, and Theorem 4.3, we can achieve

33



IND-CCA security of NTRU+. As for the correctness error, NTRU+ preserves the worst-case correctness
error of the underlying CPA-NTRU+.

Gen(1λ)

1: repeat
2: f ′,g← ψn1
3: f = 3f ′ + 1
4: until f is invertible in Rq
5: repeat
6: g← ψn1
7: until g is invertible in Rq
8: return (pk, sk) = (h = 3gf−1, f)

Encap(pk)

1: m← {0, 1}n
2: (R,K) = H(m)
3: r← ψn1 using the randomness R
4: m = Encode(m,G(r))
5: c = hr+m
6: return (c,K)

Decap(sk, c)

1: m = (cf mod q) mod 3
2: r = (c−m)h−1

3: m = Decode(m,G(r))
4: (R′,K) = H(m)
5: r′ ← ψn1 using the randomness R′

6: if m =⊥ or r ̸= r′

7: return ⊥
8: else
9: return K

Figure 21: NTRU+
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6 Algorithm Specification

6.1 Auxiliary Functions

Bit Ordering Functions. To convert between byte arrays and bit arrays, we introduce the BytesToBits
and BitsToBytes functions in Algorithms 1 and 2. These functions form an inverse pair, so applying one
after the other recovers the original input. They are used later in Algorithms 3, 4, and 5.

Algorithm 1: BytesToBits
Require: Byte array B = (b0, b1, · · · , bn/8−1) ∈ Bn/8
Ensure: Bit array f = (f0, · · · , fn−1) ∈ {0, 1}n

1: for i from 0 to n/8− 1 do
2: t = bi
3: for j from 0 to 7 do
4: f8i+j = t& 1
5: t = t≫ 1
6: return f = (f0, · · · , fn−1)

Algorithm 2: BitsToBytes
Require: Bit array f = (f0, . . . , fn−1) ∈ {0, 1}n
Ensure: Byte array B = (b0, b1, . . . , bn/8−1) ∈ Bn/8

1: for i from 0 to n/8− 1 do
2: bi = 0
3: for j from 0 to 7 do
4: bi = bi + f8i+j × 2j

5: return (b0, . . . , bn/8−1)

Sampling from a Binomial Distribution. To sample the coefficients of a polynomial from the centered
binomial distribution with η = 1, we introduce the CBD1 function in Algorithm 3. To determine the bit
ordering of the input bytes, this function uses the BytesToBits function defined in Algorithm 1.

Algorithm 3: CBD1

Require: Byte array B = (b0, b1, · · · , bn/4−1)
Ensure: Polynomial f ∈ Rq

1: (β0, · · · , βn−1) := BytesToBits((b0, · · · , bn/8−1))
2: (βn, · · · , β2n−1) := BytesToBits((bn/8, · · · , bn/4−1))
3: for i from 0 to n− 1 do
4: fi := βi − βi+n
5: return f = f0 + f1x+ f2x

2 + · · ·+ fn−1x
n−1

Semi-generalized One-Time Pad (SOTP). We define SOTP = (Encode,Decode) in Algorithms 4 and 5,
respectively. The Encode function is identical to CBD1, except that it XORs the first half of the random
bytes with the message before applying the centered binomial sampling. Accordingly, Encode also uses the
BytesToBits (Algorithm 1), as in CBD1. The corresponding Decode function, given in Algorithm 5, acts as
the inverse of Encode and uses BitsToBytes (Algorithm 2) to recover the original byte array.
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Algorithm 4: Encode
Require: Message Byte array m = (m0,m1, · · · ,m31)
Require: Byte array B = (b0, b1, · · · , bn/4−1)
Ensure: Polynomial f ∈ Rq

1: (β0, · · · , βn−1) := BytesToBits((b0, · · · , bn/8−1))
2: (βn, · · · , β2n−1) := BytesToBits((bn/8, · · · , bn/4−1))
3: (m0, · · · ,mn−1) := BytesToBits(m)
4: for i from 0 to n− 1 do
5: fi := (mi ⊕ βi)− βi+n
6: return f = f0 + f1x+ f2x

2 + · · ·+ fn−1x
n−1

Algorithm 5: Decode
Require: Polynomial f ∈ Rq
Require: Byte array B = (b0, b1, · · · , bn/4−1)
Ensure: Message Byte array m = (m0,m1, · · · ,m31)

1: (β0, · · · , βn−1) := BytesToBits((b0, · · · , bn/8−1))
2: (βn, · · · , β2n−1) := BytesToBits((bn/8, · · · , bn/4−1))
3: for i from 0 to n− 1 do
4: if fi + βi+n /∈ {0, 1}, return ⊥ ; //Refer to line 8 in Algorithm 13
5: mi := ((fi + βi+n) & 1)⊕ βi
m = BitsToBytes((m0, · · · ,mn−1))

6: return m

Encoding and Decoding. To convert a polynomial in Rq to and from its 3n/2-byte representation, we in-
troduce the Encodeq and Decodeq functions in Algorithms 6 and 7. The Encodeq function assumes that each
coefficient of the input polynomial lies in {0, . . . , q− 1} before packing it into the byte array. The Decodeq
function performs the inverse transformation by recovering the coefficients from the byte array. Together,
the two functions form an inverse pair, so applying one after the other recovers the original polynomial.

Algorithm 6: Encodeq
Require: Polynomial f = (f0, . . . , fn−1) ∈ Rq, with each fi ∈ {0, . . . , q − 1}
Ensure: Byte array B = (b0, . . . , b3n/2−1)

1: for i from 0 to n/2− 1 do
2: t0 = f2i
3: t1 = f2i+1

4: b3i = t0
5: b3i+1 = (t0 ≫ 8) + (t1 ≪ 4)
6: b3i+2 = t1 ≫ 4
7: return B
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Algorithm 7: Decodeq
Require: Byte array B = (b0, . . . , b3n/2−1)
Ensure: Polynomial f = (f0, . . . , fn−1) ∈ Rq, with each fi ∈ {0, . . . , q − 1}

1: for i from 0 to n/2− 1 do
2: t0 = b3i
3: t1 = b3i+1

4: t2 = b3i+2

5: f2i = t0 | ((t1 & 0x0f)≪ 8)
6: f2i+1 = ((t1 ≫ 4) & 0x0f) | (t2 ≪ 4)
7: return f

Symmetric Primitives. The scheme uses three distinct hash functions, denoted by F, G, and H. Each
function is instantiated with SHAKE-256, as shown in Algorithms 8, 9, and 10. We also use SHAKE-256 as
an extendable-output function (XOF) when sampling the polynomials f ′ and g′ in Algorithm 11.

Algorithm 8: F
Require: Byte array m = (m0,m1, . . . ,m3n/2−1)
Ensure: Byte array B = (b0, b1, . . . , b31)

1: (b0, . . . , b31) := SHAKE-256(0x00 ∥m)
2: return (b0, . . . , b31)

Algorithm 9: G
Require: Byte array m = (m0,m1, . . . ,mn/8−1)
Ensure: Byte array B = (b0, b1, . . . , bn/4−1)

1: (b0, . . . , bn/4−1) := SHAKE-256(0x01 ∥m, n/4)
2: return (b0, . . . , bn/4−1)

Algorithm 10: H
Require: Byte array m = (m0,m1, . . . ,mn/8+31)
Ensure: Byte array B = (b0, b1, . . . , bn/4+31)

1: (b0, . . . , bn/4+31) := SHAKE-256(0x02 ∥m, n/4 + 32)
2: return (b0, . . . , bn/4+31)
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6.2 Number Theoretic Transform

Polynomial Rings and Number Theoretic Transform Throughout this specification, we consider the
quotient rings R = Z[x]/⟨Φ3n(x)⟩ and Rq = Zq[x]/⟨Φ3n(x)⟩, where Φ3n(x) = xn − xn/2 + 1 denotes
the 3n-th cyclotomic polynomial of degree n = 2a+13b for a, b ∈ N ∪ {0}. To optimize polynomial
multiplication, the Number Theoretic Transform (NTT) is used to establish a ring isomorphism based on the
Generalized Chinese Remainder Theorem (GCRT):

Rq ∼=
n/d−1∏
i=0

Zq[x]/⟨xd − ζindex[i]⟩, d ∈ {3, 4}.

Here, ζ is a primitive ℓ-th root of unity modulo q with ℓ = 3n/d, where the values (d, ζ, ℓ) are defined in
Table 5, and the array index is defined in Figure 22. This decomposition ensures that high-degree multipli-
cation is reduced to n/d independent multiplications in smaller component rings. Under this decomposition,
the forward transform NTT can be written as

f̂ = NTT(f) =
(
f mod (xd − ζindex[0]), . . . , f mod (xd − ζindex[n/d−1])

)
= (f̂0, . . . , f̂d−1)︸ ︷︷ ︸

Zq [x]/⟨xd−ζindex[0]⟩

∥ · · · ∥ (f̂n−d, . . . , f̂n−1)︸ ︷︷ ︸
Zq [x]/⟨xd−ζindex[n/d−1]⟩

,

and the inverse transform NTT−1 is defined as its inverse.
Concretely, NTT is performed through three different sequential stages of butterfly layers, with iterations

determined by the parameter set in Table 5:

1. Initial Radix-2 Layer: This layer decomposes the initial cyclotomic ring Rq into two sub-rings:

Rq = Zq[x]/⟨xn − xn/2 + 1⟩ ∼= Zq[x]/⟨xn/2 − ζℓ/6⟩ × Zq[x]/⟨xn/2 − ζ5ℓ/6⟩.

This factorization provides the initial split for the recursive transform [31].

2. Standard Radix-3 Layer: This layer decomposes the quotient ring as

Zq[x]/⟨x3m − α3⟩ ∼=
2∏
j=0

Zq[x]/⟨xm − αωj⟩,

where ω = ζℓ/3 is a primitive third root of unity (see [18] or Appendix B).

3. Standard Radix-2 Layer: This layer decomposes the quotient ring as

Zq[x]/⟨x2m − ψ2⟩ ∼= Zq[x]/⟨xm − ψ⟩ × Zq[x]/⟨xm + ψ⟩.

This decomposition can be equivalently written as Zq[x]/⟨xm − ψ⟩ × Zq[x]/⟨xm − ψζℓ/2⟩ because
ζℓ/2 ≡ −1 (mod q). Since ℓ/2 is even, this bisection is well-defined provided that ψ is a quadratic
residue. For the chosen parameter sets, this bisection continues until m = d ∈ {3, 4}. Note that
the Radix-3 Layer is executed prior to the Radix-2 Layer to avoid the need for an additional pre-
computation table for the base multiplication.
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By combining these sequential layers, the initial ring is decomposed into a collection of smaller com-
ponent rings, ordered according to the index array. To make this construction explicit, we describe how
the index array is generated by following the sequence of butterfly layers defined above. Starting from
the initial root values, the corresponding layer operations are applied recursively according to the prescribed
schedule in Table 5, with each layer expanding all current leaf nodes before proceeding to the next layer.

• Initial Radix-2 Layer: Initializes two independent trees with the root values {ℓ/6, 5ℓ/6}.

• Standard Radix-3 Layer: For each application of the radix-3 layer, every current leaf node with
value ψ is expanded into three ordered child nodes {ψ/3, (ψ + ℓ)/3, (ψ + 2ℓ)/3}.

• Standard Radix-2 Layer: For each application of the radix-2 layer, every current leaf node with
value ψ is expanded into two ordered child nodes {ψ/2, (ψ + ℓ)/2}.

Multiplication in the NTT Domain. After transforming a polynomial in Rq into its components in the
product rings, multiplication is performed independently in each ring Zq[x]/⟨xd−ζ⟩. Let a(x) =

∑d−1
j=0 ajx

j

and b(x) =
∑d−1

j=0 bjx
j be polynomials in this ring.

For d = 2, the product c(x) = a(x)b(x) is

c(x) = a(x)b(x) = (a0b0 + a1b1ζ) + (a0b1 + a1b0)x,

which can be written in matrix form as [
c0
c1

]
=

[
a0 a1ζ
a1 a0

] [
b0
b1

]
.

For d = 3, the product c(x) = a(x)b(x) becomes:

c(x) = a(x)b(x) = (a0b0 + (a2b1 + a1b2)ζ) + (a1b0 + a0b1 + a2b2ζ)x+ (a2b0 + a1b1 + a0b2)x
2,

which corresponds to the matrix representationc0c1
c2

 =

a0 a2ζ a1ζ
a1 a0 a2ζ
a2 a1 a0

b0b1
b2

 .
For d = 4, the product c(x) = a(x)b(x) is

c(x) = a(x)b(x) =(a0b0 + (a1b3 + a2b2 + a3b1)ζ) + (a0b1 + a1b0 + (a2b3 + a3b2)ζ)x

+ (a0b2 + a1b1 + a2b0 + a3b3ζ)x
2 + (a0b3 + a1b2 + a2b1 + a3b0)x

3,

with the corresponding matrix form
c0
c1
c2
c3

 =


a0 a3ζ a2ζ a1ζ
a1 a0 a3ζ a2ζ
a2 a1 a0 a3ζ
a3 a2 a1 a0



b0
b1
b2
b3

 .
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Inversion in the NTT Domain. In the NTT domain, inversion is performed independently in each com-
ponent ring Zq[x]/⟨xd − ζ⟩, analogous to multiplication. Let a(x) =

∑d−1
j=0 ajx

j and write its inverse as
b(x) =

∑d−1
j=0 bjx

j .
For d = 2, the inverse b(x) is obtained from[

b0
b1

]
=

[
a0 a1ζ
a1 a0

]−1 [
1
0

]
=

1

a20 − a21ζ

[
a0 −a1ζ
−a1 a0

] [
1
0

]
=

1

a20 − a21ζ

[
a0
−a1

]
.

For d = 3, we similarly computeb0b1
b2

 =

a0 a2ζ a1ζ
a1 a0 a2ζ
a2 a1 a0

−1 10
0

 = d−1

a′0a′1
a′2

 ,
where a′0 = a20 − ζa1a2, a′1 = ζa22 − a0a1, a′2 = a21 − a0a2, and d = a0a

′
0 + ζ(a1a

′
2 + a2a

′
1).

For d = 4, direct matrix inversion is less efficient. Following [35], we reduce inversion in Zq[x]/⟨x4−ζ⟩
to inversion in Zq[z]/⟨z2 − ζ⟩, where z = x2. We rewrite

a(x) = ã0(z) + ã1(z)x, where ã0(z) = a0 + a2z, ã1(z) = a1 + a3z.

For b(x) = b̃0(z) + b̃1(z)x, the product becomes

c(x) = a(x)b(x) = (ã0(z) + ã1(z)x) · (b̃0(z) + b̃1(z)x)

= ã0(z)b̃0(z) + (ã0(z)b̃1(z) + ã1(z)b̃0(z))x+ ã1(z)b̃1(z)x
2

= (ã0(z)b̃0(z) + ã1(z)b̃1(z)z) + (ã0(z)b̃1(z) + ã1(z)b̃0(z))x,

which corresponds to the matrix product[
c̃0(z)
c̃1(z)

]
=

[
ã0(z) ã1(z)z
ã1(z) ã0(z)

] [
b̃0(z)

b̃1(z)

]
.

To find the inverse b(x) = b̃0(z) + b̃1(z)x, we use:[
b̃0(z)

b̃1(z)

]
=

[
ã0(z) ã1(z)z
ã1(z) ã0(z)

]−1 [
1
0

]
=

1

ã20(z)− ã21(z)z

[
ã0(z) −ã1(z)z
−ã1(z) ã0(z)

] [
1
0

]
=

1

ã20(z)− ã21(z)z

[
ã0(z)
−ã1(z)

]
∈ Zq[z]/⟨z2 − ζ⟩

1×2
.

The inverse of ã20(z) − ã21(z)z in Zq[z]/⟨z2 − ζ⟩ can be computed using the d = 2 case, and once the
inversion is completed in that ring, the final result is obtained by substituting z = x2.

In all cases, the multiplicative inverse modulo q must be computed. To reduce the risk of side-channel
leakage, we use Fermat’s Little Theorem instead of the extended Euclidean algorithm: if a ̸= 0 and is co-
prime with q, then aq−1 ≡ 1 (mod q), and thus the inverse of a can be obtained as aq−2 mod q. Note that
a = 0 is never invertible in Zq, and such values are excluded by construction.
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n q
Initial
Radix-2

Standard
Radix-3

Standard
Radix-2

d ζ ℓ

768 3457 1 1 5 4 22 576

864 3457 1 2 4 3 9 864

1152 3457 1 2 4 4 9 864

Table 5: Layer configurations for the NTT

• NTRU+768

index[192] = {
1, 289, 145, 433, 73, 361, 217, 505, 37, 325, 181, 469, 109, 397, 253, 541,

19, 307, 163, 451, 91, 379, 235, 523, 55, 343, 199, 487, 127, 415, 271, 559,
7, 295, 151, 439, 79, 367, 223, 511, 43, 331, 187, 475, 115, 403, 259, 547,

25, 313, 169, 457, 97, 385, 241, 529, 61, 349, 205, 493, 133, 421, 277, 565,
13, 301, 157, 445, 85, 373, 229, 517, 49, 337, 193, 481, 121, 409, 265, 553,
31, 319, 175, 463, 103, 391, 247, 535, 67, 355, 211, 499, 139, 427, 283, 571,
5, 293, 149, 437, 77, 365, 221, 509, 41, 329, 185, 473, 113, 401, 257, 545,

23, 311, 167, 455, 95, 383, 239, 527, 59, 347, 203, 491, 131, 419, 275, 563,
11, 299, 155, 443, 83, 371, 227, 515, 47, 335, 191, 479, 119, 407, 263, 551,
29, 317, 173, 461, 101, 389, 245, 533, 65, 353, 209, 497, 137, 425, 281, 569,
17, 305, 161, 449, 89, 377, 233, 521, 53, 341, 197, 485, 125, 413, 269, 557,
35, 323, 179, 467, 107, 395, 251, 539, 71, 359, 215, 503, 143, 431, 287, 575

};

• NTRU+864 and NTRU+1152

index[288] = {
1, 433, 217, 649, 109, 541, 325, 757, 55, 487, 271, 703, 163, 595, 379, 811,

19, 451, 235, 667, 127, 559, 343, 775, 73, 505, 289, 721, 181, 613, 397, 829,
37, 469, 253, 685, 145, 577, 361, 793, 91, 523, 307, 739, 199, 631, 415, 847,
7, 439, 223, 655, 115, 547, 331, 763, 61, 493, 277, 709, 169, 601, 385, 817,

25, 457, 241, 673, 133, 565, 349, 781, 79, 511, 295, 727, 187, 619, 403, 835,
43, 475, 259, 691, 151, 583, 367, 799, 97, 529, 313, 745, 205, 637, 421, 853,
13, 445, 229, 661, 121, 553, 337, 769, 67, 499, 283, 715, 175, 607, 391, 823,
31, 463, 247, 679, 139, 571, 355, 787, 85, 517, 301, 733, 193, 625, 409, 841,
49, 481, 265, 697, 157, 589, 373, 805, 103, 535, 319, 751, 211, 643, 427, 859,
5, 437, 221, 653, 113, 545, 329, 761, 59, 491, 275, 707, 167, 599, 383, 815,

23, 455, 239, 671, 131, 563, 347, 779, 77, 509, 293, 725, 185, 617, 401, 833,
41, 473, 257, 689, 149, 581, 365, 797, 95, 527, 311, 743, 203, 635, 419, 851,
11, 443, 227, 659, 119, 551, 335, 767, 65, 497, 281, 713, 173, 605, 389, 821,
29, 461, 245, 677, 137, 569, 353, 785, 83, 515, 299, 731, 191, 623, 407, 839,
47, 479, 263, 695, 155, 587, 371, 803, 101, 533, 317, 749, 209, 641, 425, 857,
17, 449, 233, 665, 125, 557, 341, 773, 71, 503, 287, 719, 179, 611, 395, 827,
35, 467, 251, 683, 143, 575, 359, 791, 89, 521, 305, 737, 197, 629, 413, 845,
53, 485, 269, 701, 161, 593, 377, 809, 107, 539, 323, 755, 215, 647, 431, 863

};

Figure 22: Index for the NTT
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6.3 Specification of NTRU+

6.3.1 NTRU+

We specify the key encapsulation mechanism NTRU+. In contrast to the construction in Section 5.3, this
version instantiates a variant of FO

⊥
in which the public key is hashed into the key-derivation input, follow-

ing the public-key–dependent FO transformation first introduced in KYBER [34] to enhance robustness in
multi-user settings. Algorithms 11, 12, and 13 specify the key generation, encapsulation, and decapsulation
procedures of NTRU+.

Algorithm 11: Gen(1λ): key generation

Ensure: Public key pk ∈ B⌈log2 q⌉·n/8
Ensure: Secret key sk ∈ B⌈log2 q⌉·n/4+32

1: repeat
2: d← B32
3: f := SHAKE-256(d, n/4)
4: f ′ := CBD1(f)
5: f := 3f ′ + 1
6: f̂ := NTT(f)
7: until f is invertible in Rq
8: repeat
9: d← B32

10: g := SHAKE-256(d, n/4)
11: g′ := CBD1(g)
12: g := 3g′

13: ĝ := NTT(g)
14: until g is invertible in Rq
15: ĥ := ĝ ◦ f̂−1
16: pk := Encodeq(ĥ)

17: sk := Encodeq(f̂) ∥Encodeq(ĥ−1) ∥F(pk)
18: return (pk, sk)

Algorithm 12: Encap(pk): encapsulation

Require: Public key pk ∈ B⌈log2 q⌉·n/8
Ensure: Ciphertext c ∈ B⌈log2 q⌉·n/8

1: m← Bn/8
2: (K, r) := H(m,F(pk))
3: r := CBD1(r)
4: r̂ := NTT(r)
5: m := Encode(m,G(Encodeq(r̂)))
6: m̂ := NTT(m)
7: ĥ := Decodeq(pk)

8: ĉ := ĥ ◦ r̂+ m̂
9: c := Encodeq(ĉ)

10: return (c, K)
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Algorithm 13: Decap(sk, c): decapsulation

Require: Secret key sk ∈ B⌈log2 q⌉·n/4+32

Require: Ciphertext c ∈ B⌈log2 q⌉·n/8
Ensure: Shared key K ∈ B32

1: Parse sk = (sk1, sk2, sk3) ∈ B⌈log2 q⌉·n/8 × B⌈log2 q⌉·n/8 × B32
2: f̂ := Decodeq(sk1)
3: ĉ := Decodeq(c)

4: m := NTT−1(ĉ ◦ f̂) mod ±3
5: m̂ := NTT(m)
6: ĥ−1 := Decodeq(sk2)

7: r̂ := (ĉ− m̂) ◦ ĥ−1 //randomness recovery (RRec)
8: m′ := Decode(m,G(Encodeq(r̂))) //Check m′ =⊥ in line 12
9: (K, r′) := H(m′, sk3)

10: r′ := CBD1(r
′)

11: r̂′ := NTT(r′)
12: if m′ =⊥ or r̂ ̸= r̂′, return ⊥ //Check if m′ =⊥ or r′ /∈ Rq
13: else, return K
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7 Parameters and Security Analysis

We define three parameter sets for NTRU+, which are listed in Table 7. We denote them by NTRU+{768,
864, and 1152}, respectively, depending on the degree n ∈ {768, 864, 1152} of the polynomial xn−xn/2+1.
In all parameter sets the modulus is fixed to q = 3457, and the coefficients of m and r are sampled according
to the distribution ψn1 (i.e., ψR = ψM = ψn1 ). For each tuple (n, q, ψn1 ,M′ = {0, 1}n), the worst-
case correctness error δ′ is calculated as δ′ = δ + ∆, where δ is the average-case correctness error of
GenNTRU[ψn1 ] and ∆ = ∥ψR∥ ·

(
1 +

√
(ln |M′| − ln∥ψR∥)/2

)
as given in Theorem 3.2. Since ∆ is

negligible for all parameter sets, the worst-case correctness error of NTRU+ is essentially identical to the
average-case correctness error of the corresponding GenNTRU[ψn1 ].

To estimate the concrete security level of NTRU+, we analyze the hardness of the RLWEn,q,ψn
1

and
NTRUn,q,ψn

1
problems for each parameter set. For the RLWE problem, we employ the Lattice estimator

[1] 5, which evaluates the best-known lattice attacks using the BKZ reduction algorithm [11], including
the primal [2] and dual [29] attacks. For the NTRU problem, we use the NTRU estimator provided by the
finalist NTRU submission [10], which incorporates both the primal attack and Howgrave–Graham’s hybrid
attack [21] over the NTRU lattice. The primal attack over the NTRU lattice is essentially the same as the
attack using the BKZ algorithm, and Howgrave-Graham’s hybrid attack is also based on the BKZ algorithm
combined with Odlyzko’s Meet-in-the-Middle (MitM) attack [24] on a (reduced) sub-lattice. As a result,
the concrete security level of the NTRU problem closely matches that of the RLWE problem. Table 6
summarizes the resulting security levels for each NTRU+ parameter set. For the BKZ cost model, we use
20.292β [5] in the classical setting and 20.257β [9] in the quantum setting.

Recently, Lee et al. [27] proposed a combinatorial attack that improves upon May’s Meet-LWE attack
[32] and analyzed the concrete security level of NTRU+. Their analysis shows that the security of NTRU+
against this combinatorial attack does not fall below the levels predicted by the above Lattice and NTRU
estimators.

Scheme
classical quantum

LWE NTRU LWE NTRU
NTRU+768 156 164 139 144
NTRU+864 179 189 160 166
NTRU+1152 248 266 222 233

Table 6: Concrete Security Level relative to LWE and NTRU problems

5https://github.com/malb/lattice-estimator/tree/352ddaf4a288a0543f5d9eb588d2f89c7acec463
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8 Performance Analysis

All benchmarks were obtained on a single core of an Intel Core i7-8700K (Coffee Lake) processor running
at 3.7 GHz, with the benchmarking machine equipped with 64 GB of RAM. Implementations were compiled
using gcc version 11.4.0. Table 7 lists the execution time of our optimized C and AVX2 implementations of
NTRU+, as well as those of NTRU6, and KYBER7, together with the estimated security level and the sizes
of the secret key, public key, and ciphertext. Execution time represent the average cycle counts over 100,000
runs of each algorithm. The source code for NTRU+ is available at https://github.com/ntruplus/ntruplus.

When comparing NTRU and NTRU+, Table 7 shows that the two schemes achieve similar bandwidth
(public key plus ciphertext) at comparable security levels. For example, NTRU+864 at the 179-bit secu-
rity level requires 2,592 bytes of bandwidth, while ntruhps4096821 at the 171-bit security level requires
2,460 bytes. In terms of secret-key stroage, however, NTRU+ requires almost twice the cost of NTRU,
because it stores (f ,h−1,F(pk)) as a the secret key, whereas NTRU stores only f . On the other hand, with
respect to execution time, NTRU+ outperforms NTRU, largely due to the use of NTT-friendly rings.

When comparing KYBER and NTRU+, the bandwidth of NTRU+ is slightly larger than that of KYBER

at comparable security levels. This is because KYBER uses a rounding technique to reduce the ciphertext
size. In terms of efficiency, Table 7 shows that, at similar security levels, the key generation, encapsula-
tion, and decapsulation of NTRU+ are all faster than those of KYBER in both the optimized C and AVX2
implementations.

6We use the code submitted to the NIST PQC Standardization Round 3.
7https://github.com/pq-crystals/kyber/tree/4768bd37c02f9c40a46cb49d4d1f4d5e612bb882

45

https://github.com/ntruplus/ntruplus


Ta
bl

e
7:

C
om

pa
ri

so
n

be
tw

ee
n

th
e

fin
al

is
tN

T
R

U
,K

Y
B

E
R

an
d
N
T
R
U
+

Sc
he

m
e

se
cu

ri
ty

le
ve

l
n

q
p
k

ct
sk

lo
g
2
δ′

op
tim

iz
ed

C
AV

X
2

cl
as

si
ca

l
qu

an
tu

m
G
en

E
n
ca
p

D
ec
ap

G
en

E
n
ca
p

D
ec
ap

N
T
R
U
+
76

8
15

6
13

9
76

8
34

57
11

52
11

52
23

36
-3

79
99

75
78

27
31

19
N
T
R
U
+
86

4
17

9
16

0
86

4
34

57
12

96
12

96
26

24
-3

40
11

1
87

90
29

36
24

N
T
R
U
+
11

52
24

8
22

2
11

52
34

57
17

28
17

28
34

88
-2

60
17

6
11

8
12

6
44

45
30

K
Y

B
E

R
51

2
11

5
10

3
51

2
33

29
80

0
76

8
16

32
-1

39
13

5
15

9
20

3
28

29
30

K
Y

B
E

R
76

8
17

4
15

5
76

8
33

29
11

84
10

88
24

00
-1

64
23

2
25

8
31

8
45

44
46

K
Y

B
E

R
10

24
24

1
21

5
10

24
33

29
15

68
15

68
31

68
-1

74
33

4
38

8
46

3
62

62
66

n
tr
u
h
p
s2
04

85
09

10
4

93
50

9
20

48
69

9
69

9
93

5
-∞

92
96

62
4

16
57

17
7

45
40

n
tr
u
h
rs
s7
01

13
2

11
7

70
1

81
92

11
38

11
38

14
50

-∞
17

41
4

10
60

31
19

27
0

40
61

n
tr
u
h
p
s2
04

86
77

14
2

12
7

67
7

20
48

93
0

93
0

12
34

-∞
16

14
8

10
71

29
00

28
6

62
58

n
tr
u
h
p
s4
09

68
21

17
1

15
2

82
1

40
96

12
30

12
30

15
90

-∞
21

87
9

20
03

42
61

40
0

72
73

n
:p

ol
yn

om
ia

ld
eg

re
e

of
th

e
ri

ng
.

q:
m

od
ul

us
.

(p
k
,c
t,
sk

):
by

te
s.

δ′
:w

or
st

-c
as

e
(o

rp
er

fe
ct

)c
or

re
ct

ne
ss

er
ro

r.
(G
en

,E
n
ca
p

,D
ec
ap

):
K

cy
cl

es
of

op
tim

iz
ed

C
or

AV
X

2
im

pl
em

en
ta

tio
ns

.

46



References

[1] Martin R. Albrecht, Rachel Player, and Sam Scott. On the concrete hardness of learning with errors.
J. Math. Cryptol., 9(3):169–203, 2015.

[2] Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe. Post-quantum key exchange -
A new hope. In Thorsten Holz and Stefan Savage, editors, USENIX Security 2016: 25th USENIX
Security Symposium, pages 327–343, Austin, TX, USA, August 10–12, 2016. USENIX Association.

[3] Andris Ambainis, Mike Hamburg, and Dominique Unruh. Quantum security proofs using semi-
classical oracles. In Alexandra Boldyreva and Daniele Micciancio, editors, Advances in Cryptology –
CRYPTO 2019, Part II, volume 11693 of Lecture Notes in Computer Science, pages 269–295, Santa
Barbara, CA, USA, August 18–22, 2019. Springer, Cham, Switzerland.

[4] Andris Ambainis, Ansis Rosmanis, and Dominique Unruh. Quantum attacks on classical proof sys-
tems: The hardness of quantum rewinding. In 55th Annual Symposium on Foundations of Computer
Science, pages 474–483, Philadelphia, PA, USA, October 18–21, 2014. IEEE Computer Society Press.

[5] Anja Becker, Léo Ducas, Nicolas Gama, and Thijs Laarhoven. New directions in nearest neighbor
searching with applications to lattice sieving. In Robert Krauthgamer, editor, 27th Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 10–24, Arlington, VA, USA, January 10–12, 2016. ACM-
SIAM.

[6] Mihir Bellare and Phillip Rogaway. The security of triple encryption and a framework for code-
based game-playing proofs. In Serge Vaudenay, editor, Advances in Cryptology – EUROCRYPT 2006,
volume 4004 of Lecture Notes in Computer Science, pages 409–426, St. Petersburg, Russia, May 28 –
June 1, 2006. Springer Berlin Heidelberg, Germany.

[7] Daniel J. Bernstein and Edoardo Persichetti. Towards KEM unification. Cryptology ePrint Archive,
Report 2018/526, 2018.

[8] Nina Bindel, Mike Hamburg, Kathrin Hövelmanns, Andreas Hülsing, and Edoardo Persichetti. Tighter
proofs of CCA security in the quantum random oracle model. In Dennis Hofheinz and Alon Rosen,
editors, TCC 2019: 17th Theory of Cryptography Conference, Part II, volume 11892 of Lecture Notes
in Computer Science, pages 61–90, Nuremberg, Germany, December 1–5, 2019. Springer, Cham,
Switzerland.

[9] André Chailloux and Johanna Loyer. Lattice sieving via quantum random walks. In Mehdi Tibouchi
and Huaxiong Wang, editors, Advances in Cryptology – ASIACRYPT 2021, Part IV, volume 13093 of
Lecture Notes in Computer Science, pages 63–91, Singapore, December 6–10, 2021. Springer, Cham,
Switzerland.

[10] Cong Chen, Oussama Danba, Jeffrey Hoffstein, Andreas Hulsing, Joost Rijneveld, John M.
Schanck, Peter Schwabe, William Whyte, Zhenfei Zhang, Tsunekazu Saito, Takashi Ya-
makawa, and Keita Xagawa. NTRU. Technical report, National Institute of Standards
and Technology, 2020. available at https://csrc.nist.gov/projects/post-quantum-cryptography/
post-quantum-cryptography-standardization/round-3-submissions.

47

https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions


[11] Yuanmi Chen and Phong Q. Nguyen. BKZ 2.0: Better lattice security estimates. In Dong Hoon Lee
and Xiaoyun Wang, editors, Advances in Cryptology – ASIACRYPT 2011, volume 7073 of Lecture
Notes in Computer Science, pages 1–20, Seoul, South Korea, December 4–8, 2011. Springer Berlin
Heidelberg, Germany.

[12] Jan-Pieter D’Anvers, Qian Guo, Thomas Johansson, Alexander Nilsson, Frederik Vercauteren, and In-
grid Verbauwhede. Decryption failure attacks on IND-CCA secure lattice-based schemes. In Dongdai
Lin and Kazue Sako, editors, PKC 2019: 22nd International Conference on Theory and Practice of
Public Key Cryptography, Part II, volume 11443 of Lecture Notes in Computer Science, pages 565–
598, Beijing, China, April 14–17, 2019. Springer, Cham, Switzerland.

[13] Jan-Pieter D’Anvers, Angshuman Karmakar, Sujoy Sinha Roy, Frederik Vercauteren, Jose
Maria Bermudo Mera, Michiel Van Beirendonck, and Andrea Basso. SABER. Technical report,
National Institute of Standards and Technology, 2020. available at https://csrc.nist.gov/projects/
post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions.

[14] Alexander W. Dent. A designer’s guide to KEMs. In Kenneth G. Paterson, editor, 9th IMA Interna-
tional Conference on Cryptography and Coding, volume 2898 of Lecture Notes in Computer Science,
pages 133–151, Cirencester, UK, December 16–18, 2003. Springer Berlin Heidelberg, Germany.

[15] Jelle Don, Serge Fehr, Christian Majenz, and Christian Schaffner. Online-extractability in the quantum
random-oracle model. In Orr Dunkelman and Stefan Dziembowski, editors, Advances in Cryptology
– EUROCRYPT 2022, Part III, volume 13277 of Lecture Notes in Computer Science, pages 677–706,
Trondheim, Norway, May 30 – June 3, 2022. Springer, Cham, Switzerland.

[16] Julien Duman, Kathrin Hövelmanns, Eike Kiltz, Vadim Lyubashevsky, Gregor Seiler, and Dominique
Unruh. A thorough treatment of highly-efficient NTRU instantiations. In Alexandra Boldyreva and
Vladimir Kolesnikov, editors, PKC 2023: 26th International Conference on Theory and Practice of
Public Key Cryptography, Part I, volume 13940 of Lecture Notes in Computer Science, pages 65–94,
Atlanta, GA, USA, May 7–10, 2023. Springer, Cham, Switzerland.

[17] Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric and symmetric encryption
schemes. Journal of Cryptology, 26(1):80–101, January 2013.
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A Factoring the Trinomial

For a better understanding of applying the NTT, we describe the recursive factorization of the polynomial
x1152 − x576 + 1 in Zq[x]. Considering the initial Radix-2 NTT layer, the polynomial is factored as

x1152 − x576 + 1 = (x576 − ζ144)(x576 − ζ720),

where ζ is a primitive ℓ = 864-th root of unity, and ζℓ/6 = ζ144 is a primitive sixth root of unity modulo q.
Considering the Radix-3 NTT layer, these factors are further decomposed into lower-degree polynomi-

als. For instance, the factorization of x576 − ζ144 yields

x576 − ζ144 = (x192 − ζ48)(x192 − ζ48ω)(x192 − ζ48ω2)

= (x192 − ζ48)(x192 − ζ336)(x192 − ζ624),

where ω = ζ288 = ζℓ/3 is a primitive third root of unity modulo q.
Considering the subsequent Radix-2 NTT layers, these factors are further bisected. For example,

x192 − ζ48 = (x96 − ζ24)(x96 + ζ24) = (x96 − ζ24)(x96 − ζ456),

where ζ432 is a primitive second root (ζℓ/2 ≡ −1 (mod q)). This recursive factorization continues until the
polynomials reach the terminal degree d = 4, defining the final component rings of the NTT domain.

B Radix-3 NTT layer

For a clearer understanding, we describe the Radix-3 NTT layer used in our implementation. The Radix-3
NTT layer establishes a ring isomorphism between Zq[x]/⟨xn − α3⟩ and the product ring Zq[x]/⟨xn/3 −
α⟩ × Zq[x]/⟨xn/3 − β⟩ × Zq[x]/⟨xn/3 − γ⟩, where β = αω and γ = αω2 (with ω representing a primitive
third root of unity modulo q). To transform a polynomial a(x) = a0(x) + a1(x)x

n/3 + a2(x)x
2n/3 ∈

Zq[x]/⟨xn − α3⟩ (where a0(x), a1(x), and a2(x) are polynomials with maximum degree n/3− 1) into the
form (â0(x), â1(x), â2(x)) ∈ Zq[x]/⟨xn/3 − α⟩ × Zq[x]/⟨xn/3 − β⟩ × Zq[x]/⟨xn/3 − γ⟩, the following
equations must be computed.

â0(x) = a0(x) + a1(x)α+ a2(x)α
2,

â1(x) = a0(x) + a1(x)β + a2(x)β
2,

â2(x) = a0(x) + a1(x)γ + a2(x)γ
2.

Naively, these equations might appear to require 2n multiplications and 2n additions, relying on six pre-
defined values: α, α2, β, β2, γ, and γ2. Nevertheless, following the techniques in [18], this cost can be
reduced to n multiplications, n additions, and 4n/3 subtractions, while using only three predefined values
α, α2, and ω as shown in Algorithm 14.

â0(x) = a0(x) + a1(x)α+ a2(x)α
2,

â1(x) = a0(x)− a2(x)α2 + ω(a1(x)α− a2(x)α2),

â2(x) = a0(x)− a1(x)α− ω(a1(x)α− a2(x)α2).
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Algorithm 14: Radix-3 NTT layer

Require: a(x) = a0(x) + a1(x)x
n/3 + a2(x)x

2n/3 ∈ Zq[x]/⟨xn − ζ3⟩
Ensure: (â0(x), â1(x), â2(x)) ∈ Zq[x]/⟨xn/3 − α⟩ × Zq[x]/⟨xn/3 − β⟩ × Zq[x]/⟨xn/3 − γ⟩

1: t1(x) = a1(x)α
2: t2(x) = a2(x)α

2

3: t3(x) = (t1(x)− t2(x))ω
4: â2(x) = a0(x)− t1(x)− t3(x)
5: â1(x) = a0(x)− t2(x) + t3(x)
6: â0(x) = a0(x) + t1(x) + t2(x)
7: return (â0(x), â1(x), â2(x))

Considering the aforementioned Radix-3 NTT layer, we need to compute the following equations to
recover a(x) ∈ Zq[x]/⟨xn − ζ3⟩ from (â0(x), â1(x), â2(x)) ∈ Zq[x]/⟨xn/3 − α⟩ × Zq[x]/⟨xn/3 − β⟩ ×
Zq[x]/⟨xn/3 − γ⟩.

3a0(x) = â0(x) + â1(x) + â2(x),

3a1(x) = â0(x)α
−1 + â1(x)β

−1 + â2(x)γ
−1,

3a2(x) = â0(x)α
−2 + â1(x)β

−2 + â2(x)γ
−2.

Naively, these equations might appear to require 2n multiplications and 2n additions, relying on six prede-
fined values: α−1, α−2, β−1, β−2, γ−1, and γ−2. Nevertheless, by following the techniques in [18], we can
significantly reduce this computational load to n multiplications, n additions, and 4n/3 subtractions, while
using only three predefined values: α−1, α−2, and ω, as described in Algorithm 15.

3a0(x) = â0(x) + â1(x) + â2(x),

3a1(x) = α−1(â0(x)− â1(x)− ω(â1(x)− â2(x))),
3a2(x) = α−2(â0(x)− â2(x) + ω(â1(x)− â2(x))).

Algorithm 15: Radix-3 Inverse NTT layer

Require: (â0(x), â1(x), â2(x)) ∈ Zq[x]/⟨xn/3 − α⟩ × Zq[x]/⟨xn/3 − β⟩ × Zq[x]/⟨xn/3 − γ⟩
Ensure: 3a(x) = 3a0(x) + 3a1(x)x

n/3 + 3a2(x)x
2n/3 ∈ Zq[x]/⟨xn − α3⟩

1: t1(x) = ω(â1(x)− â2(x))
2: t2(x) = â0(x)− â1(x)− t1(x)
3: t3(x) = â0(x)− â2(x) + t1(x)
4: 3a0(x) = â0(x) + â1(x) + â2(x)
5: 3a1(x) = t2(x)α

−1

6: 3a2(x) = t3(x)α
−2

7: return 3a(x) = 3a0(x) + 3a1(x)x
n/3 + 3a2(x)x

2n/3

Note that we can reuse the predefined table used for the NTT in the computation of the inverse NTT.

3a0(x) = â0(x) + â1(x) + â2(x),

3a1(x) = (ωα−1)(â2(x)− â0(x) + (â1(x)− â0(x))ω),
3a2(x) = (ω2α−2)(â2(x)− â1(x)− (â1(x)− â0(x))ω).
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