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Abstract

We present HAETAE (Hyperball bimodAl modulE rejecTion signAture schemE), a
new lattice-based signature scheme. Like the NIST-selected Dilithium signature scheme,
HAETAE is based on the Fiat-Shamir with Aborts paradigm, but our design choices
target an improved complexity/compactness compromise that is highly relevant for
many space-limited application scenarios. We primarily focus on reducing signature
and verification key sizes so that signatures fit into one TCP or UDP datagram
while preserving a high level of security against a variety of attacks. As a result,
our scheme has signature and verification key sizes up to 39% and 25% smaller,
respectively, compared than Dilithium. We provide a portable, constant-time reference
implementation together with an optimized implementation using AVX2 instructions
and an implementation with reduced stack size for the Cortex-M4. Moreover, we
describe how to efficiently protect HAETAE against implementation attacks such
as side-channel analysis, making it an attractive candidate for use in IoT and other
embedded systems.
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1 Introduction
We introduce HAETAE1, a new post-quantum digital signature scheme, whose security is
based on the hardness of the module versions of the lattice problems LWE and SIS. The
scheme design follows the “Fiat-Shamir with Aborts” paradigm [19, 20], which relies
on rejection sampling: rejection sampling is used to transform a signature trial whose
distribution depends on sensitive information, into a signature whose distribution can
be publicly simulated. Our scheme is in part inspired from CRYSTALS-Dilithium [10],
a post-quantum “Fiat-Shamir with Aborts” signature scheme which was selected for
standardization by the American National Institute of Standards and Technology (NIST).
HAETAE differs from Dilithium in two major aspects: (i) we use a bimodal distribution for
the rejection sampling, like in the BLISS signature scheme [9], instead of a “unimodal”
distribution like Dilithium, (ii) we sample from and reject to hyperball uniform distributions,
instead of discrete hypercube uniform distributions. This last aspect also departs from
BLISS, which relies on discrete Gaussian distributions, and follows a suggestion from [8],
which studied rejection sampling in lattice-based signatures following the “Fiat-Shamir
with Aborts” paradigm.

1.1 Design rationale
A brief recap on Fiat-Shamir with Aborts. The Fiat-Shamir with Aborts paradigm
was introduced in lattice-based cryptography in [19, 20]. The verification key is a pair
of matrices (A,T = AS mod 𝑞), where A is a uniform matrix modulo some integer 𝑞
and S is a small-magnitude matrix that makes up the secret key. A signature for a
message 𝑀 is comprised of an integer vector z of the form y + Sc, for some random
small-magnitude y and some small-magnitude challenge c = 𝐻 (Ay mod 𝑞, 𝑀). Rejection
sampling is then used to ensure that the distribution of the signature becomes independent
from the secret key. Finally, the verification algorithm checks that the vector z is short and
that c = 𝐻 (Az − Tc mod 𝑞, 𝑀).

Improving compactness. As analyzed in [8], The choice of the distributions to sample
from and reject to has a major impact on the signature size. Dilithium relies on discrete
uniform distributions in hypercubes, which makes the scheme easier to implement. However,
such distributions are far from optimal in terms of resulting signature sizes. We choose a
different trade-off: by losing a little on ease of implementation, we obtain more compact
signatures.

Uniform distributions in hyperballs. A possibility would be to consider Gaussian
distributions, which are superior to uniform distributions in hypercubes, in terms of
resulting signature compactness (see, e.g., [8]). However, this choice has two downsides.
First, the rejection step involves the computation of a transcendental function on an
input that depends on the secret key. This is cumbersome to implement and sensitive to
side-channel attacks [13]. Second, since the final signature follows a Gaussian distribution
there is a nonzero probability that the final signature is too large and does not pass the
verification. The signer must realise that and reject the signature, making the expected

1The haetae is a mythical Korean lion-like creature with the innate ability to distinguish right from wrong.
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number of rejects slightly grow in practice. Uniform distributions over hyperballs have
been put forward in [8] as an alternative choice of distributions leading to signatures with
compactness between those obtained with Gaussians and those obtained with hypercube
uniforms. Compared to Gaussians, they do not suffer from the afore-mentioned downsides:
the rejection step is simply checking whether Euclidean norms are sufficiently small; and
as there is no tail, there is no need for an extra rejection step to ensure that verification
will pass. HAETAE showcases that this provides an interesting simplicity/compactness
compromise.

Bimodal distributions. A modification of Lyubashevsky’s signatures was introduced
in [9]. It allows for the use of bimodal distributions in the signature generation. The
signature is now of the form y + (−1)𝑏Sc, where y is sampled from a fixed distribution
and 𝑏 ∈ {0, 1} is sampled uniformly. The signature is then rejected to a given secret-
independent target distribution. To make sure that the verification test passes, computations
are performed modulo 2𝑞 and key generation forces the equality AS = 𝑞Id. It turns out that
this modification can lead to more compact signatures than the unimodal setup. In [9], the
authors relied on discrete Gaussian distributions. We instead use uniform distributions over
hyperballs: like for Gaussians, switching from unimodal to bimodal for hyperball-uniforms
leads to more compact signatures.

Flexible design by working with modules. The original design for BLISS [9] relies on
Ring-LWE and Ring-SIS, and a variant of the key generation algorithm relied on ratios
of polynomials, à la NTRU. This setup forces to choose a working polynomial ring for
any desired security level. In order to offer more flexibility without losing in terms of
implementation efficiency, we choose to rely on module lattices, like Dilithium, with a
fixed working polynomial ring R = Z[𝑥]/(𝑥256 + 1) across all security levels. In our
instantiations, we target the NIST PQC security levels 2, 3 and 5. Varying the security and
updating the parameters is easily achievable and we provide a security estimator that is
able to help one reach a given target security.

Secret key rejection sampling. We introduce a new rejection procedure in the key
generation algorithm to minimize the magnitude of the secret key when multiplied by the
challenge. This facilitates rejection sampling in the signing algorithm and leads to smaller
signatures. The key generation rejection is also designed to be efficient and simple to
implement. It significantly improves over a procedure with a similar objective in the key
generation of BLISS.

A compact verification key. The flexibility provided by modules allows us to reduce
the verification key size. Instead of taking the challenge c as a vector over R, we
choose it in R: the main condition on the challenge is that it has high min-entropy,
which is already the case for binary vectors over R. As a result, the secret S can be
chosen as a vector over R rather than a matrix. The key-pair equation AS = 𝑞Id then
becomes As = 𝑞j, where j is the vector starting with 1 and then continuing with 0’s. To
further compress the verification key, we use verification key truncation adopted from
Dilithium by taking into account the residue modulo 2. Our key generation algorithm
just creates an MLWE sample (Agen, b − a = Agensgen + egen) modulo 𝑞, where a is
uniform random over R𝑘𝑞 . By truncating b as b = b1 + b0, we define a 𝑘 × (𝑘 + ℓ) matrix

3



A as A = (−2(a − b1) + 𝑞j| 2Agen | 2Id𝑘 ) mod 2𝑞. The key-pair equation is satisfied
for s = (1| sgen | egen − b0). The verification key consists of (Agen, a, b1). As (a| Agen) is
uniformly distributed, we can generate it from a seed using an extendable output function,
and the verification key is reduced to the seed and the vector b1. If we had kept the original
key-pair equation AS = 𝑞Id, then the appropriately modified variant of our key-generation
algorithm would have led to a verification key that is a matrix (with a seed) rather than a
vector (with a seed).

Compression techniques to lower the signature size. We use two techniques to compress
the signatures. First, as the verification key A is in (almost)-HNF, we can use the Bai-
Galbraith technique [2]. Namely, the second part of the signature, which is multiplied by 2Id
in the challenge computation and verification algorithm, can be aggressively compressed
by cutting its low bits. This requires in turn modifying the computation of the challenge c
and the verification algorithm, in order to account for this precision loss. Usually, this is
done by keeping only the high bits of Ay in the computation of the challenge. However, as
we multiply everything by 2, we do not keep the lowest bit of those high bits and keep the
(overall) least significant bit instead. As in Dilithium, our decomposition of bits technique
is a Euclidean division with a centered remainder, and we choose a representative range for
modular integers that starts slightly below zero to further reduce the support of the high
bits. The second compression technique, suggested in [15] in the context of lattice-based
hash-and-sign signatures, concerns the choice of the binary representation of the signature.
As the largest part of it consists in a vector that is far from being uniform, we can choose
some entropic coding to obtain a signature size close to its entropy. In particular, as in [15],
we choose the efficient range Asymmetric Numeral System to encode our signature, as it
allows us to encode the whole signature and not lose a fraction of a bit per vector coordinate,
like with Huffman coding. We can further apply the two techniques to the hint vector h,
which is also a part of the signature, to reduce the signature sizes.

Efficient choice of modulus. We choose the prime 𝑞 to be a good prime in the sense
that the ring operations can be implemented efficiently and that the decomposition of bits
algorithms, are correctly operated. For ring operations, we use the Number Theoretic
Transform (NTT) with a fully splitting polynomial ring. The polynomial ring R fully
splits modulo 𝑞 when the multiplicative group Z×𝑞 has an element of order 512, or
equivalently when 𝑞 = 1 mod 512. We choose 𝑞 = 64513, which indeed satisfies this
property. Interestingly, it fits in 16 bits, which allows dense storing on embedded devices.
Furthermore, it is close to the next power of two, which is convenient for the sampling of
uniform integers modulo 𝑞.

Fixed-point algorithm for hyperball sampling. Unlike uniform Gaussian sampling
or uniform hypercube sampling, uniform hyperball sampling has not been considered in
the cryptographic protocols before the suggestion of [8]. To narrow the gap between the
hyperball uniforms sampled in the real and the ideal world, we discretize the hyperball and
bound the numerical error and their effect by analyzing their propagation. This leads to a
fixed-point hyperball sampling algorithm and, therefore, the fixed-point implementation of
the whole signing process.
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Deterministic and randomized version. HAETAE can be set in a deterministic or
randomized mode. We focus on the deterministic version, but we also give the randomized
version. Note that in the randomized version, a significant part of the signing algorithm
can be executed off-line as it does not depend on the message.

1.2 Advantages and limitations
1.2.1 Advantages

• Our scheme relies on the difficulty of hard lattice problems, which have been
well-studied for a long time.

• Signature sizes are 29% to 39% smaller than those of Dilithium at comparable
security levels, and verification keys are 20% to 25% smaller.

• Implementation-wise, while our design rationale departs from Dilithium’s, the
scheme remains implementation-friendly. In particular,

– the rejection step only involves computations of Euclidean norms,
– the whole signing process can be implemented with fixed-point arithmetic,
– a significant message-independent part of signing can be performed “off-line”,

for the randomized version of the scheme.

Comparison with hash-and-sign lattice signatures. In terms of ease of implementation,
our scheme favorably compares to lattice signatures based on the hash and sign paradigm
such as Falcon [16]. The efforts for making it masking-friendly, namely Mitaka [14], were
recently broken [21]. HAETAE, Falcon and Mitaka all three rely on some form of Gaussian
sampling, which are typically difficult to implement and protect against side-channel attacks.
Falcon makes sequential calls to a Gaussian sampler over Z with arbitrary centers. Mitaka
also relies on an integer Gaussian sampler with arbitrary centers, but the calls to it can
be massively parallelized. It also uses a continuous Gaussian sampler, which is arguably
simpler. HAETAE, however, only relies on a (zero-centered) continuous Gaussian sampler,
used to sample uniformly in hyperballs. The calls to it can also be massively parallelized.
This difference makes HAETAE possible to have a fixed-point signing algorithm and easier
masking. Further, in the randomized version of the signature scheme, these samples can be
computed offline as they are independent of the message to be signed. The online tasks are
far simpler than those of Falcon and Mitaka. Finally, we note that key generation is much
simpler for HAETAE than in Falcon and Mitaka.

1.2.2 Limitations

• The key generation algorithm restarts if the secret key does not satisfy the key
rejection condition. This makes the key generation algorithm of HAETAE slower
than Dilithium’s.

• While HAETAE is simpler from an implementation perspective, its verification key
and signature sizes are larger than Falcon’s.
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2 Preliminaries
Before introducing specific results adapted to the setting in HAETAE in Section 3 and the
HAETAE scheme itself in Section 4, we start by defining notations used throughout this
paper and recapitulate relevant fundamental works.

2.1 Notations
Matrices are denoted in bold font and upper case letters (e.g., A), while vectors are denoted
in bold font and lowercase letters (e.g., y or z1). The 𝑖-th component of a vector is denoted
with subscript 𝑖 (e.g., 𝑦𝑖 for the 𝑖-th component of y).

Every vector is a column vector. We denote concatenation between vectors by putting
the rows below as (u, v) and the columns on the right as (u|v). We naturally extend the
latter notation to concatenations between matrices and vectors (e.g., (A|b) or (A|B)).

We let ⌊𝑦⌉ be a rounding of 𝑦 ∈ R to the nearest integer. We naturally extend the
rounding notation to vectors and polynomials by applying it component-wise.

We let R = Z[𝑥]/(𝑥𝑛 + 1) be a polynomial ring where 𝑛 is a power of 2 integer and
for any positive integer 𝑞 the quotient ring R𝑞 = Z[𝑥]/(𝑞, 𝑥𝑛 + 1) = Z𝑞 [𝑥]/(𝑥𝑛 + 1). We
abuse notations and identify R2 with the set of elements in R with binary coefficients. We
also let RR = R[𝑥]/(𝑥𝑛 + 1) be a polynomial ring over real numbers. For an integer 𝜂, we
let 𝑆𝜂 denote the set of polynomials of degree less than 𝑛 with coefficients in [−𝜂, 𝜂] ∩ Z.
Given y = (∑0≤𝑖<𝑛 𝑦𝑖 𝑥

𝑖, · · · ,∑0≤𝑖<𝑛 𝑦𝑛𝑘−𝑛+𝑖 𝑥
𝑖)⊤ ∈ R𝑘 (or R𝑘R), we define its ℓ2-norm as

the ℓ2-norm of the corresponding “flattened” vector ∥y∥2 = ∥(𝑦0, · · · , 𝑦𝑛𝑘−1)⊤∥2.
LetBR,𝑚 (𝑟, c) = {x ∈ R𝑚R |∥x−c∥2 ≤ 𝑟} denote the continuous hyperball with center c ∈

R𝑚 and radius 𝑟 > 0 in dimension 𝑚 > 0. When c = 0, we omit it. Let B(1/𝑁)R,𝑚 (𝑟, c) =
(1/𝑁)R𝑚∩BR,𝑚 (𝑟, c) denote the discretized hyperball with radius 𝑟 > 0 and center c ∈ R𝑚
in dimension 𝑚 > 0 with respect to a positive integer 𝑁 . When c = 0, we omit it. Given
a measurable set 𝑋 ⊆ R𝑚 of finite volume, we let 𝑈 (𝑋) denote the continuous uniform
distribution over 𝑋 . It admits x ↦→ 𝜒𝑋 (x)/Vol(𝑋) as a probability density, where 𝜒𝑋 is the
indicator function of 𝑋 and Vol(𝑋) is the volume of the set 𝑋 . For the normal distribution
over R centered at 𝜇 with standard deviation 𝜎, we use the notation N(𝜇, 𝜎).

For a positive integer 𝛼, we define 𝑟 mod± 𝛼 as the unique integer 𝑟′ in the range
[−𝛼/2, 𝛼/2) satisfying the relation 𝑟 = 𝑟′ mod 𝛼. We also define 𝑟 mod+ 𝛼 as the unique
integer 𝑟′ in the range [0, 𝛼) that satisfies 𝑟 = 𝑟′ mod 𝛼. We denote the least significant bit
of an integer 𝑟 with LSB(𝑟). We naturally extend this to integer polynomials and vectors of
integer polynomials, by applying it component-wise.

For a sequence of real numbers 𝑎0, . . . , 𝑎𝑛, we denote the 𝑖-th maximum as 𝑖-thmax
𝑗
𝑎 𝑗 .

2.2 Signatures
We briefly recall the formalism of digital signatures.

Definition 1 (Digital Signature). A signature scheme is a tuple of PPT algo-
rithms (KeyGen, Sign,Verify) with the following specifications:

• KeyGen : 1𝜆 → (vk, sk) outputs a verification key vk and a signing key sk;
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• Sign : (sk, 𝜇) → 𝜎 takes as inputs a signing key sk and a message 𝜇 and outputs a
signature 𝜎;

• Verify : (vk, 𝜇, 𝜎) → 𝑏 ∈ {0, 1} is a deterministic algorithm that takes as inputs a
verification key vk, a message 𝜇, and a signature 𝜎 and outputs a bit 𝑏 ∈ {0, 1}.

Let 𝛾 > 0. We say that it is 𝛾-correct if for any pair (vk, sk) in the range of KeyGen and 𝜇,

Pr[Verify(vk, 𝜇,Sign(sk, 𝜇)) = 1] ≥ 𝛾,

where the probability is taken over the random coins of the signing algorithm. We say that
it is correct in the (Q)ROM if the above holds when the probability is also taken over the
randomness of the random oracle modeling the hash function used in the scheme.

We also give two security notions, namely the existential unforgeability under chosen
message attacks, and under no-message attacks.

Definition 2 (Security). Let 𝑇, 𝛿 ≥ 0. A signature scheme sig = (KeyGen, Sign,Verify)
is said to be (𝑇, 𝛿)-UF-CMA secure in the QROM if for any quantum adversary A with
runtime ≤ 𝑇 given (classical) access to the signing oracle and (quantum) access to a random
oracle 𝐻, it holds that

Pr
(vk,sk)

[Verify(vk, 𝜇∗, 𝜎∗) = 1| (𝜇∗, 𝜎∗) ← A𝐻,Sign(vk)] ≤ 𝛿,

where the randomness is taken over the random coins of A and (vk, sk) ← KeyGen(1𝜆).
The adversary should also not have issued a sign query for 𝜇∗. The above probability of
forging a signature is called the advantage ofA and denoted by AdvUF-CMA

sig (A). IfA does
not output anything, then it automatically fails.

Existential unforgeability against no-message attack, denoted by UF-NMA is defined
similarly except that the adversary is not allowed to query any signature per message. Strong
existential unforgeability, denoted by sUF-CMA, allows an adversary to query signatures
for its target message, as long as it does not output a queried signature.

2.3 Lattice Assumptions
We first recall the well-known lattice assumptions MLWE and MSIS on algebraic lattices.

Definition 3 (Decision-MLWE𝑛,𝑞,𝑘,ℓ,𝜂). For positive integers 𝑞, 𝑘, ℓ, 𝜂 and the dimension 𝑛
of R, we say that the advantage of an adversary A1 solving the decision-MLWE𝑛,𝑞,𝑘,ℓ,𝜂
problem is

AdvMLWE
𝑛,𝑞,𝑘,ℓ,𝜂 (A1) =

������Pr
[
𝑏 = 1 | A← R𝑘×ℓ𝑞 ; b← R𝑘𝑞 ; 𝑏 ← A1(A, b)

]
− Pr

[
𝑏 = 1

��� A← R𝑘×ℓ𝑞 ; (s1, s2) ← 𝑆ℓ𝜂 × 𝑆𝑘𝜂 ;
𝑏 ← A1(A,As1 + s2)

] ������ .
Definition 4 (Search-MSIS𝑛,𝑞,𝑘,ℓ,𝛽). For positive integers 𝑞, 𝑘, ℓ, a positive real number 𝛽
and the dimension 𝑛 of R, we say that the advantage of an adversary A2 solving the
search-MSIS𝑛,𝑞,𝑘,ℓ,𝛽 problem is

AdvMSIS
𝑛,𝑞,𝑘,ℓ,𝛽 (A2) = Pr

[
0 < ∥y∥2 < 𝛽 ∧

(A| Id𝑘 ) · y = 0 mod 𝑞

��� A← R𝑘×ℓ𝑞 ; y ∈ R𝑘+ℓ𝑞 ← A2(A)
]
.
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Moreover, we finally introduce a variant of the SelfTargetMSIS problem introduced in
Dilithium [10], which corresponds to our setting.

Definition 5 (BimodalSelfTargetMSIS𝐻,𝑛,𝑞,𝑘,ℓ,𝛽). Let 𝐻 : {0, 1}∗ × M → R2 be a
cryptographic hash function, where M ⊆ {0, 1}∗ is a message space. Let 𝑞, 𝑘, ℓ >
0, 𝛽 ≥ 0 and the dimension 𝑛 of R. An adversary A3 solving the search-
BimodalSelfTargetMSIS𝐻,𝑛,𝑞,𝑘,ℓ,𝛽 problem with respect to j ∈ R𝑘2 \ {0} has an advantage
of

AdvBimodalSelfTargetMSIS
𝐻,𝑛,𝑞,𝑘,ℓ,𝛽

(A3) = Pr


0 < ∥y∥2 < 𝛽 ∧

𝐻 (Ay − 𝑞𝑐j mod 2𝑞, 𝜇) = 𝑐
(A0 |b) ← R𝑘×ℓ𝑞 ;

A = (2b + 𝑞j| 2A0 | 2Id𝑘 ) mod 2𝑞;
(y, 𝑐, 𝜇) ∈ R𝑘+ℓ𝑞 × R2 ×M ← A |𝐻 (·)⟩3 (A)


.

In the ROM (resp. QROM), the adversary is given classical (resp. quantum) access to 𝐻.

The following classical reduction from MSIS to BimodalSelfTargetMSIS is very similar
to the reduction from MSIS to SelfTargetMSIS introduced in [10] and is similarly non-tight.
As this latter reduction, it cannot be straightforwardly extended to a reduction in the QROM,
since it relies on the forking lemma.

Theorem 6 (Classical Reduction from MSIS to BimodalSelfTargetMSIS). Let 𝑞 > 0 be
an odd modulus, 𝐻 : {0, 1}∗ ×M → R2 be a cryptographic hash function modeled as
a random oracle and that every polynomial-time classical algorithm has a negligible
advantage against MSIS𝑛,𝑞,𝑘,ℓ,𝛽. Then every polynomial-time classical algorithm has
negligible advantage against BimodalSelfTargetMSIS𝑛,𝑞,𝑘,ℓ,𝛽/2.

Proof sketch. Consider a BimodalSelfTargetMSIS𝑛,𝑞,𝑘,ℓ,𝛽/2 classical algorithm A that is
polynomial-time and has classical access to𝐻. IfA𝐻 (·) (A)makes𝑄 hash queries𝐻 (w𝑖, 𝜇𝑖)
for 𝑖 = 1, · · · , 𝑄 and outputs a solution (y, 𝑐, 𝜇 𝑗 ) for some 𝑗 ∈ [𝑄], then we can construct
an adversary A′ for MSIS𝑛,𝑞,𝑘,ℓ,𝛽 as follows.

The adversaryA′ can first rewindA to the point at which the 𝑗-th query was made and
reprogram the hash as 𝐻 (w 𝑗 , 𝜇 𝑗 ) = 𝑐′(≠ 𝑐). Then, with probability approximately 1/𝑄,
algorithm A will produce another solution (y′, 𝑐′, 𝜇 𝑗 ). We then have{

Ay − 𝑞𝑐j = z 𝑗 = Ay′ − 𝑞𝑐′j mod 2𝑞,
∥y∥2, ∥y′∥2 < 𝛽/2.

As 𝑞 is odd, we have A(y − y′) = (𝑐 − 𝑐′)j mod 2. The fact that 𝑐′ ≠ 𝑐 implies that the
latter is non-zero modulo 2, and hence so is y − y′ over the integers. As it also satisfies
(b| A0 | Id𝑘 ) · (y − y′) = 0 mod 𝑞 and ∥y − y′∥ < 𝛽, it provides a MSIS𝑛,𝑞,𝑘,ℓ,𝛽 solution for
the matrix (b| A0 | Id𝑘 ), where the submatrix (−b| A0) ∈ R𝑘×ℓ𝑞 is uniform. □

2.4 Sampling from the Continuous Hyperball-uniform
In order to sample in practice from hyperball uniform, we rely on the following result.
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y← 𝑈 (BR,𝑘 (𝑟)):
1: 𝑦𝑖 ← N(0, 1) for 𝑖 = 0, · · · , 𝑛𝑘 + 1
2: 𝐿 ← ∥(𝑦0, · · · , 𝑦𝑛𝑘+1)⊤∥2
3: y← 𝑟/𝐿 · (∑𝑛−1

𝑖=0 𝑦𝑖 𝑥
𝑖, · · ·, ∑𝑛𝑘−1

𝑖=𝑛𝑘−𝑛 𝑦𝑖 𝑥
𝑖)⊤

4: return y ⊲ y ∈ R𝑘R

Figure 1: Hyperball uniform sampling

Lemma 7 ([23]). The distribution of the output of the algorithm in Figure 1 is𝑈 (BR,𝑘 (𝑟)).

Sampling from continuous hyperball-uniform can be done using the algorithm in
Figure 1 due to Lemma 7. However, to allow side-channel secure implementations of
HAETAE, we sample from discrete hyperball-uniform. We delay to Section 3.2 the analysis
of a discretized version which turns discrete Gaussian samples to discrete hyperball-uniform
distribution.

2.5 Signature Encoding via Range Asymmetric Numeral System
A HAETAE signature is essentially a vector z, that is compressed into z2 with smaller
dimension and a hint h, that are then encoded. While Huffman coding would be applied on
each coordinate at a time, an arithmetic coding encodes the entire vector coordinates in a
single number. In contrast to Huffman coding, arithmetic coding gets close to entropy also
for alphabets, where the probabilities of the symbols are not powers of two. We recall a
recent type of entropy coding, named range Asymmetric Numeral systems (rANS) [11],
that encodes the state in a natural number and thus allows faster implementations. The
rANS encoding technique was recently used in [15] and we adapt it to hyperball uniform
distributions. As a stream variant, rANS can be implemented with finite precision integer
arithmetic by using renormalization.

Definition 8 (Range Asymmetric Numeral System (rANS) Coding). Let 𝑡 > 0 and
𝑆 ⊆ [0, 2𝑡 − 1]. Let 𝑔 : [0, 2𝑡 − 1] → Z ∩ (0, 2𝑡] such that

∑
𝑥∈𝑆 𝑔(𝑥) ≤ 2𝑡 and 𝑔(𝑥) = 0

for all 𝑥 ∉ 𝑆. We define the following:

• CDF : 𝑆 → Z, defined as CDF(𝑠) = ∑𝑠−1
𝑦=0 𝑔(𝑦).

• symbol : Z → 𝑆, where symbol(𝑦) is defined as 𝑠 ∈ 𝑆 satisfying CDF(𝑠) ≤ 𝑦 <
CDF(𝑠 + 1).

• 𝐶 : Z × 𝑆 → Z, defined as

𝐶 (𝑥, 𝑠) =
⌊
𝑥

𝑔(𝑠)

⌋
· 2𝑡 + (𝑥 mod+ 𝑔(𝑠)) + CDF(𝑠).

Then, we define the rANS encoding/decoding for the set 𝑆 and frequency 𝑔/2𝑡 as in
Figure 2.

Lemma 9 (Adapted from [11]). The rANS coding is correct, and the size of the rANS
code is asymptotically equal to Shannon entropy of the symbols. That is, for any choice
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Encode((𝑠1, · · · , 𝑠𝑚) ∈ 𝑆𝑚):
1: 𝑥0 = 0
2: for 𝑖 = 0, · · · , 𝑚 − 1 do
3: 𝑥𝑖+1 = 𝐶 (𝑥𝑖, 𝑠𝑖+1)
4: return 𝑥𝑚

Decode(𝑥 ∈ Z):
1: 𝑦0 = 𝑥

2: 𝑖 = 0
3: while 𝑦𝑖 > 0 do
4: 𝑠′

𝑖+1 = symbol(𝑦𝑖 mod+ 2𝑡)
5: 𝑦𝑖+1 = ⌊𝑦𝑖/2𝑡⌋ · 𝑔(𝑠′𝑖+1) + (𝑦𝑖 mod+ 2𝑡) − CDF(𝑠′

𝑖+1)
6: 𝑖++
7: 𝑚 = 𝑖 − 1
8: return (𝑠′𝑚, · · · , 𝑠′1) ∈ 𝑆

𝑚

Figure 2: rANS encoding and decoding procedures

of s = (𝑠1, · · · , 𝑠𝑚) ∈ 𝑆𝑚, Decode(Encode(s)) = s. Moreover, for any positive 𝑥 and any
probability distribution 𝑝 over 𝑆, it holds that∑︁

𝑠∈𝑆
𝑝(𝑠) log2(𝐶 (𝑥, 𝑠)) ≤ log2(𝑥) +

∑︁
𝑠∈𝑆

𝑝(𝑠) log2

(
𝑔(𝑠)
2𝑡

)
+ 2𝑡

𝑥
.

Finally, the cost in bitlength of encoding the first symbol is ≤ 𝑡, i.e., for any 𝑠 ∈ 𝑆, we have
log2(𝐶 (0, 𝑠)) ≤ 𝑡.

We determine the frequency of the symbols experimentally, by executing the signature
computation and collecting several million samples. Finally, we apply some rounding
strategy in order to heuristically minimize the empirical entropy

∑
𝑠∈𝑆 𝑝(𝑠) log(𝑔(𝑠)/2𝑛).
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3 HAETAE-specific Results
While our scheme is reminiscent of Dilithium, the bimodal setting hinders the use of
some of its base components. In this section, we describe parts that are specifically
adapted to HAETAE. First, the key generation algorithm departs from known key generation
algorithms for BLISS, as we work in the module setting. Second, we study the precision
needed when discretizing the hyperball sampler from Section 2.4 to enable fixed-point
arithmetic. Then, we explain how challenges are computed in HAETAE. Next, we describe
the rejection sampling procedure and estimate its expected number of iterations depending
on the fixed-point arithmetic precision. Finally, we explain how to split the coordinates of
a signature vector into high and low bits, allowing for signature compression via low bits
drop. This order is consistent with the order in which those results are used during signing.

3.1 Key Generation
When using bimodal rejection sampling, the verification step relies on a specific key
pair (A, s) ∈ R𝑘×(𝑘+ℓ)𝑝 ×R𝑘+ℓ𝑝 such that the bimodal centers (−1)𝑏As mod 𝑝 (𝑏 = 0, 1) are
the same, regardless of the bit 𝑏. To generate such a pair, following [9], we choose 𝑝 = 2𝑞
and aim at As = 𝑞j mod 2𝑞 for j = (1, 0, . . . , 0)⊤.

3.1.1 Key Generation and Encoding

To build such a key pair (A, s), we do as follows. We first generate an MLWE sample b =

Agensgen + egen mod 𝑞, where Agen ←↪ 𝑈 (R𝑘×(ℓ−1)
𝑞 ) and (sgen, egen) ←↪ 𝑈 (𝑆ℓ−1

𝜂 × 𝑆𝑘𝜂 ).
We then define A = (−2b + 𝑞j| 2Agen | 2Id𝑘 ) mod 2𝑞 as well as s⊤ = (1|s⊤gen |e⊤gen). This
is a valid verification key pair for HAETAE, but the choice of even modulus 2𝑞 makes it
hard to truncate the least significant bits of b as in Dilithium.

To enable the verification key truncation, we modify the key generation algorithm, as
follows. We use an extra randomness agen ←↪ 𝑈 (R𝑘𝑞 ) and let b−agen = Agensgen+egen mod
𝑞. For any decomposition b = b1 + b0, we then define A = (2(agen − b1) + 𝑞j|2Agen |2I𝑘 )
as well as s⊤ = (1|s⊤gen | (egen − b0)⊤). One sees that As = 𝑞j mod 2𝑞. In practice, the
verification key is then comprised of b1 and the seed that allows generating Agen and agen.
The secret key is the seed used to generate s and (Agen, agen).

It remains to choose the decomposition of b, that we see as an 𝑛𝑘-dimensional vector
with coordinates in [0, 𝑞 − 1]. We set the coordinates of b1 as follows. If some coordinate
of b is even, then we take the same value for the corresponding coordinate of b1. Else, we
take the rounding of this coordinate to the nearest multiple of 4 as value for b1. Next we
set b0 = b − b1 and we note that coordinates of b0 lie in [−1, 1], i.e., b0 ∈ 𝑆𝑘1 . We can
then write b = b0 + 2b′1, where b′1 is encoded using

⌈
log2(𝑞) − 1

⌉
bits per coordinate, i.e.

one less bit than b. This is computed coordinate-wise with b0 = (−1) ⌊b/2⌋ mod 2b mod 2.
In all of the following, we let (LowBitsvk (b),HighBitsvk (b)) denote (b0, b1).

When b is uniform, we notice that the coordinates of b0 roughly follow a (centered)
binomial law with parameters (2, 1/2), which experimentally leads to smaller choices for 𝛾,
which we discuss and introduce below.

Note that the truncation reduces each coefficient of b by 1 bit. So the verification
key becomes shorter, but not significantly. Thus, we use the truncation for lower security
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levels and keep the no-truncation version for the highest level. In the following, we refer
to the truncated version as 𝑑 = 1 and the non-truncated version as 𝑑 = 0, where 𝑑 is the
vk truncation bit.

3.1.2 Rejection Sampling on the Key

A critical step of our scheme is bounding ∥𝑐s∥2, where s is generated as before and 𝑐 ∈ R is
a polynomial with coefficients in {0, 1} and has less than or equal to 𝜏 nonzero coefficients.
The lower this bound is, the smaller the signature is, which in turn leads to the harder
forging. In the key generation algorithm, we apply the following rejection condition for
some heuristic value 𝛾, bounding ∥𝑐s∥2 ≤ 𝛾

√
𝜏:

N(s) := 𝜏 ·
𝑚∑︁
𝑖=1

𝑖-thmax
0≤ 𝑗<2𝑛

∥s(𝜔 𝑗 )∥22 + 𝑟 ·
(𝑚+1)-th
max

0≤ 𝑗<2𝑛
∥s(𝜔 𝑗 )∥22 ≤ 𝛾

2𝑛,

where 𝑚 = ⌊𝑛/𝜏⌋, 𝑟 = 𝑛 mod 𝜏, 𝜔 𝑗 ’s are the primitive 2𝑛-th roots of unity (1 ≤ 𝑗 ≤ 𝑛).
Note that s(𝜔 𝑗 ) is defined as (𝑠1(𝜔 𝑗 ), · · · , 𝑠𝑘+ℓ (𝜔 𝑗 )) ∈ C𝑘+ℓ given the secret key s =

(𝑠1, · · · , 𝑠𝑘+ℓ) ∈ R𝑘+ℓ. Below, we prove that the left hand side is a bound on 𝑛
𝜏
· ∥𝑐s∥22 and

that this condition leads to asserting ∥𝑐s∥2 ≤ 𝛾
√
𝜏.

Lemma 10. For any challenge 𝑐 ∈ {0, 1}𝑛 with Hamming weight 𝜏 and a secret s ∈ 𝑆𝑘+ℓ𝜂 ,
the value ∥𝑐s∥22 is upper bounded by

𝜏

𝑛

(
𝜏 ·

𝑚∑︁
𝑖=1

𝑖-thmax
0≤ 𝑗<2𝑛

∥s(𝜔 𝑗 )∥22 + 𝑟 ·
(𝑚+1)-th
max

0≤ 𝑗<2𝑛
∥s(𝜔 𝑗 )∥22

)
,

where 𝑚 = ⌊𝑛/𝜏⌋, 𝑟 = 𝑛 mod 𝜏, and 𝜔 𝑗 ’s are the primitive 2𝑛-th roots of unity.
Proof. We first rewrite ∥𝑐s∥22 as:

∥𝑐s∥22 =

∑
𝑗 |𝑐(𝜔 𝑗 ) |2 · ∥s(𝜔 𝑗 )∥22

𝑛
,

where s(𝜔 𝑗 ) = (𝑠1(𝜔 𝑗 ), · · · , 𝑠𝑘+ℓ (𝜔 𝑗 )). We have that
∑𝑛
𝑗=1 |𝑐(𝜔 𝑗 ) |2 = 𝑛𝜏 and |𝑐(𝜔 𝑗 ) |2 =

|𝜔 𝑗 ,1 + · · · +𝜔 𝑗 ,𝜏 |2 ≤ 𝜏2. We can bound
∑𝑛
𝑗=1 |𝑐(𝜔 𝑗 ) |2 · ∥s(𝜔 𝑗 )∥22 by rearranging the order.

Let 𝑚 = ⌊𝑛/𝜏⌋ and 𝑟 = 𝑛 mod 𝜏. Then 𝑚 is the maximum number of |𝑐(𝜔 𝑗 ) |2’s that can
be 𝜏2. By sorting ∥s(𝜔 𝑗 )∥2 in a decreasing order,

∥s(𝜔𝜎(1))∥2 ≥ ∥s(𝜔𝜎(2))∥2 ≥ · · · ≥ ∥s(𝜔𝜎(𝑛))∥2,
where 𝜎 is a permutation for the indices, we have
𝑛∑︁
𝑗=1
|𝑐(𝜔 𝑗 ) |2 · ∥s(𝜔 𝑗 )∥22 ≤

𝑚∑︁
𝑗=1
|𝑐(𝜔𝜎( 𝑗)) |2 · ∥s(𝜔𝜎( 𝑗))∥22+

𝑛∑︁
𝑗=𝑚+1

|𝑐(𝜔𝜎( 𝑗)) |2 · ∥s(𝜔𝜎(𝑚+1))∥22.

Then it reaches the maximum when the 𝑚 largest ∥s(𝜔 𝑗 )∥22’s are multiplied with 𝜏2’s, i.e.,
𝑛∑︁
𝑗=1
|𝑐(𝜔 𝑗 ) |2 · ∥s(𝜔 𝑗 )∥22 ≤

𝑚∑︁
𝑗=1

𝜏2 · ∥s(𝜔𝜎( 𝑗))∥22 +
( 𝑛∑︁
𝑗=1
|𝑐(𝜔 𝑗 ) |2 − 𝑚𝜏2

)
· ∥s(𝜔𝜎(𝑚+1))∥22

= 𝜏2 ·
𝑚∑︁
𝑗=1
∥s(𝜔𝜎( 𝑗))∥22 + 𝑟 · 𝜏 · ∥s(𝜔𝜎(𝑚+1))∥22.
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This concludes the proof. □

3.2 Sampling in a Discrete Hyperball
In order to generate a hyperball uniform sample y, we apply a rounding-and-reject strategy
to the discretization of the continuous hyperball uniform sampling from Figure 1, which
allows to generate rightly distributed samples. Our approach in sampling is to avoid the use
of floating point arithmetic for two reasons: First, many microarchitectures do not provide
floating-point units and even if so, the execution time of floating-point instructions may be
data-dependent and thus unsuitable [1] for a constant-time implementation. Floating-point
computation would also prohibit a masked implementation, that is protected against power
side-channel attacks, because known masking techniques are only applicable to integers.
And second, the required precision is higher than achievable even in IEEE double. In
order to do so, we replace the continuous Gaussian sampler from Lemma 7 and instead
use discrete Gaussian distributions, as we know that they approximate well continuous
Gaussian distribution for large standard deviation.

Discretizing the Output. Once we obtain an “hyperball” sample, we choose to round
it. Then, if the resulting sample lies too close to the border of the hyperball, we reject
it. This ensures that for any possible sample, they have the same amount of pre-rounding
predecessors. This also decreases the precision but the output is now discrete in a hyperball
with a somewhat-smaller radius. We simply increase the starting radius to compensate.

y← 𝑈 (B(1/𝑁)R,𝑚 (𝐵)):
1: y← 𝑈 (BR,𝑚 (𝑁𝐵 +

√
𝑚𝑛/2)) ⊲ continuous sampling in Figure 1

2: if ∥⌊y⌉∥2 ≤ 𝑁𝐵 then
3: return ⌊y⌉/𝑁
4: else, restart ⊲ y ∈ B(1/𝑁)R,𝑚 (𝐵) ⊂ (1/𝑁)R𝑚

Figure 3: Discrete hyperball uniform sampling

We study in the following lemma the rejection probability of this step.

Lemma 11. Let 𝑛 be the degree of R, 𝑀0 ≥ 1, 𝐵, 𝑚, 𝑁 > 0. At each iteration, the
algorithm from Figure 3 succeeds with probability ≥ 1/𝑀0 and the distribution of the
output is𝑈 (B(1/𝑁)R,𝑚 (𝐵)) if we set

𝑁 ≥
√
𝑚𝑛

2𝐵
·
𝑀

1/(𝑚𝑛)
0 + 1

𝑀
1/(𝑚𝑛)
0 − 1

.

The proof of this lemma can be found in Appendix B.

3.3 Challenge Sampling
Challenges in HAETAE are polynomials 𝑐 ∈ R with binary coefficients and exactly 𝜏 of
them are nonzero. As simply hashing the message and the commitment only yields a binary
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SampleBinaryChallenge𝜏 (𝜌)
// for HAETAE-2 or HAETAE-3

1: Initialize c = 𝑐0𝑐1 . . . 𝑐255 = 00 . . . 0
2: for 𝑖 = 256 − 𝜏 to 255 do
3: 𝑗 ←↪ {0, . . . , 𝑖}
4: 𝑐𝑖 = 𝑐 𝑗
5: 𝑐 𝑗 = 1
6: Return c

// for HAETAE-5
1: Initialize c = 𝑐0𝑐1 . . . 𝑐255 = 𝐻 (𝜌)
2: if wt(𝑐) > 128 then
3: 𝑐 = 𝑐 ⊗ 11 · · · 1
4: else if wt(𝑐) = 128 then
5: 𝑐 = 𝑐 ⊗ 𝑐0𝑐0 · · · 𝑐0
6: Return c

Figure 4: Challenge sampling algorithm

string 𝜌, we now explain how to format it to get such a challenge. Since 𝑛 = 256 across all
three parameter sets, the challenge space has size

(𝑛
𝜏

)
exceeding the required entropy 2192

and 2225 for HAETAE-2 and HAETAE-3, respectively. To sample such challenges we rely
on the (binary version of) SampleInBall algorithm from Dilithium, which we specify in the
first half of Figure 4.

For HAETAE-5, however, we require 255 bits of entropy for the challenge space, which
cannot be reached with the fixed Hamming weights for 𝑛 = 256. To achieve it, we
replace the challenge space by a set containing exactly half of the bitstrings of length 256.
Specifically, we choose a set containing all elements of Hamming weight strictly less than
128 and half of the elements of Hamming weight 128, using the following algorithm. Given
a 256-bits hash with Hamming weight 𝑤, do the following. If 𝑤 < 128, we do nothing, and
if 𝑤 > 128, we flip all the bits. If 𝑤 = 128, we decide whether to flip or not, depending on
the first bit. Exactly half of all binary polynomials are reachable this way, which means
that the challenge set has size 2255 as desired. The algorithm is specified in the second half
of Figure 4.

As a side note, this means that the hash function with which we instantiate the Fiat-
Shamir transform is the composition of these two steps, hashing and formatting. Looking
ahead, this corresponds to steps 6 and 7 of Figure 8. Contrary to Dilithium, we do not stray
away from the Fiat-Shamir transform and include the challenge 𝑐 in the signature as it is no
bigger than 𝜌 when encoded.

3.4 Bimodal Hyperball Rejection Sampling
Recently, Devevey et al. [8] conducted a study of rejection sampling in the context of
lattice-based Fiat-Shamir with Aborts signatures. They observe that (continuous) uniform
distributions over hyperballs can be used to obtain compact signatures, with a relatively
simple rejection procedure. To make masking easier, HAETAE uses (discretized) uniform
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distributions over hyperballs, in the bimodal context. The proof of the following lemma is
available in Appendix B.

Lemma 12 (Bimodal Hyperball Rejection Sampling). Let 𝑛 be the degree of R, 𝑐 > 1,
𝑟, 𝑡, 𝑚 > 0, and 𝐵 ≥

√
𝐵′2 + 𝑡2. Define 𝑀 = 2(𝐵/𝐵′)𝑚𝑛 and set

𝑁 ≥ 1
𝑐1/(𝑚𝑛) − 1

√
𝑚𝑛

2

(
𝑐1/(𝑚𝑛)

𝐵′
+ 1
𝐵

)
.

Let v ∈ R𝑚 ∩ B(1/𝑁)R,𝑚 (𝑡). Let 𝑝 : R𝑚 → {0, 1/2, 1} be defined as follows

𝑝(z) =


0 if ∥z∥ ≥ 𝐵′,
1/2 else if ∥z − v∥ < 𝐵 ∧ ∥z + v∥ < 𝐵,
1 otherwise.

Then there exists 𝑀′ ≤ 𝑐𝑀 such that the output distributions of the two algorithms from
Figure 6 are identical.

v−v

Figure 5: The HAETAE eyes

Figure 5 illustrates (the continuous version) of the rejection sampling that we consider.
The black empty circles have radii equal to 𝐵 and the green circle has radius 𝐵′. We sample
a vector z uniformly inside one of the black circles (with probability 1/2 for each) and
keep z with 𝑝(z) = 1/2 if z lies in the blue zone, with probability 𝑝(z) = 1 if it lies in the
green zone, and with probability 𝑝(z) = 0 everywhere else.

We now have all necessary ingredients in Figures 1, 3, 5, and 6 to make sure the
resulting distribution of z is indeed uniform over the discretized hyperball. Thanks to
Lemma 11 and Lemma 12, we already know the level of precision required for y to maintain
the provable security of HAETAE.

A(v) :
1: y← 𝑈 (B(1/𝑁)R,𝑚 (𝐵))
2: b← 𝑈 ({0, 1})
3: z← y + (−1)𝑏v
4: return z with probability 𝑝(z), else ⊥

B :
1: z← 𝑈 (B(1/𝑁)R,𝑚 (𝐵′))
2: return z with probability 1/𝑀′, else ⊥

Figure 6: Bimodal hyperball rejection sampling
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3.5 High and Low Bits
Recall that a HAETAE signature is principally a vector z, whose lower part is replaced with a
(smaller) hint. HAETAE makes use of two different high and low bits decompositions: one
helps encoding a signature while the other is used when computing a hint. Following [15],
the first is helpful in the sense that if we correctly choose the number of low bits, they will
be distributed almost uniformly and can then be excluded from the encoding step. The
high bits on the other hand, will then follow a distribution with a very small variance and
we apply the rANS encoding on them only, making it much more efficient as the size of the
alphabet greatly shrunk.

The second decomposition allows to reduce the alphabet size of the resulting hint, and
thus to reduce the size of its encoding.

We use the following base method of decomposing an element in high and low bits.
We first recall the Euclidean division with a centered remainder.

Lemma 13. Let 𝑎 ≥ 0 and 𝑏 > 0. It holds that

𝑎 =

⌊
𝑎 + 𝑏/2
𝑏

⌋
· 𝑏 + (𝑎 mod± 𝑏),

and this writing as 𝑎 = 𝑏𝑞 + 𝑟 with 𝑟 ∈ [−𝑏/2, 𝑏/2) is unique.

We define our decomposition for compressing the upper part of the signature.

Definition 14 (High and low bits). Let 𝑟 ∈ Z and 𝛼 be a power of two integer. Define 𝑟1 =

⌊(𝑟 + 𝛼/2)/𝛼⌋ and 𝑟0 = 𝑟 mod± 𝛼. Finally, define the tuple:

(LowBits(𝑟, 𝛼),HighBits(𝑟, 𝛼)) = (𝑟0, 𝑟1).

We extend these definitions to vectors by applying them component-wise. We state that
this decomposition lets us recover the original element and bound the components of the
decomposition in Lemma 15. The proof is available in Appendix B.

Lemma 15. Let 𝛼 be a power of two. Let 𝑞 > 2 be a prime with 𝛼 |2(𝑞 − 1) and 𝑟 ∈ Z.
Then it holds that

𝑟 = 𝛼 · HighBits(𝑟, 𝛼) + LowBits(𝑟, 𝛼),
LowBits(𝑟, 𝛼) ∈ [−𝛼/2, 𝛼/2),
𝑟 ∈ [0, 2𝑞 − 1] =⇒ HighBits(𝑟, 𝛼) ∈ [0, (2𝑞 − 1)/𝛼] .

We define HighBits𝑧1(𝑟) = HighBits(𝑟, 256) and LowBits𝑧1(𝑟) = LowBits(𝑟, 256).

3.5.1 High and Low Bits for h

In order to produce the hint that we send instead of the lower part of z, we could use
the previous bit decomposition. However, as noted in [10, Appendix B] in a preliminary
version, a slight modification allows to further reduce the entropy of the hint.

The idea is to pack the high bits in the range [0, 2(𝑞 − 1)/𝛼h). This is possible if we
use the range [−𝛼h/2 − 2, 0) to represent the integers that are close to 2𝑞 − 1.
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Definition 16 (High and low bits for ℎ). Let 𝑟 ∈ Z. Let 𝑞 be a prime and 𝛼h |2(𝑞 − 1)
be a power of two. Let 𝑚 = 2(𝑞 − 1)/𝛼h, 𝑟1 = HighBits(𝑟 mod+ 2𝑞, 𝛼h), and 𝑟0 =

LowBits(𝑟 mod+ 2𝑞, 𝛼h). If 𝑟1 = 𝑚, let (𝑟′0, 𝑟
′
1) = (𝑟0 − 2, 0). Else, (𝑟′0, 𝑟

′
1) = (𝑟0, 𝑟1). We

define:

(LowBitsh(𝑟),HighBitsh(𝑟)) = (𝑟′0, 𝑟
′
1).

As before, we extend these definitions to vectors by applying them component-wise.
We state that this decomposition lets us recover the original element and bound the
decomposition components.

Lemma 17. Let 𝑟 ∈ Z. Let 𝑞 be a prime, 𝛼h |2(𝑞 − 1) be a power of two and define 𝑚 =

2(𝑞 − 1)/𝛼h. It holds that

𝑟 = 𝛼h · HighBitsh(𝑟) + LowBitsh(𝑟) mod 2𝑞,
LowBitsh(𝑟) ∈ [−𝛼/2 − 2, 𝛼/2),
HighBitsh(𝑟) ∈ [0, 𝑚 − 1] .

The proof of Lemma 17 is available in Appendix B.
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4 The HAETAE Signature Scheme
In this section, we describe three different versions of HAETAE. As a warm-up, we give
an uncompressed, un-truncated version of HAETAE, implementing the Fiat-Shamir with
aborts paradigm in the bimodal hyperball-uniform setting. We then give the full description
of optimized and deterministic HAETAE as we implemented it. Finally, we discuss the
parts of the signing algorithm which can be pre-computed.

4.1 Uncompressed Description
As a first approach, we give a high-level, uncompressed, description of our signature
scheme in Figure 7. In all of the following sections, we let j = (1, 0, . . . , 0) ∈ R𝑘 , as
well as 𝑘, ℓ be two dimensions, 𝑁 > 0 the fix-point precision and 𝜏 > 0 the challenge
min-entropy parameter. The parameters 𝐵, 𝐵′, and 𝐵′′ refer to the radii of hyperballs. Let 𝑞
be an odd prime and 𝛼h |2(𝑞 − 1) is a power of two. We recall the key rejection function
based on Lemma 10:

N : s ↦→ 𝜏 ·
𝑚∑︁
𝑖=1

𝑖-thmax
𝑗
∥s(𝜔 𝑗 )∥22 + 𝑟 ·

(𝑚+1)-th
max
𝑗
∥s(𝜔 𝑗 )∥22.

With the parameter 𝛾, we bound N(s) ≤ 𝛾2𝑛, which ensures that ∥𝑐s∥2 ≤ 𝛾
√
𝜏 for

all 𝑐 ∈ R2 satisfying wt(𝑐) ≤ 𝜏. The key generation algorithm is a simplified version from
Section 3.1, which removes the verification key truncation, for conceptual simplicity.

Effectively, this requires computing a complex (fix-point) 512-point FFT for each
polynomial in s, where the input is padded with zeros. The absolute value of the FFT
outputs is accumulated point-wise, which yields the vector that is the input to the above
function 𝑓 . In fact, this can be optimized this by replacing the 512-point FFT by a 256-point
one, where the 𝑗-th input coefficient 𝑥 𝑗 is multiplied by 𝑒− 𝑖 𝜋

256 𝑗 , which is functionally
equivalent.

4.2 Specification of HAETAE
We now give the full description of the signature scheme HAETAE in Figure 8 with the
following building blocks:

• Hash function 𝐻gen for generating the seeds and hashing the messages,

• Hash function 𝐻 for signing, returning a seed 𝜌 for sampling a challenge,

• Extendable output function expandA for deriving agen and Agen from seedA,

• Extendable output function expandS for deriving (sgen, egen) ∈ 𝑆ℓ−1
𝜂 × 𝑆𝑘𝜂 from seedsk

and countersk,

• Extendable output function expandYbb for deriving y, 𝑏 and 𝑏′ from seed𝑦𝑏𝑏 and
counter,
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KeyGen(1𝜆):

1: (Agen) ← R𝑘×(ℓ−1)
𝑞 and (sgen, egen) ← 𝑆ℓ−1

𝜂 × 𝑆𝑘𝜂
2: b = Agen · sgen + egen ∈ R𝑘𝑞
3: A = (−2b + 𝑞j| 2Agen | 2Id𝑘 ) mod 2𝑞
4: s = (1, sgen, egen)
5: if N(s) > 𝛾2𝑛 then restart
6: return sk = (A, s), vk = A

Sign(sk, 𝑀):
1: y← 𝑈 (B(1/𝑁)R,(𝑘+ℓ) (𝐵))
2: w← A⌊y⌉
3: 𝑐 = 𝐻 (w, 𝑀) ∈ R2
4: z = (z1, z2) = y + (−1)𝑏𝑐s for 𝑏 ← 𝑈 ({0, 1})
5: if ∥z∥2 ≥ 𝐵′ then restart
6: else if ∥2z − y∥2 < 𝐵 then restart with probability 1/2
7: return 𝜎 = (⌊z⌉, 𝑐)

Verify(vk, 𝑀, 𝜎 = (z, 𝑐)):
1: w̃ = Az − 𝑞𝑐j mod 2𝑞

2: return (𝑐 = 𝐻 (w̃, 𝑀)) ∧
(
∥z∥ < 𝐵 +

√
𝑛(𝑘+ℓ)

2

)
Figure 7: Uncompressed description of HAETAE .

The above building blocks can be implemented with symmetric primitives.
Note that at Step 6 of the Verify algorithm, the division by 2 is well-defined as the

operand is even.

Random Signatures, Randomness Generation, and Seed. Note that, in Figure 8, the key
generation uses some randomness for sampling seed. Thus, for implementation validation
purposes, we can separate the algorithms into internal and external algorithms, respectively.
A 256-bit seed can be input to the internal algorithm for KeyGen, which will be seed itself.

On the other hand, the signing process uses no further randomness and is strictly
deterministic with respect to sk and 𝑀. However, for extended use cases, we can easily
add some randomness by using an extra seed when generating the 512-bit seed seed𝑦𝑏𝑏,
i.e., seed𝑦𝑏𝑏 = 𝐻 (𝐾, seedsign, 𝜇) for a 256-bit seed seedsign for signing. Thus, a 256-bit
seed seedsign can be an additional input to the internal Signalgorithm.

The external algorithms then need to wrap the internal algorithms and should securely
sample the seeds.

4.3 Theoretical Analysis
In this section, we prove the theoretical correctness and security of HAETAE.
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4.3.1 Correctness and Runtime

Correctness. Before showing the correctness of the HAETAE scheme, we prove the
following intermediary result.

Lemma 18. We borrow the notations from Figure 8. If we run Verify(vk, 𝑀, 𝜎) on the
signature 𝜎 returned by Sign(sk, 𝑀) for an arbitrary message 𝑀 and an arbitrary key-pair
(sk, vk) returned by KeyGen(1𝜆), then the following relations hold:

1) w1 = HighBitsh(w),

2) 𝑤′j = LSB(⌊𝑦0⌉) · j = LSB(w) = LSB(w − 2⌊z2⌉),

3) 2⌊z2⌉ − 2z̃2 = LowBitsh(w) − LSB(w) assuming 𝐵′ + 𝛼h/4 + 1 ≤ 𝐵′′ < 𝑞/2.

Proof. Let 𝑚 = 2(𝑞 − 1)/𝛼h. Let us prove the first statement. By definition of h, it holds
that w1 = HighBitsh(w) mod 𝑚. However, the latter part of the equality already lies
in [0, 𝑚 − 1] by Lemma 17. The first part lies in the same range as we reduce mod+ 𝑚.
Hence, the equality stands over Z too.

We move on to the second statement. By considering only the first component of
z = y + (−1)𝑏𝑐s, we obtain, modulo 2:

𝑧0 = ⌊𝑧0⌉ = ⌊𝑦0⌉ + (−1)𝑏𝑐 = ⌊𝑦0⌉ + 𝑐.

Moreover, considering everywhere a 2 appears in the definition of A, we obtain that

w = A1⌊z1⌉ − 𝑞𝑐j = (⌊𝑧0⌉ − 𝑐)j mod 2.

For the last statement, let us use the two preceding results. In particular, we note

w1 · 𝛼h + 𝑤′j = w − LowBitsh(w) + LSB(w).

We note that the last two elements have same parity, as the former one has the same parity
as LowBits(w, 𝛼h). By Lemma 17 their sum has infinite norm ≤ 𝛼h/2 + 2. Hence from its
definition, it holds that

2z̃2 = 2⌊z2⌉ − LowBitsh(w) + LSB(w) mod± 2𝑞.

Finally, this holds over the integers as the right-hand side has infinite norm at most 2𝐵′ +
𝛼h/2 + 2 < 𝑞. □

Theorem 19 (Completeness). Assume that 𝐵′′ = 𝐵′+
√︁
𝑛(𝑘 + ℓ)/2+

√
𝑛𝑘 · (𝛼h/4+1) < 𝑞/2.

Then the signature schemes of Figure 8 is complete, i.e., for every message 𝑀 and every
key-pair (sk, vk) returned by KeyGen(1𝜆), we have:

Verify(vk, 𝑀,Sign(sk, 𝑀)) = 1.

Proof. We use the notations of the algorithms. The first and second equations from
Lemma 18 state that 𝜌 = 𝜌̃ and thus

𝑐 = SampleBinaryChallenge𝜏 ( 𝜌̃).
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On the other hand, we use the last equation from the same lemma to bound the size
of z̃. We have:

∥z̃∥ ≤ ∥z∥ + ∥z − ⌊z⌉∥ + ∥⌊z⌉ − z̃∥
≤ 𝐵′ +

√︁
𝑛(𝑘 + ℓ) · ∥z − ⌊z⌉∥∞ + ∥⌊z2⌉ − z̃2∥

≤ 𝐵′ +
√︁
𝑛(𝑘 + ℓ)

2
+
√
𝑛𝑘 · ∥LowBitsh(w)∥∞

≤ 𝐵′ +
√︁
𝑛(𝑘 + ℓ)

2
+
√
𝑛𝑘 ·

(𝛼h
4
+ 1

)
.

The definition of 𝐵′′ implies that the scheme is correct.
□

Runtime. A non-trivial task is analyzing the runtime of Fiat-Shamir with aborts schemes.
As shown in [7, Section 6.1], degenerate cases exist where the signing algorithm does
not terminate. In particular, it is impossible, even in the ROM, to show that the generic
signing algorithm has polynomial expected runtime. However, in the case of HAETAE, all
starting points y lying in the Euclidean ball of radius 𝐵′ − 𝛾

√
𝜏 have probability at least 1/2

of being accepted in the end, whatever shift ±s𝑐 is added, whatever instance of the hash
function 𝐻 is chosen. This gives rise to the following two points.

• With 𝑀′ defined as in Lemma 12, the probability of doing more than 𝑖 iterations
is bounded from above by (1 − 1/𝑀′)𝑖 + 2−𝛼𝑀′3, where 𝛼 is the commitment
min-entropy.

• The signing algorithm has a finite expected runtime.

These are insufficient to conclude that the number of iterations is 𝑀′ on average, but this is
nonetheless what happens for our choice of parameters.

4.3.2 Theoretical Security

We analyze the security of HAETAE by following standard arguments and proof techniques.
We start by detailing the underlying canonical identification scheme that makes up HAETAE
and give their properties in Lemma 20. We then show that HAETAE is UF-NMA secure in
Lemma 21. Finally, we put everything together and give the security bound in Theorem 22
based on the reduction from [3]. Reminders on canonical identification schemes and the
Fiat-Shamir with aborts transform can be found in Appendix A.

In Figure 10, we first describe in Figure 10a an “uncompressed” version of the
identification scheme, as well as the HAETAE canonical identfication scheme in Figure 10b.
The latter uses the Compress and Decompress functions, as described in Figure 9. We
omit the instance generator for both CID, as it is exactly the key generation algorithm from
HAETAE, except that do not do truncation for simplicity. Adding it can be done by noting
that agen gives uniform low bits that would otherwise be missing.

We sum up the properties of the CID from Figure 10b.

Lemma 20. The HAETAE canonical identification scheme from Figure 10b satisfies the
following properties.
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Commitment Min-entropy. The commitment (𝑤0,w1) has min-entropy ≥ 𝑛.

paHVZK. Assuming 𝐵2 ≥ 𝐵′2 + 𝛾2𝜏, the HAETAE CID satisfies the paHVZK property
with the simulator described in Figure 11.

Computational Unique Response. Let A be an adversary against the CUR property of
the scheme. There exist two adversaries B and B′ with roughly the same runtime
such that:

AdvCUR
HAETAE(A) ≤ AdvMLWE

𝑛,𝑞,𝑘,ℓ−1,𝜂 (B) + AdvMSIS
𝑛,𝑞,𝑘,ℓ,2𝐵′′ (B

′).

Proof. Let us prove each point.
Commitment Min-entropy. Recall that 𝑤0 = 𝐿𝑆𝐵(⌊𝑦0⌉) is a binary polynomial of
degree ≤ 𝑛. As the coefficients of 𝑦0 are large and distributed following the distribution of
a subset of a uniform-hyperball, we expect the coefficients of 𝑤0 to be roughly uniform,
hence the lower bound on the commitment min-entropy.
paHVZK. We first prove that the CID from Figure 10a satisfies paHVZK. Consider the
simulator described in Figure 11.

The distribution of real non-aborting transcripts and the output distribution
of Sim ̸⊥(vk, 𝑐) are identical under the condition on the radii. Indeed, by conditioning the
distribution of the output of algorithms A and B from Lemma 12 on not being ⊥, the
conditional (on A and 𝑐) distributions of z in the two cases are identical, and we note
that (w, 𝑐, z) is a deterministic function of (A, 𝑐, z).

Finally, given an uncompressed transcript (w, 𝑐, z) for the Figure 10a CID, we note
that ((HighBitsh(w), LSB(𝑤0)), 𝑐,Compress(z, 𝑐)) is a valid transcript for the HAETAE
CID. Indeed, note that 𝑤0 = ⌊𝑦0⌉ mod 2 by definition of A. Moreover, applying this
deterministic transform turns the distribution of real transcripts for the uncompressed CID
to the distribution of real transcripts for the compressed CID. By an immediate reduction,
the HAETAE CID also satisfies paHVZK.
CUR. Given ((w1, 𝑤0), 𝑐, 𝜎, 𝜎′) such that Az − 𝑞𝑐j = w1𝛼h + 𝑤0j = Az′ − 𝑞𝑐j mod 2𝑞,
we get A(z − z′) = 0 mod 2𝑞, which we can reduce mod𝑞:

(−b|Agen |Id𝑘 ) (z − z′) = 0 mod 𝑞.

We prove that z ≠ z′ mod 𝑞. Let z = (z1, z1) and z′ = (z′1, z
′
2). Let 𝜎 = (𝑥, v, ℎ)

and 𝜎′ = (𝑥′, v′, ℎ). If z1 = z′1 then 𝑥 = 𝑥′ and v = v′ due to the encoding being unique.
This means that ℎ ≠ ℎ′, which in turn will give two different values for z2 and z′2 as the
other values composing z2 and z′2 are identical.

However, (Agen, b) is a MLWE𝑛,𝑞,𝑘,ℓ−1,𝜂 instance instead of being uniform. Both
adversaries B and B′ can run A by simulating a random oracle in the case of B and by
forwarding the queries to its own oraclein the case of B′. Then, if A was successful,
adversary B outputs “MLWE” while B′ computes the MSIS solution as described above,
and if A is unsuccessful, adversary B outputs “unif” while B′ aborts. By the triangular
inequality, we get the desired inequality.

□

We reduce the UF-NMA security of the signature scheme to the BimodalSelfTargetMSIS
problem.
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Lemma 21 (UF-NMA security). Let A be an adversary against the UF-NMA security of
HAETAE. There exist two adversaries B and B′ with essentially the same runtime as A
such that:

AdvUF-NMA
HAETAE (A) ≤ AdvMLWE

𝑛,𝑞,𝑘,ℓ−1,𝜂 (B) + AdvBimodalSelfTargetMSIS
𝐻,𝑛,𝑞,𝑘,ℓ,𝐵′′ (B′).

Proof. Let us first describe B′. On input the public matrix A, it calls A on it. The
adversary B′ defines the random oracle 𝐻′ : (w1, 𝑤0, 𝜇) ↦→ 𝐻 (w1𝛼h + 𝑤0j mod 2𝑞, 𝜇), to
take care of the compression that does not appear in the BimodalSelfTargetMSIS problem.
This can be simulated by B by applying the right function on the queries of A and
forwarding it to its own random oracle 𝐻.

When A outputs a valid forgery 𝜎∗ = ((𝑥, v, ℎ), 𝑐) for some message 𝜇∗,
adversary B′ runs Decompress(A, (𝑥, v, ℎ), 𝑐) to get a vector z such that ∥z∥ ≤ 𝐵′′

and 𝐻′(HighBitsh(w∗), LSB(𝑤∗0), 𝜇) = 𝑐, where we let w∗ = Az − 𝑞𝑐j mod 2𝑞. By
construction w∗ = HighBitsh(w∗)𝛼h + LSB(𝑤∗0)j mod 2𝑞, meaning that 𝑐 = 𝐻 (w∗, 𝜇).
Then (z, 𝑐, 𝜇∗) is exactly a solution to the BimodalSelfTargetMSIS𝐻,𝑛,𝑞,𝑘,ℓ,𝐵′′ problem.

Note that A is called on a “lossy” instance of HAETAE, where the verification key b
does not have a signing key associated and is actually uniform. This difference in setting
exactly corresponds to the MLWE𝑛,𝑞,𝑘,ℓ−1,𝜂 problem. As such the design of B is as follows:
on input (Agen, b), it puts together the verification key A and calls A on it. It can
simulate a random oracle for it, and outputs “MLWE” if A is successful at forging, “unif”
otherwise. □

We combine the previous results with Theorem 27 to get the following security bound
for HAETAE.

Theorem 22. LetA be an adversary against the UF-CMA security of HAETAE making 𝑄𝑠

signature queries and 𝑄ℎ hash queries. Let 𝛼 be the commitment min-entropy of HAETAE.
Let 𝐵2 ≥ 𝐵′2 + 𝛾2𝜏. There exist two adversaries B and B′ such that

AdvUF-CMA
HAETAE (A) ≤ AdvMLWE

𝑛,𝑞,𝑘,ℓ−1,𝜂 (B) + AdvBimodalSelfTargetMSIS
𝐻,𝑛,𝑞,𝑘,ℓ,𝐵′′ (B′)

+ 2−𝛼/2+1𝑄𝑠

1 − 𝛽

√︄
𝑄ℎ + 1 + 𝑄𝑠

1 − 𝛽 + 2−𝛼/2+1(𝑄ℎ + 1)

√︄
𝑄𝑠

1 − 𝛽 .

(4.1)

If A is an adversary against the sUF-CMA security of HAETAE, then there exist two
more adversaries B′′ and B′′′ such that the previous bound holds by adding the extra
term AdvMLWE

𝑛,𝑞,𝑘,ℓ−1,𝜂 (B′′) + AdvMSIS
𝑛,𝑞,𝑘,ℓ,2𝐵′′ (B′′′).

4.4 HAETAE with Pre-computation
We observe that in the randomized signing process of HAETAE, many operations do not
depend on the message 𝑀 , and some do not even depend on the signing key. This enables
efficient “offline” procedures, i.e., precomputations that speed up the “online” phase.

Specifically, there are two levels of offline signing that can be applied to randomized
HAETAE:
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1. Generic. If neither the message 𝑀 nor the signing key is chosen in advance, it is
still possible to perform hyperball sampling. This removes the most time-consuming
operation from the online phase.

2. Designated signing key. Here, only the message 𝑀 is unknown during offline
signing, while the signing key is fixed. This allows us to perform even more
pre-computations by using only the verification key, as shown in Figure 12. Most
notably, there is no longer a matrix-vector multiplication in the online phase.

We showcase the offline and online parts of the (randomized) version of HAETAE in
Figure 12.

4.5 Parameter Sets

Parameter Sets HAETAE-2 HAETAE-3 HAETAE-5
Security 120 180 260

𝑛 Degree of R (2.1) 256 256 256
(𝑘, ℓ) Dimensions of z2, z1 (4.2) (2,4) (3,6) (4,7)
𝑞 Modulus for MLWE & MSIS (2.3) 64513 64513 64513
𝜂 Range of sk coefficients (2.1) 1 1 1
𝜏 Weight of 𝑐 (3.3) 58 80 128
𝛾 sk rejection parameter (3.1) 48.858 57.707 55.13

Resulting key acceptance rate (3.1) 0.1 0.1 0.1
𝑑 Truncated bits of vk (3.1) 1 1 0
𝑀 Expected # of repetitions (3.4) 6.0 5.0 6.0
𝐵 y radius (3.4) 9846.02 18314.98 22343.66
𝐵′ Rejection radius (3.4) 9838.98 18307.70 22334.95
𝐵′′ Verify radius (4.2) 12777.52 21906.65 24441.49
𝛼 z1 compression factor (3.5) 256 256 256
𝛼h h compression factor (3.5) 512 512 256

Forgery: SIS Hardness (Core-SVP)
BKZ block-size 𝑏 (GSA) 409 (333) 617 (512) 878 (735)

Classical Core-SVP 119 (97) 180 (149) 256 (214)
Quantum Core-SVP 105 (85) 158 (131) 225 (188)

Key-recovery: LWE Hardness (Core-SVP and refined)
BKZ block-size 𝑏 (GSA) 428 810 988

Classical Core-SVP 125 236 288
Quantum Core-SVP 109 208 253

BKZ block-size 𝑏 (simulation) 439 834 1019
log2 Classical Gates 159 270 322

log2 Classical Memory 99 177 214

Table 1: HAETAE parameters sets. Hardness is measured with the Core-SVP methodology
and a refined analysis is given for LWE. The numbers in parenthesis for SIS are for the
strong unforgeability property.
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To choose parameters reaching the desired NIST security levels, we estimated the costs
of practical attacks, as in Dilithium, Falcon, and many other NIST-submitted schemes. In
particular, our methodology is directly inspired from the one used in Dilithium, and we sum
it up in the following.

Looking at Equation 4.1, we note that we have highly underestimated the commitment
min-entropy of the scheme in Lemma 20 as we ignored its biggest part w1, and we choose
to ignore terms on the second line as we are confident that they are small enough. We
first evaluate the cost of attacks on MLWE, i.e. key-recovery attacks. Second, to evalute
the cost of forgery attacks, i.e. attacks on BimodalSelfTargetMSIS, we use the fact that
the only known way to solve BimodalSelfTargetMSIS is to solve MSIS. Heuristically, the
hash function is not aware of the algebraic structure of its input, and the random oracle
assumption that 𝑐 is uniform and independent from the input is sound. Thus, an adversary
has no choice but to choose some w, hash its high and low bits along with some message,
and try to compute a short preimage of w − 𝑞𝑐j mod 2𝑞. If the adversary succeeds, the
preimage is in particular an MSIS

𝑛,𝑞,𝑘,ℓ+1,
√
𝐵′′2+1 solution for the matrix [w|A]. Finally, we

evaluate the cost of MSIS with a bound twice as loose to evaluate the strong unforgeability
of the HAETAE scheme. Our cryptanalysis of these problems follows the approach taken in
Dilithium. We provide a modification of their security estimation script2, where we also
updated the cost of quantum attacks following recent works [5]. These estimations follow
the CoreSVP approach. In the case of MLWE, we also give refined estimates, computed in
a branch3 of the leaky LWE estimator from [6].

We propose three different parameter sets with varying security levels, where we
prioritize low signature and verification key sizes over faster execution time. The parameter
choices are versatile, adaptable and allow size vs. speed trade-offs at consistent security
levels. For example at cost of larger signatures, a smaller repetition rate 𝑀 is possible
and thus a faster signing process. This versatility is a notable advantage over Falcon and
Mitaka.

Like in Dilithium, our modulus 𝑞 is constant over the parameter sets and allows an
optimized NTT implementation shared for all sets. With only 16-bit in size, our modulus
also allows storing coefficients memory-efficiently without compression.

2Available in the submission package.
3https://github.com/jdevevey/refined-haetae
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KeyGen(1𝜆):
1: seed← {0, 1}𝜌0 ⊲ KeyGen for 𝑑 = 1
2: (seedA, seedsk, 𝐾) = 𝐻gen(seed)
3: (agen | Agen) := expandA(seedA) ∈ R𝑘×ℓ

𝑞

4: countersk = 0
5: (sgen, egen) := expandS(seedsk, countersk)
6: b = agen + Agen · sgen + egen ∈ R𝑘

𝑞

7: (b0, b1) = (LowBitsvk (b),HighBitsvk (b))
8: A = (2(agen − 2b1) + 𝑞j| 2Agen | 2Id𝑘) mod 2𝑞
9: s = (1, sgen, egen − b0)

10: if N(s) > 𝛾2𝑛 then countersk++ and Go to 5
11: return sk = (s, 𝐾), vk = (seedA, b1)

Sign(sk, 𝑀):
1: 𝜇 = 𝐻gen(seedA, b1, 𝑀)
2: seed𝑦𝑏𝑏 = 𝐻gen(𝐾, 𝜇)
3: counter = 0
4: (y, 𝑏, 𝑏′) := expandYbb(seed𝑦𝑏𝑏, counter)
5: w← A⌊y⌉
6: 𝜌 = 𝐻 (HighBitsh(w), LSB(⌊𝑦0⌉), 𝜇)
7: 𝑐 = SampleBinaryChallenge𝜏 (𝜌)
8: z = (z1, z2) = y + (−1)𝑏𝑐s
9: h = HighBitsh(w) − HighBitsh(w − 2⌊z2⌉) mod+ 2(𝑞−1)

𝛼h
10: if ∥z∥2 ≥ 𝐵′ then
11: counter++ and Go to 4
12: else if ∥2z − y∥2 < 𝐵 ∧ 𝑏′ = 0 then
13: counter++ and Go to 4
14: else
15: 𝑥 = Encode(HighBits𝑧1(⌊z1⌉))
16: v = LowBits𝑧1(⌊z1⌉)
17: return 𝜎 = (𝑥, v,Encode(h), 𝑐)

Verify(vk, 𝑀, 𝜎 = (𝑥, v, ℎ, 𝑐)):
1: z̃1 = Decode(𝑥) · 256 + v and h̃ = Decode(ℎ)
2: (agen | Agen) = expandA(seedA)
3: A1 = (2(agen − 2b1) + 𝑞j| 2Agen) mod 2𝑞
4: w1 = h̃ + HighBitsh(A1z̃1 − 𝑞𝑐j) mod+ 2(𝑞−1)

𝛼h
5: 𝑤′ = LSB(𝑧0 − 𝑐)
6: z̃2 = (w1 · 𝛼h + 𝑤′j − (A1z̃1 − 𝑞𝑐j)) /2 mod± 𝑞
7: z̃ = (z̃1, z̃2)
8: 𝜇̃ = 𝐻gen(seedA, b1, 𝑀)
9: 𝜌̃ = 𝐻 (w1, 𝑤

′, 𝜇̃)
10: return (𝑐 = SampleBinaryChallenge𝜏 ( 𝜌̃)) ∧ (∥z̃∥ < 𝐵′′)

Figure 8: Full description of deterministic HAETAE. The KeyGen algorithm is slightly
different for 𝑑 = 0 (HAETAE-260), which do not truncate b. See Section 3.1.1 for details.
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Compress(z, 𝑐):
1: if z =⊥ then
2: return (⊥,⊥,⊥)
3: z = (z1, z2) = y + (−1)𝑏𝑐s
4: h = HighBitsh(w)
−HighBitsh(w−2⌊z2⌉) mod+ 2(𝑞−1)

𝛼h

5: 𝑥 = Encode(HighBits𝑧1(⌊z1⌉))
6: v = LowBits𝑧1(⌊z1⌉)
7: return (𝑥, v,Encode(h))

Decompress(A, (𝑥, v, ℎ), 𝑐):
1: if (𝑥, v, ℎ) = (⊥,⊥,⊥) then
2: return ⊥
3: z̃1 = Decode(𝑥) · 256 + v
4: h̃ = Decode(ℎ)
5: A = (A1 | 2I) mod 2𝑞
6: w1 = HighBitsh(A1z̃1 − 𝑞𝑐j)
+h̃ mod+ 2(𝑞−1)

𝛼h
7: 𝑤′ = LSB(𝑧0 − 𝑐)
8: w̃ = A1z̃1 − 𝑞𝑐j
9: z̃2 = (w1 · 𝛼h + 𝑤′j − w̃) /2 mod± 𝑞

10: return z̃ = (z̃1, z̃2)

Figure 9: Compression and decompression algorithms.

𝑃(A, s) 𝑉 (A)
y← 𝑈 (B(1/𝑁)R,(𝑘+ℓ) (𝐵))

w = A⌊y⌉ mod 2𝑞

w−−−−−−→ 𝑐← 𝑈 (C)
𝑐←−−−−−

𝑏 ← 𝑈 ({0, 1})
z = y + (−1)𝑏𝑐s
If 𝑝(z), restart

Else
⌊z⌉

−−−−−−−→ Accept if ∥⌊z⌉∥ ≤ 𝐵′′ and
Az − 𝑞𝑐j = w mod 2𝑞

(a) Uncompressed HAETAE

𝑃(A, s) 𝑉 (A)
y← 𝑈 (B(1/𝑁)R,(𝑘+ℓ) (𝐵))

w = A⌊y⌉ mod 2𝑞
w1 = HighBitsh(w)
𝑤0 = LSB(⌊𝑦0⌉)

𝑤0,w1−−−−−−→ 𝑐← 𝑈 (C)
𝑐←−−−−−

𝑏 ← 𝑈 ({0, 1})
z = y + (−1)𝑏𝑐s
If 𝑝(z), restart

Else 𝜎 = Compress(⌊z⌉, 𝑐) 𝜎−−−−−−→ z̃ = Decompress(A, 𝜎, 𝑐)
Accept if ∥z̃∥ ≤ 𝐵′′ and

Az̃ − 𝑞𝑐j = w1𝛼h + 𝑤0j mod 2𝑞

(b) Compressed HAETAE

Figure 10: Underlying canonical identification schemes.
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Sim ̸⊥(vk, 𝑐) :
1: z← 𝑈 (B(1/𝑁)R,𝑘+ℓ (𝐵′))
2: w← A⌊z⌉ − 𝑞𝑐j
3: return (w, 𝑐, z)

Figure 11: Uncompressed HAETAE simulator.

Signoffline(vk):
1: (agen | Agen) = expandA(seedA)
2: A1 = (2(agen − 2b1) + 𝑞j| 2Agen) mod 2𝑞
3: List = ()
4: for iter in [𝐿] do
5: y← 𝑈 (B(1/𝑁)R,(𝑘+ℓ) (𝐵))
6: w = A⌊y⌉
7: w1 = HighBitsh(w)
8: List.append(y,w,w1, LSB(⌊𝑦0⌉))
9: return List

Signonline(sk, List, 𝑀):
1: 𝜇 = 𝐻gen(seedA, b1, 𝑀)
2: tuple = (y,w, tuple3, tuple4) ← List
3: List.delete(tuple)
4: 𝑐 = SampleBinaryChallenge𝜏 (𝐻 (tuple3, tuple4, 𝜇))
5: (𝑏, 𝑏′) ← {0, 1}2
6: z = (z1, z2) = y + (−1)𝑏𝑐s
7: h = tuple3 − HighBitsh(w − 2⌊z2⌉) mod+ 2(𝑞−1)

𝛼h
8: if ∥z∥2 ≥ 𝐵′ then Go to 2
9: else if ∥2z − y∥2 < 𝐵 ∧ 𝑏′ = 0 then Go to 2

10: else
11: 𝑥 = Encode(HighBits𝑧1(⌊z1⌉))
12: v = LowBits𝑧1(⌊z1⌉)
13: return 𝜎 = (𝑥, v,Encode(h), 𝑐)

Figure 12: Randomized, on/off-line signing.
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5 Implementation Details
In this section, we detail how to efficiently implement HAETAE.

We start this section with an implementation-oriented specification. Specifically,
Figure 13 demonstrates how to implement the key generation, Figure 14 the signature
generation and Figure 15 the signature verification. These illustrate the use of the CRT and
NTT for efficient polynomial arithmetic. The most notable remark from an implementation
point of view is that b can be transmitted in NTT domain if no rounding is applied, and
most arithmetic is carried out modulo 𝑞, and recovering the values modulo 2𝑞 is only
required for computing the low and high bits. Relevant for signing and verification is the
unpacking routine for Â, depicted in Algorithm 1.

5.1 Hyperball Sampler
Essentially, the hyperball sampling procedure consists of four steps:

1. Sample 𝑛(𝑘 + ℓ) + 2 discrete Gaussians with 𝜎 = 276, sum up their squares, and
drop two samples eventually.

2. Compute the inverse of the square root of the sum of squares, multiply the result by
𝐵0 +

√
𝑛𝑚/(2𝑁).

3. Multiply every sample from Step 1 by the result of Step 2.

4. Check the ℓ2 norm of the resulting vector, start from Step 1 if this is bigger than 𝐵0𝑁 .

In the following, we explain how the Gaussian sampling and the approximation of the
inverse of the square root can be implemented efficiently. Besides, we choose to generate
each of the 𝑘 + ℓ polynomials independently, which helps parallelizing the randomness
generation for implementations that use vectorization and hardware implementations. Then,
for the first two polynomials, we generate one more Gaussian sample each, which is never
stored but included in the sum of squared samples.

5.1.1 Discrete Gaussian Sampling

As we will lose precision when computing the inverse square root of a Gaussian sample,
we require a Gaussian sampler with high fix-point precision. This is achieved by sampling
over Z with a large standard deviation and then scaling the resulting sample to our
convenience. We use [22, Algorithm 12] to sample from a discrete Gaussian distribution
with 𝜎 = 276, 𝑘 = 272.

In essence, we start by sampling a discrete Gaussian 𝑥 with 𝜎 = 16 using a CDT
and a uniform 𝑦 ∈ {0, . . . , 272 − 1} and set the Gaussian sample candidate as 𝑟 =

𝑥272+ 𝑦. Subsequently, this candidate is accepted with probability exp(−𝑦(𝑦+ 𝑥273)/2153).
Fortunately, we achieve a very low rejection rate of less than 5 %.

Specifically, the CDT we use has 64 entries and uses a precision of 16 bit. Then, to
compute the sample candidate’s square and the input to the exponential, we first compute
𝑟2 and round the result to 76-bit precision, which is accumulated later if the sample is
accepted. Subsequently, 𝑟2 − 276𝑥2 yields the input to the exponential.
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KeyGen(1𝜆) for 𝑑 > 0
1: seed← {0, 1}𝜌0

2: (seedA, seedsk, 𝐾) := 𝐻gen(seed)
3: (agen, Âgen) := expandA𝑑 (seedA) ⊲ (agen, Âgen) ∈ R𝑘𝑞 × R𝑘×ℓ−1

𝑞

4: (countersk, flag) := (0, true)
5: while flag do
6: (sgen, egen) := expandS(seedsk, countersk) ⊲ (sgen, egen) ∈ Sℓ−1

𝜂 × S𝑘𝜂
7: b := agen + NTT−1(Âgen ◦ NTT(sgen)) + egen mod 𝑞 ⊲ b ∈ R𝑘𝑞
8: (b0, b1) := (LowBitsvk (b),HighBitsvk (b))
9: (s1, s2) := (sgen, egen − b0)

10: countersk := countersk + 1
11: if N(s1, s2) ≤ 𝛾2𝑛 then
12: flag := false
13: 𝑡𝑟 := 𝐻 (seedA, b1)
14: return sk = (s1, s2, 𝐾, 𝑡𝑟, seedA, b1), vk = (seedA, b1)

KeyGen(1𝜆) for 𝑑 = 0
1: seed← {0, 1}𝜌0

2: (seedA, seedsk, 𝐾) := 𝐻gen(seed)
3: (countersk, flag) := (0, true)
4: while flag do
5: (sgen, egen) := expandS(seedsk, countersk) ⊲ (sgen, egen) ∈ Sℓ−1

𝜂 × S𝑘𝜂
6: (s1, s2) := (sgen, egen)
7: countersk := countersk + 1
8: if N(s1, s2) ≤ 𝛾2𝑛 then
9: flag := false

10: Âgen := expandA𝑑 (seedA) ⊲ Âgen ∈ R𝑘×ℓ−1
𝑞

11: b̂ := −2
(
Âgen ◦ NTT(sgen) + NTT(egen)

)
mod 𝑞 ⊲ b ∈ R𝑘𝑞

12: 𝑡𝑟 := 𝐻 (seedA, b̂)
13: return sk = (s1, s2, 𝐾, 𝑡𝑟, seedA, b̂), vk = (seedA, b̂)

Figure 13: Implementation specification (deterministic version) of HAETAE key generation

Approximating the Exponential. For this, we need to approximate the exponential
function 𝑒−𝑥 by a polynomial 𝑓 (𝑥) on the closed interval [𝑐 − 𝑤

2 , 𝑐 +
𝑤
2 ], with center 𝑐

and width 𝑤. We first determine an upper bound for the polynomial order required to
approximate 𝑒−𝑥 , given an upper bound for the absolute error. We obtain 𝑓 (𝑥) by truncating
the expansion of 𝑒−𝑥 into a series of Chebyshev polynomials of the first kind 𝑇𝑛 (𝑥) with
linearly transformed input, as this is known to yield small absolute approximation errors
for a given polynomial order. We find:

𝑒−𝑥 = −𝑒−𝑐 + 2𝑒−𝑐
∞∑︁
𝑛=0
(−1)𝑛𝐼𝑛

(
𝑤
2
)
𝑇𝑛

(
𝑥−𝑐
𝑤/2

)
𝑥 ∈ [𝑐 − 𝑤

2 , 𝑐 +
𝑤
2 ]
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Sign(sk, 𝑀)
1: (s1, s2, 𝐾, 𝑡𝑟, seedA, 𝜓) := sk
2: Â := unpackA𝑑 (seedA, 𝜓) ⊲ Algorithm 1, A ∈ R𝑘×ℓ𝑞

3: 𝜇 := 𝐻gen(𝑡𝑟, 𝑀)
4: seed𝑦𝑏𝑏 := 𝐻gen(𝐾, 𝜇)
5: (𝜅, 𝜎) := (0,⊥)
6: while 𝜎 =⊥ do ⊲ pre-compute (̂s1, ŝ2) := (NTT(s1),NTT(s2))
7: (y1, y2, 𝑏, 𝑏

′, 𝜅) := expandYbb(seed𝑦𝑏𝑏, 𝜅) ⊲ (y1, y2) ∈ (1/𝑁)Rℓ × (1/𝑁)R𝑘
8: w := NTT−1(Â ◦ NTT(⌊y1⌉)) + 2 · ⌊y2⌉ mod 𝑞 ⊲ w ∈ R𝑘𝑞
9: w′ := fromCRT(w,

⌊
𝑦1,1

⌉
) ⊲ Algorithm 2, w′ ∈ R𝑘2𝑞

10: w′1 := HighBitsh(w′)
11: 𝜌 = 𝐻 (w′1, LSB(

⌊
𝑦1,1

⌉
), 𝜇)

12: 𝑐 = SampleBinaryChallenge𝜏 (𝜌)
13: 𝑐̂ := NTT(𝑐)
14: 𝑧1,1 := 𝑦1,1 + (−1)𝑏 · 𝑐 ⊲ (z1, z2) ∈ (1/𝑁)Rℓ × (1/𝑁)R𝑘
15: (z1)2..ℓ := (y1)2..ℓ + (−1)𝑏NTT−1(𝑐̂ ◦ ŝ1)
16: z2 := y2 + (−1)𝑏NTT−1(𝑐̂ ◦ ŝ2)
17: if ∥(z1, z2)∥2 < 𝐵′ and (∥2(z1, z2) − (y1, y2)∥2 > 𝐵 or 𝑏′ = 1) then

⊲ Check this condition in constant time.
18: h := w′1 − HighBitsh(w′ − 2 ⌊z2⌉) mod+ 2(𝑞−1)

𝛼h

19: 𝜎 := packSig(HighBits𝑧1(⌊z1⌉), LowBits𝑧1(⌊z1⌉), h, 𝑐)
⊲ Section 5.2 (can fail and return ⊥)

Figure 14: Implementation specification (deterministic version) of HAETAE signing.

Verify(vk, 𝑀, 𝜎)
1: (seedA, 𝜓) := vk
2: Â := unpackA𝑑 (seedA, 𝜓) ⊲ Algorithm 1, A ∈ R𝑘×ℓ𝑞

3: (HighBits𝑧1(⌊z1⌉), LowBits𝑧1(⌊z1⌉), h, 𝑐) := unpackSig(𝜎)
⊲ Section 5.2 (can fail and cause a rejection)

4: z̃1 := HighBits𝑧1(⌊z1⌉) · 256 + LowBits𝑧1(⌊z1⌉)
5: 𝑤′ := LSB(𝑧1,1 − 𝑐)
6: w̃ := Â ◦ NTT(z̃1) mod 𝑞
7: w̃′ := fromCRT(w̃, 𝑤′) ⊲ Algorithm 2
8: w̃′1 := h̃ + HighBitsh (w̃′) mod+ 2(𝑞−1)

𝛼h
9: z̃2 := [w̃′1 · 𝛼h +𝑤′j− w̃′ mod 2𝑞]/2 ⊲ addition with 𝑤′ only for first vector element

10: 𝜇̃ = 𝐻gen(seedA, 𝜓, 𝑀)
11: Return

(
𝑐 = SampleBinaryChallenge𝜏 (𝐻 (w̃′1, 𝑤

′, 𝜇̃))
)
∧ (∥(z̃1, z̃2)∥ < 𝐵′′)

Figure 15: Implementation specification (deterministic version) of HAETAE verification

where 𝐼𝑛 (𝑧) are modified Bessel functions of the first kind, which rapidly converge to zero
for growing 𝑛. We recall ∥𝑇𝑛 (𝑥)∥ ≤ 1 for ∥𝑥∥ ≤ 1. For intervals [0, 𝑤] with not too large
widths we find 2𝑒−𝑐 𝐼𝑚+1( 𝑤2 ) to be a useful estimate of the maximum absolute error, when
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expandYbb(seed𝑦𝑏𝑏, 𝜅):
1: (y1, y2) :=⊥ ⊲ (y1, y2) ∈ (1/𝑁)Rℓ × (1/𝑁)R𝑘
2: while (y1, y2) =⊥ do
3: t1 := sampleGauss(SHAKE256(seed𝑦𝑏𝑏, 𝜅), 𝑛 + 1) ⊲ subsubsection 5.1.1
4: t2 := sampleGauss(SHAKE256(seed𝑦𝑏𝑏, 𝜅 + 1), 𝑛 + 1) ⊲ subsubsection 5.1.1
5: for 𝑖 := 3 to 𝑘 + ℓ do
6: t𝑖 := sampleGauss(SHAKE256(seed𝑦𝑏𝑏, 𝜅 + 𝑖), 𝑛) ⊲ subsubsection 5.1.1
7: 𝑠 :=

∑𝑛+1
𝑖=1 𝑡

2
1,𝑖 +

∑𝑛+1
𝑖=1 𝑡

2
2,𝑖 +

∑𝑘+ℓ
𝑖=3

∑𝑛
𝑗=1 𝑡

2
𝑖, 𝑗

8: drop 𝑡1,𝑛 and 𝑡2,𝑛
9: approximate 1/

√
𝑠 ⊲ subsubsection 5.1.2

10: for 𝑖 := 0 to 𝑘 + ℓ − 1 do
11: for 𝑗 := 0 to 𝑛 − 1 do
12: 𝑡𝑖, 𝑗 :=

⌊
𝑡𝑖, 𝑗 ·

(
𝐵𝑁 +

√
𝑛𝑚

2

)
· 1√

𝑠

⌉
⊲ round to log2 𝑁 fix-point bits

13: 𝜅 := 𝜅 + 𝑘 + ℓ
14: if

∑𝑘+ℓ−1
𝑖=0

∑𝑛−1
𝑗=0 𝑡

2
𝑖, 𝑗
≤ (𝐵𝑁)2 then

15: arrange t1, . . . , tℓ as y1
16: arrange tℓ+1, . . . , t𝑘+ℓ as y2

17: sample 𝑏, 𝑏′ as the first two bits from the output of SHAKE256(seed𝑦𝑏𝑏, 𝜅)
18: 𝜅 := 𝜅 + 1
19: return (y1, y2, 𝑏, 𝑏

′, 𝜅)

Figure 16: Deterministic hyperball sampling.

truncating the series at order 𝑚 > 1. This relation allows us to directly limit 𝑚 according
to the interval to cover and the maximum permissible error.

We then determine the polynomial 𝑓 (𝑥) of at most order 𝑚 by using the Chebyshev
approximation formula, which has been shown to result in a nearly optimal approximation
polynomial in the case of the exponential function [18]. The number of fraction bits is
chosen to match the error. The numerical evaluation is performed in fixed-point arithmetic
using the Horner’s scheme and multiplying with shifts to retain significant bits. When
shifting right, we round half up, which retains about one additional bit of accuracy when
compared to truncation.

Barthe et al. [4] introduced the GALACTICS toolbox to derive suitable polynomials
approximating 𝑒−𝑥 . They numerically evaluate and modify trial polynomials, minimizing
the relative error, until an acceptable level is reached. The polynomials are evaluated
using a Horner’s scheme, similar to this work, but rely on truncation. When comparing
to polynomials derived using the GALACTICS toolbox, our approximation has a slightly
smaller absolute error for intervals of interest in this work, while maintaining the same
polynomial order and constant time properties. This holds even when introducing rounding
to the GALACTICS evaluation of polynomials. Moreover, our approach is somewhat
less heuristic than the GALACTICS method. Practically, as can be seen in Listing 1,
the approximation consists of six signed 48-bit multiplications with subsequent rounding
(smulh48), several constant shifts with rounding and constant additions.

Listing 1: Fix-point approximation of the exponential function with 48 bit of precision.
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static uint64_t approx_exp(const uint64_t x) {
int64_t result;
result = -0x0000B6C6340925AELL;
result = ((smulh48(result, x) + (1LL << 2)) >> 3)

+ 0x0000B4BD4DF85227LL;
result = ((smulh48(result, x) + (1LL << 2)) >> 3)

- 0x0000887F727491E2LL;
result = ((smulh48(result, x) + (1LL << 1)) >> 2)

+ 0x0000AAAA643C7E8DLL;
result = ((smulh48(result, x) + (1LL << 1)) >> 2)

- 0x0000AAAAA98179E6LL;
result = ((smulh48(result, x) + 1LL) >> 1)

+ 0x0000FFFFFFFB2E7ALL;
result = ((smulh48(result, x) + 1LL) >> 1)

- 0x0000FFFFFFFFF85FLL;
result = ((smulh48(result, x)))

+ 0x0000FFFFFFFFFFFCLL;
return result;
}

Finalization. If the sample is accepted eventually, it is (implicitly) scaled by the factor
2−76 to obtain a continuous sample from the standard normal distribution. Moreover, we
only need to store the upper 64 bits of the sample and round off the rest.

In summary, each Gaussian sample candidate requires 72 bit randomness for the lower
part of the candidate (𝑦), 16 bit randomness for the CDT sampling, and 48 bit randomness
for rejecting the candidate conditionally according to the output of the exponential. This
results in a vast randomness demand per hyperball sample, and explains the dominance of
hashing in the cycle count performance.

5.1.2 Approximating the Inverse of the Square Root

To turn the vector of standard normal distributed variates into a hyperball sample candidate,
we must compute its norm. For this, we accumulate all squared samples and approximate
the inverse of the square root of the accumulated value. The approximation result is then
multiplied by the constant 𝑟′+

√
𝑛𝑚/(2𝑁), which yields the scaling factor that is multiplied

to each Gaussian sample. For the inverse square root, we deploy Newton’s method, which
is a well-known technique for that purpose. However, Newton’s method requires a starting
approximation that is, with each iteration, turned into a better approximation. Fortunately,
we know that the sum of 𝑛𝑚 + 2 independent squared standard normal variables follows a
𝜒2 distribution with expected value 𝑛𝑚 + 2. Hence, the starting approximation can be fixed
and precomputed as 1/

√
𝑛𝑚 + 2. The number of iterations for a targeted precision can be

determined experimentally. Therefore, we performed the approximation for the first input
values that have negligible probabilities either for the cumulative distribution function of
𝜒2(𝑛𝑚 + 2) or its survival function, and checked how many iterations are required to still
reach reasonable precision.
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Scheme 𝑐𝑢𝑡ℎ offsetℎ |{𝑆ℎ (𝑛)}| 𝑐𝑢𝑡𝑧1 |{𝑆𝑧1 (𝑛)}| baseℎ base𝑧1
HAETAE-120 6 239 13 6 13 7 132
HAETAE-180 8 235 17 8 17 127 376
HAETAE-260 16 471 33 9 19 358 501

Table 2: Symbol mapping and encoding size parameters.

5.2 Signature Packing and Sizes
The last step of the signature generation is to compress and pack the elements of the
signature. A packed HAETAE signature consists of the challenge 𝑐, the low bits of z1 (𝐿𝑁
coefficients), the high bits of z1 and h (𝐾𝑁 coefficients). Because the distributions of the
values in the high bits of z1 and the coefficients in h are both very dense, we can compress
both polynomial vectors with encoding. Before compressing the values, we map them to a
smaller symbol space and thereby reject the very unlikely values and the corresponding
signatures. For h we cut out most of the values in the middle of the range, for HAETAE-120
this reduces the size of the symbol space from 252 to 13.

𝑆ℎ (𝑛) =

𝑛, for 0 ≤ 𝑛 ≤ 𝑐𝑢𝑡ℎ
⊥, for 𝑐𝑢𝑡ℎ < 𝑛 ≤ 𝑐𝑢𝑡ℎ + offsetℎ
𝑛 − offsetℎ, for 𝑐𝑢𝑡ℎ + offsetℎ < 𝑛


For the high bits of z1 we tail-cut the distribution left and right of the center at 0, and then
shift the remaining values to the non-negative range beginning at 0. For HAETAE-120 this
reduces the size of the symbol space from 37 to 13.

𝑆𝑧1 (𝑛) =

⊥, for 𝑛 < −𝑐𝑢𝑡𝑧1
𝑛 + 𝑐𝑢𝑡𝑧1 , for − 𝑐𝑢𝑡𝑧1 ≤ 𝑛 ≤ 𝑐𝑢𝑡𝑧1
⊥, for 𝑐𝑢𝑡𝑧1 < 𝑛


The parameters for these mappings are defined in Table 2. At the signature verification,

the mapping must be reverted after decoding the compressed symbols.
The reason for these mappings is mainly to get significantly smaller precomputation

tables for the rANS encoding and decoding. Also, all symbols can now be represented
with 8-bits, which simplifies the rANS implementation. Furthermore, for the high bits of
z1, a mapping to non-negative values is necessary to be able to use rANS encoding. The
effect on the resulting signature size is insignificant.

The size of the compressed high bits of z1 and h varies and must be included in
the signature, to allow a correct unpacking and decoding. The size of one compressed
polynomial vector is often more than 255 bytes, and can thus not be expressed by one byte.
Its variance however, is limited, and thus we encode the size the compressed high bits of z1
and h as positive offset to a fixed base value. This unsigned offset value fits into one byte
in most of the cases, if not, the signature gets rejected. The base values can be found in
Table 2.

The final signature is then built as following: The first 32 bytes contain the seed for the
challenge polynomial 𝑐. Following, we have 𝐿𝑁 bytes for the low bits of z1. The next first
byte consists of the offset to the base size for the encoding of the high bits of z1 and the
second byte is the offset for h. Then we have the encoding of the high bits of z1 and directly
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Scheme Lvl. vk Signature Sum Secret key
HAETAE-120 2 992 1,474 2,466 1,408
HAETAE-180 3 1,472 2,349 3,821 2,112
HAETAE-260 5 2,080 2,948 5,028 2,752
Dilithium-2 2 1,312 2,420 3,732 2,528
Dilithium-3 3 1,952 3,293 5,245 4,000
Dilithium-5 5 2,592 4,595 7,187 4,864
Falcon-512 1 897 666 1,563 1,281
Falcon-1024 5 1,792 1,280 3,072 2,305

Table 3: NIST security level, signature and key sizes (bytes) of HAETAE, Dilithium, and
Falcon.

afterwards the encoding of h, both with varying sizes, which are indicated beforehand.
Lastly, the signature is padded with zero bytes to reach the fixed signature size, if any bytes
remain. Signatures that would exceed the fixed limit get rejected.

To prevent signature forgeries, during signature unpacking and decoding multiple sanity
checks have to be performed: the zero padding must be correct, the decoding must not fail
and decode the expected number of coefficients while using exactly the amount of bytes
indicated with the offset. Furthermore, rANS decoding must end with the fixed predefined
start value to be unique. Our rANS encoding is based on an implementation by Fabian
Giesen [17].

To set the fixed signature size as reported in Table 3, we evaluated the distribution
empirically and determined a threshold that requires a rejection in less than 0.1% of the
cases.

In Table 3 we compare the signature and key sizes of HAETAE, Dilithium, and Falcon.
The verification keys in HAETAE are 20% (HAETAE-260) to 25% (HAETAE-120 and
HAETAE-180) smaller, than their counterparts in Dilithium. The advantage of the hyperball
sampling manifests itself in the signature sizes, HAETAE has 29% to 39% smaller signatures
than Dilithium. Less relevant are the secret key sizes, that are almost half the size in
HAETAE compared to Dilithium. A direct comparison to Falcon for the same claimed
security level is only possible for the highest parameter set, Falcon-1024 has a signature of
less than half the size compared to HAETAE-260, and its verification key is about 14%
smaller.

5.3 Performance Reference Implementation
We developed an unoptimized, portable and constant-time implementation in C for HAETAE
and report median and average cycle counts of one thousand executions for each parameter
set in Table 4. Due to the key and signature rejection steps, the median and average values
for key generation and signing respectively differ clearly, whereas the two values are much
closer for the verification.

For a fair comparison, we also performed measurements on the same system with
identical settings of the reference implementation of Dilithium4 and the implementation

4https://github.com/pq-crystals/dilithium/tree/master/ref
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Scheme KeyGen Sign Verify

HAETAE-120 med 1,403,402 6,039,674 376,486
ave 1,827,567 9,458,682 376,631

HAETAE-180 med 2,368,038 9,161,312 691,652
ave 3,448,185 11,611,868 692,014

HAETAE-260 med 3,101,280 11,444,678 895,098
ave 4,088,383 17,229,712 896,622

Dilithium-2 med 343,222 1,191,218 376,008
ave 343,639 1,527,406 376,543

Dilithium-3 med 630,170 2,061,816 612,538
ave 630,607 2,603,237 612,852

Dilithium-5 med 945,776 2,522,834 987,154
ave 949,662 3,080,734 988,250

Falcon-512 med 53,778,476 17,332,716 103,056
ave 60,301,272 17,335,484 103,184

Falcon-1024 med 154,298,384 38,014,050 224,378
ave 178,516,059 38,009,559 224,840

Table 4: Reference implementation speeds. Median and average cycle counts of 1000
executions for HAETAE, Dilithium, and Falcon. Cycle counts were obtained on one core of
an Intel Core i7-10700k, with TurboBoost and hyperthreading disabled.

with emulated floating-point operations, and thus also fully portable, of Falcon5, as given
in Table 4. The performance of the signature verification for HAETAE is very close to
Dilithium throughout the parameter sets. HAETAE-180 verification is 13% slower than its
counter-part, HAETAE-260 on the other hand, is 9% faster than the respective Dilithium
parameter set. For key generation and signature computation, our current implementation
of HAETAE is clearly slower than Dilithium. We measure a slowdown of factors three to
five. In comparison to Falcon, however, HAETAE has 38-50 times faster key generation
and around three times faster signing speed. For the verification, Falcon outperforms both
Dilithium and HAETAE by roughly a factor of four.

A closer look at the key generation reveals that the complex Fast Fourier Transformation,
that is required for the rejection step, is with 53% by far the most expensive operation and
a sensible target for optimized implementations.

Profiling the signature computation reveals that the slowdown compared to Dilithium is
mainly caused by the sampling from a hyperball, where about 80% of the computation
time is spent. The hyperball sampling itself is dominated by the generation of randomness,
which we derive from the extendable output function SHAKE256 [12], which is also used
in the Dilithium implementation. Almost 60% of the signature computation time is spent in
SHAKE256.

Based on the profiling and benchmarking of subcomponents, we estimate the
performance of a randomized HAETAE implementation with pre-computation. The
generic version, which is independent of the key, would already achieve a speedup of a
factor five for its online signing, because the expensive hyperball sampling can be done

5https://falcon-sign.info/falcon-round3.zip
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offline. For the pre-computation variant with a designated signing key, additionally, a lot
of matrix-vector multiplications and therefore most of the transformations from and to
the NTT domain, can be precomputed. We estimate about 12% of the full deterministic
signing running time, for the online signing in this case.
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𝑃(𝑥, 𝑦) 𝑉 (𝑥)
𝑤 (commitment)

−−−−−−−−−−−−−−−−−→
𝑐← 𝑓 (𝑤)

𝑐 (challenge)
←−−−−−−−−−−−−−−

𝑧 (response)
−−−−−−−−−−−−−−→ Reject if 𝑧 =⊥

Accept or reject

Figure 17: Interaction between 𝑃 and 𝑉 . We let ⟨𝑃(𝑥, 𝑦) ↔ 𝑉 (𝑥)⟩ 𝑓 (·) denote the
transcript (𝑤, 𝑐, 𝑧).

A Cryptographic Reminders
In this section, we recall the definition of a canonical identification scheme, which is the
main building brick of HAETAE and the Fiat-Shamir with aborts transform, which allows
one to turn a canonical identification scheme into a signature scheme.

A.1 Canonical Identification Schemes
We start by defining a canonical identification scheme.

Definition 23 (Canonical Identification Scheme with Aborts (CID)). A canonical
identification scheme ID for a relation 𝑅 is a three rounds interactive protocol between a
prover 𝑃 and a verifier 𝑉 , as defined in Figure 17. The challenge is generated from 𝑓 (𝑤)
set as the distribution𝑈 (C) for some challenge set C. The prover holds a pair (𝑥, 𝑦) ∈ 𝑅
while the verifier only has 𝑥, where the pair (𝑥, 𝑦) was generated by a PPT algorithm Gen,
called an instance generator. The event “𝑧 =⊥” is called an abort, and its probability 𝛽 is
called the probability of aborting.

The canonical identification schemes considered in this work are such that given 𝑐
and 𝑧, there is only one 𝑤 such that 𝑉 accepts, which can be efficiently computed from 𝑐

and 𝑧.
We need the following flavor of zero knowledge, denoted perfect accepting honest

verifier zero-knowledge.

Definition 24 (Perfect Accepting Honest Verifier Zero-Knowledge). Let ID be a canonical
identification scheme. It satisfies paHVZK if there exists a PPT simulator Sim such that
the output distribution of (𝑤, 𝑐, 𝑧) resulting from the interaction ⟨𝑃(𝑥, 𝑦) ↔ 𝑉 (𝑥)⟩𝑈 (C)
conditioned on 𝑧 ≠ ⊥ and (𝑤′, 𝑐′, 𝑧′) generated by Sim(𝑥) for any (𝑥, 𝑦) generated
by Gen(1𝜆) are identical.

In the case of the HAETAE CID, the challenge 𝑐 can be sampled uniformly from the
challenge space C and passed over as input to the simulator Sim.

To avoid using the same commitment twice, we require the min-entropy of the
commitment to be high.
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KeyGen(1𝜆):
1: (𝑥, 𝑦) ← Gen(1𝜆)
2: (vk, sk) =

(𝑥, (𝑥, 𝑦))
3: return (vk, sk)

Sign(sk, 𝜇):
1: While 𝑧 = ⊥
2: (𝑤, 𝑐, 𝑧) ← ⟨𝑃(𝑥, 𝑦) ↔
𝑉 (𝑥)⟩𝐻 (·,𝜇)

3: return 𝜎 = (𝑐, 𝑧)

Verify(vk, 𝜇, 𝜎):
1: Parse 𝜎 = (𝑐, 𝑧)
2: Recover 𝑤 from 𝜎

3: return
𝑐 = 𝐻 (𝑤, 𝜇)

Figure 18: Fiat-Shamir with Aborts tranform FS[ID, 𝐻].

Definition 25 (Commitment Min-Entropy). For 𝛼 ≥ 0, we say that an identifi-
cation scheme ID with instance generator Gen has commitment min-entropy 𝛼 if
𝐻∞ [𝑤 | (𝑤, 𝑐, 𝑧) ← ⟨𝑃(𝑥, 𝑦) ↔ 𝑉 (𝑥)⟩𝑈 (C)] ≥ 𝛼, for all (𝑥, 𝑦) ← Gen(1𝜆).

Finally we need the notion of computational unique response to enable the strong
unforgeability property of the final signature scheme.

Definition 26 (Computational Unique Response). Let ID be a canonical identification
scheme with instance generator Gen. The advantage AdvCUR

ID (A) of an adversaryA against
the CUR property of ID is its probability of computing (𝑤, 𝑐, 𝑧, 𝑧′) such that 𝑉 (𝑥) accepts
both (𝑤, 𝑐, 𝑧) and (𝑤, 𝑐, 𝑧′) and 𝑧 ≠ 𝑧′ on input 𝑥 generated from (𝑥, 𝑦) ← Gen(1𝜆).

A.2 The Fiat-Shamir Transform
We now briefly recall how to turn a canonical identification scheme into a full-fledge
signature scheme. To do so, the signing scheme runs the interactive protocol and outputs
the transcript minus the commitment. The challenge is however generated by hashing the
message along with the commitment to prevent an adversary from tampering with it.

We recall the assumptions necessary to show the unforgeability of the resulting signature
in the following theorem. The following theorem works in the case of quantum adversaries
working in the QROM, but tighter statements can be obtained when restricting to classical
adversaries in the ROM.

Theorem 27 (Adapted from [3, Theorem 2]). Let ID be a canonical identification scheme
with 𝛼 commitment min-entropy and that satisfies paHVZK with probability of aborting 𝛽.
For any quantum adversary A against the UF-CMA security of FS[ID, 𝐻] in the QROM
making 𝑄𝑠 signature queries and 𝑄ℎ hash queries, there exists an adversary B against the
UF-NMA security of FS[ID, 𝐻] in the QROM such that:

AdvUF-CMA
FS[ID,𝐻] (A) ≤ AdvUF-NMA

FS[ID,𝐻] (B)+
2−𝛼/2+1𝑄𝑠

1 − 𝛽

√︄
𝑄ℎ + 1 + 𝑄𝑠

1 − 𝛽+2−𝛼/2+1(𝑄ℎ+1)

√︄
𝑄𝑠

1 − 𝛽 .

Furthermore, if A is an adversary against the sUF-CMA security, there exists an
adversary B′ against the CUR property of ID such that the previous bound holds by
adding AdvCUR

ID (B′) on the right-hand side.

The strong unforgeability statement comes from the fact that in the last game of their
proof, the reduction fails if and only if the forgery uses the same commitment (and thus
reprogrammed challenge) than the signature query. As this requires a different answer,
this corresponds to an attack against the computational unique response property of the
canonical identification scheme.
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B Additional Proofs

B.1 Useful Lemma
We will rely on the following claim.

Lemma 28. Let 𝑛 be the degree of R. Let 𝑚, 𝑁, 𝑟 > 0 and v ∈ R𝑚. Then the following
statements hold:

1. | (1/𝑁)R𝑚 ∩ BR,𝑚 (𝑟) | = |R𝑚 ∩ BR,𝑚 (𝑁𝑟) |,

2. |R𝑚 ∩ BR,𝑚 (𝑟, v) | = |R𝑚 ∩ BR,𝑚 (𝑟) |,

3. Vol(BR,𝑚 (𝑟 −
√
𝑚𝑛

2 )) ≤ |R
𝑚 ∩ BR,𝑚 (𝑟) | ≤ Vol(BR,𝑚 (𝑟 +

√
𝑚𝑛

2 )).
Proof. For the first statement, note that we only scaled (1/𝑁)R𝑚 andBR,𝑚 (𝑟) by a factor 𝑁 .
For the second statement, note that the translation x ↦→ x − v maps R𝑚 to R𝑚.

We now prove the third statement. For 𝑥 ∈ R𝑚, we define 𝑇x as the hypercube of R𝑚R
centered in x with side-length 1. Observe that the 𝑇x’s tile the whole space when x ranges
over R𝑚 (the way boundaries are handled does not matter for the proof). Also, each of
those tiles has volume 1. As any element in 𝑇x is at Euclidean distance at most

√
𝑚𝑛/2

from x, the following inclusions hold:

BR,𝑚
(
𝑟 −
√
𝑚𝑛

2

)
⊆

⋃
x∈R𝑚∩BR,𝑚 (𝑟)

𝑇x ⊆ BR,𝑚
(
𝑟 +
√
𝑚𝑛

2

)
.

Taking the volumes gives the result. □

B.2 Proof of Lemma 11
Proof. To ease the notation, let us use 𝐵 = 𝑟′. Let y ∈ BR,𝑚 (𝑁𝑟′+

√
𝑚𝑛/2) and set z = ⌊y⌉.

Note that z is sampled (before the rejection step) with probability

Vol(𝑇z ∩ BR,𝑚 (𝑁𝑟′ +
√
𝑚𝑛/2))

Vol(BR,𝑚 (𝑁𝑟′))
,

where 𝑇z is the hypercube of R𝑚R centered in z with side-length 1. By the triangle inequality,
this probability is equal to 1/Vol(BR,𝑚 (𝑁𝑟′ +

√
𝑚𝑛/2) when z ∈ BR,𝑚 (𝑁𝑟′). Hence the

distribution of the output is exactly𝑈 (R𝑚 ∩ BR,𝑚 (𝑁𝑟′)), as each element is sampled with
equal probability and as the algorithm almost surely terminates (its runtime follows a
geometric law of parameter the rejection probability).

It remains to consider the acceptance probability.∑
y∈R𝑚∩BR,𝑚 (𝑁𝑟 ′) Vol(𝑇y ∩ BR,𝑚 (𝑁𝑟′ +

√
𝑚𝑛/2))

Vol(BR,𝑚 (𝑁𝑟′ +
√
𝑚𝑛/2))

.

By the triangle inequality and Lemma 28, it is

|R𝑚 ∩ BR,𝑚 (𝑁𝑟′) |
Vol(BR,𝑚 (𝑁𝑟′ +

√
𝑚𝑛/2))

≥
(
𝑁𝑟′ −

√
𝑚𝑛/2

𝑁𝑟′ +
√
𝑚𝑛/2

)𝑚𝑛
.

Note that by our choice of 𝑁 , this is ≥ 1/𝑀0. □
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B.3 Proof of Lemma 12
Proof. Figure 6 is the bimodal rejection sampling algorithm applied to the source
distribution 𝑈 ((1/𝑁)R𝑚 ∩ BR,𝑚 (𝑟′)) and target distribution 𝑈 ((1/𝑁)R𝑚 ∩ BR,𝑚 (𝑟))
(see, e.g., [8]). It then suffices that the support of the bimodal shift of the source distribution
by v contains the support of the target distribution. It is implied by 𝑟′ ≥

√
𝑟2 + 𝑡2.

We now consider the number of expected iterations, i.e., the maximum ratio between
the two distributions. To guide the intuition, note that if we were to use continuous
distributions, the acceptance probability 1/𝑀′ would be bounded by 1/𝑀 . In our case, the
acceptance probability can be bounded as follows (using Lemma 28):

1
𝑀′

=
| (1/𝑁)R𝑚 ∩ BR,𝑚 (𝑟) |

2| (1/𝑁)R𝑚 ∩ BR,𝑚 (𝑟′) |
=
|R𝑚 ∩ BR,𝑚 (𝑁𝑟) |

2|R𝑚 ∩ BR,𝑚 (𝑁𝑟′) |

≥ Vol(BR,𝑚 (𝑁𝑟 −
√
𝑚𝑛/2))

2Vol(BR,𝑚 (𝑁𝑟′ +
√
𝑚𝑛/2))

=
1
2

(
𝑁𝑟 −

√
𝑚𝑛/2

𝑁𝑟′ +
√
𝑚𝑛/2

)𝑚𝑛
.

It now suffices to bound the latter term from below by 1/(𝑐𝑀) = 1/(2𝑐(𝑟′/𝑟)𝑚𝑛). This
inequality is equivalent to:

𝑐 ≥ 1
2
·
(

𝑟

𝑟 −
√
𝑚𝑛/(2𝑁)

)𝑚𝑛
·
(
𝑟′ +
√
𝑚𝑛/(2𝑁)
𝑟′

)𝑚𝑛
,

and to:
𝑁 ≥ 1

𝑐1/(𝑚𝑛) − 1
·
√
𝑚𝑛

2

(
𝑐1/(𝑚𝑛)

𝑟
+ 1
𝑟′

)
,

which allows to complete the proof. □

B.4 Proof of Lemma 15
Proof. By Lemma 13, there exists a unique representation

𝑟 = ⌊(𝑟 + 𝛼/2)/𝛼⌋ 𝛼 + (𝑟 mod± 𝛼).

By identifying HighBits(𝑟, 𝛼) and LowBits(𝑟, 𝛼) in the above equation, we obtain the first
result.

By definition of mod± 𝛼, we have the second range.
Finally, since 𝑟 ↦→ ⌊(𝑟 + 𝛼/2)/𝛼⌋ is a non-decreasing function, it is sufficient to show

that ⌊(2𝑞−1+𝛼/2)/𝛼⌋ ≤ ⌊(2𝑞 − 1)/𝛼⌋. We have (2𝑞−1+𝛼/2) ≤ ⌊(2𝑞−1)/𝛼⌋𝛼+𝛼−1
by assumption on 𝑞. Dividing by 𝛼 and taking the floor yields the result.

□

B.5 Proof of Lemma 17
Proof. Let 𝑟 ∈ [0, 2𝑞 − 1]. Let 𝑟0, 𝑟1, 𝑟′0, and 𝑟′1 defined as in Definition 16. If 𝑟′0 = 𝑟0
and 𝑟′1 = 𝑟1, the equality 𝑟′0 + 𝑟

′
1 · 𝛼h = 𝑟0 + 𝑟1 · 𝛼h mod 2𝑞 holds vacuously.
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If not, then 𝑟′0 = 𝑟0 − 2 and 𝑟′1 = 𝑟1 − 2(𝑞 − 1)/𝛼h and 𝑟′0 + 𝑟
′
1𝛼h = 𝑟0 + 𝑟1𝛼h − 2𝑞. By

Lemma 15, we get the first equality.
The second property stems from the second property in Lemma 15. The modifications

to 𝑟0 make 𝑟′0 lie in the range [−𝛼h/2 − 2, 𝛼h/2).
The last property stems from the third property in Lemma 15 and the fact that if 𝑟1 = 𝑚,

then we have 𝑟′1 = 0.
□

C Additional Implementation Specification

Algorithm 1 describes how to implement the unpacking of Â, and in Algorithm 2 we
demonstrate how to apply the CRT.

Algorithm 1 Unpacking routine for Â.
unpackA𝑑 (seedA, 𝜓)

1: if 𝑑 = 0 then
2: Âgen := expandA𝑑 (seedA)
3: b̂ := 𝜓
4: else
5: (agen, Âgen) := expandA𝑑 (seedA)
6: b̂ := 2 · NTT(agen − 𝜓 · 2𝑑) mod 𝑞
7: return Â ∈ R𝑘×ℓ𝑞 := (b̂ | 2 · Âgen) mod 𝑞

Algorithm 2 Mapping from (R𝑘𝑞 ,R𝑞) to R𝑘2𝑞
fromCRT(w, 𝑥)

1: parse w as vector of integers w of size 𝑘𝑛
2: parse 𝑥 as vector of integers 𝑥 of size 𝑛
3: for 𝑖 := 0 to 𝑛 − 1 do
4: if LSB(𝑥𝑖) = LSB(w𝑖) then ⊲ Implement in constant time.
5: w′𝑖 := w𝑖

6: else
7: w′𝑖 := w𝑖 + 𝑞
8: for 𝑗 := 1 to 𝑘 − 1 do
9: for 𝑖 := 0 to 𝑛 − 1 do

10: if LSB(w𝑛 𝑗+𝑖) = 0 then ⊲ Implement in constant time.
11: w′𝑛 𝑗+𝑖 := w𝑛 𝑗+𝑖
12: else
13: w′𝑛 𝑗+𝑖 := w𝑛 𝑗+𝑖 + 𝑞
14: arrange w′ to w′, an element in R𝑘2𝑞
15: return w′
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