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1 Introduction

AIMer is a signature scheme which is obtained from a zero-knowledge proof of
preimage knowledge for a certain one-way function. AIMer consists of two parts:
a non-interactive zero-knowledge proof of knowledge (NIZKPoK) system, and a
one-way function. The security of both parts solely depends on the security of the
underlying symmetric primitives.

The NIZKPoK system in AIMer can be viewed as a customized version of the
BN++ proof system [KZ22]. BN++ is a NIZKPoK system based on the MPC-in-
the-Head (MPCitH) paradigm [IKOS07], which efficiently proves large-field arith-
metic. The difference between our system and BN++ is given as follows.

• Our system integrates Commit and ExpandTape to a single hash function. It
reduces a significant amount of signing and verification time without loss of
security in the random oracle model.

• Hash functions and extendable-output functions used in our system are domain-
separated for stronger concrete security.

• The size of salt is halved.

• The hash value of the message is precomputed to efficiently handle a long
message.

• Our system requires a smaller amount of randomness to generate the master
seeds (seedk) for each repetition.

The one-way function of AIMer in version 1.0 was AIM [KHS+23], which is a
tweakable one-way function dedicated to the BN++ system. AIM was designed
to have strong security against algebraic attacks producing short signatures when
combined with BN++. The AIM function fully exploits the optimization techniques
of BN++ using repeated multipliers for checking multiplication triples and locally
computed output shares to reduce the overall signature size.

However, recent studies have identified certain algebraic vulnerabilities in AIM
[LMOM23, ZWY+23]. The most powerful attack among them is a fast exhaustive
search attack by Liu et al, which exploits the property that AIM allows a low-degree
system of equations in a moderate number of Boolean variables. They demon-
strated potential security degradation of up to 12 bits compared to the existing
analysis on the complexity of exhaustive search on AIM [KHSL24].

To mitigate such attacks, Kim et al. proposed a new symmetric primitive AIM2
[KHSL24]. AIM2 has a similar structure with AIM except with minor changes: it
employs the inverse Mersenne S-boxes, which are the inverse functions of Mersenne
S-boxes. The inverse Mersenne S-boxes with higher exponents make it harder to
establish a low-degree system of equations in a moderate number of Boolean vari-
ables. Second, a distinct constant is added to the input to each S-box, which makes
it hard to establish a system of equations using a common variable fed to all the
S-boxes. Overall, AIM2 provides stronger security against recent attacks on AIM,
at the cost of small performance overhead. In AIMer version 2.0, we mount AIM2
as its symmetric primitive.
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1.1 Overview of the Algorithm

The AIMer signature algorithm consists of key generation, signing, and verification
algorithms. To provide an intuitive understanding of the AIMer signature scheme,
we will briefly describe the three algorithms below. The detailed specification is
given in Section 4.

KEY GENERATION. The key generation is simply a computation of AIM2, which
proceeds as follows.

1. A plaintext pt and a tweak iv are sampled uniformly at random.

2. ct = AIM2(pt, iv) is computed.

3. The secret key is set to sk = (pt, iv, ct), and the corresponding public key is
defined as pk = (iv, ct).

SIGNING ALGORITHM. The signing algorithm is a virtual MPC simulation of AIM2.
The multiple parties involved in the MPC evaluation are not real participants, but
a simulation by the signer (MPCitH). As both signing and verification algorithms
are non-interactive, random challenges are computed by hash functions (via the
Fiat-Shamir transform). The signing algorithm proceeds as follows.

1. The signer prepares the MPC simulation; it generates seeds for each party,
and shares of the input and intermediate values appearing in the computa-
tion of AIM2 from each seed. The signer commits each seed.

2. The signer computes a multiplication-checking protocol from a challenge.

3. The signer opens all the views except one determined by another challenge.

VERIFICATION ALGORITHM. The verification algorithm is a recomputation of the
signing algorithm to check whether the MPC simulation has been faithfully ex-
ecuted or not. The verification algorithm mainly checks two steps: preparation
of the MPC simulation, and the multiplication-checking protocol. The verification
algorithm proceeds as follows.

1. The verifier recomputes shares of all the parties except the unopened one,
and computes the first challenge.

2. The verifier recomputes the multiplication-checking protocol, and computes
the second challenge.

3. The verifier checks whether the opened views of the MPC simulation are
consistent or not.
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1.2 Notation

Unless stated otherwise, all logarithms are to the base 2. For a positive integer n,
we denote the set of all bitstrings of bitlength n by {0, 1}n. We also denote the set
of all finite-length bitstrings by {0, 1}∗. For two vectors a and b over a finite field or
two bitstrings a and b, their concatenation is denoted by a ∥ b. For a nonnegative
integer n, we write [n] = {0, · · · , n − 1}. For a nonnegative integer n, (ai)i∈[n]
stands for a list (a0, a1, . . . , an−1). For a nonnegative integer n, iterator in a “For”
loop iterating [n] starts from 0 and increase to n − 1 by 1. We will write a ← b to
denote the assignment of b to a. For a set S, a→ S denotes that a is added to S as
an element, and a←$ S denotes that a is chosen uniformly at random from S.

In this document, additions are usually operated on a binary field, in which
case additions are exclusive-OR (XOR). Nevertheless, when we want to empha-
size that an addition is actually XOR, we denote the addition by ⊕. In the multi-
party computation setting, x(i) denotes the i-th party’s additive share of x, which
implies that

∑
i x

(i) = x. We summarize some notations of parameters and non-
conventional notations in Table 1.

In this paper, index of every vector or list starts from 0. When a vector is mul-
tiplied to a matrix, the vector is interpreted as a column vector even if there is
no explicit transpose notation (⊤). For a vector vec, the notation vec[n] is used to
denote the n-th element of vec. For a vector vec, vec[a : b] denotes the sub-vector
of b− a elements from vec[a] (inclusive) to vec[b] (exclusive). For a bitstring str,
similar to vectors, we use str[n] and str[a : b] to denote n-th bit of str and sub-
string from bit-position a (inclusive) to b (exclusive), respectively. Bitlength of a
bitstring a is deonted by |a|. For a bitstring a, we denote a≪ i (resp. a≫ i) logical
left (resp. right) shift operation by i, where the bitlength of the output bitstring
is |a| and shifted positions are filled with 0s. We write bitstrings in hexadecimal
format, with big-endian order. For example, we write

0x0603[0 : 7] = 1100 0000 0110 0000[0 : 7] = 0x03.

λ Security parameter
n Input/output bit-length of S-boxes in AIM2 (which is always same as λ)
ℓ Number of S-boxes in front of the linear layer in AIM2
τ Number of the parallel repetitions in NIZKPoK
N Number of the parties in NIZKPoK (which is always a power-of-two in ver. 2.0)

Table 1: The notation used in the document.

2 Background

2.1 Security Definitions

PRF SECURITY. Let F : K×X → Y be a keyed function from X to Y with key space
K. A (probabilistic) adversary A against the PRF security of F makes a certain
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number of queries F (k, x) where k ∈ K is chosen uniformly at random from the
key space and kept secret, and tries to distinguish F from a truly random function.
More formally, the advantage of A against the PRF security of F is defined as

Advprf
F (A) :=

∣∣Pr[AF (k,·) = 1]− Pr[Ag(·) = 1]
∣∣ ,

where g denotes a truly random function that has been chosen uniformly at ran-
dom from the set of all possible functions from X to Y.

ONE-WAYNESS. Given a function F : {0, 1}n → {0, 1}m and y ∈ {0, 1}m, the goal
of a (probabilistic) preimage-finding adversary A is to find x ∈ {0, 1}n such that
y = F (x). Formally, the advantage of A against the one-wayness of F is defined as

Advowf
F (A) := Pr [x← A(y) ∧ F (x) = y] (1)

where y = F (z) for a random z ∈ {0, 1}n. This notion of oneway-ness will be used
in the security proof of the AIMer signature scheme.

For the proof of the one-wayness of AIM2, we will use the information-theoretic
notion of everywhere preimage resistance given in [RS04] by assuming that AIM2
is based on public random permutations. We refer to Section 5.2 for the formal
definition of everywhere preimage resistance.

EUF-KO SECURITY. The existential unforgeability of a signature scheme Π under
key-only attacks (EUF-KO) ensures that no probabilistic adversary A is able to
compute a valid signature on any message m without having access to a signing
oracle. In this model, the forging advantage ofA against Π = (KeyGen, Sign,Verify)
is defined as

Adveuf-ko
Π (A) := Pr

[
Verify(pk,m, σ) = 1

∣∣∣∣ (pk, sk)← KeyGen(1λ)
(m,σ)← A(pk)

]
,

where λ is the security parameter.

EUF-CMA SECURITY. The existential unforgeability of a signature scheme Π un-
der chosen message attacks (EUF-CMA) ensures that no probabilistic adversary
A is able to compute a valid signature on any message that has not been signed
during the attack, despite having observed the signatures on a certain number
of chosen messages. More formally, the forging advantage of A against Π =
(KeyGen, Sign,Verify) is defined as

Adveuf-cma
Π (A) := Pr

[
Verify(pk,m, σ) = 1
∧m is not signed before.

∣∣∣∣ (pk, sk)← KeyGen(1λ)
(m,σ)← ASign(sk,·)(pk)

]
,

where λ is the security parameter, and ASign(sk,·) implies that A has access to the
signing oracle with private key sk.

2.2 MPC-in-the-Head Paradigm

The MPC-in-the-Head (MPCitH) paradigm, proposed by Ishai et al. [IKOS07], al-
lows one to construct a zero-knowledge proof (ZKP) system from a multi-party
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computation (MPC) protocol. Consider an MPC protocol where N parties collab-
orate to securely evaluate a function f on an input x with perfect correctness.
Suppose that the views of k parties leak no information on x. Then, one can build
a ZKP from the MPC protocol as follows.

1. The prover generates random secret shares x(0), . . . , x(N−1) such that x(0) +
· · ·+ x(N−1) = x, and assign them to N parties, say P0, . . . ,PN−1.

2. The prover simulates the MPC protocol “in her head” by simulating each Pi,
i = 0, . . . , N − 1.

3. The prover commits to each party’s view which includes its random tape, the
secret input share, and the communicated messages from and to the party.
She sends the commitments to the verifier.

4. The prover possibly gets random challenges for MPC simulation from the
verifier when needed, and conducts local computations on each party. She
may repeat this step several times.

5. The prover completes the MPC simulation and hands over requested output
shares of the MPC protocol to the verifier.

Note that the verifier interactively joins the above procedure to provide random
challenges to the prover. After that, the verifier selects k parties and asks the prover
to open their views. Once the views are received, the verifier checks

1. if the opened views are consistent, i.e., the messages sent from and to a
party match and the commitments are correctly evaluated from the resulting
views, and

2. if the output recovered from the output share is y.

Since only k views are opened, no information on x is leaked from the revealed
views. Also, since the verifier opens the random views, any cheating adversary’s
winning probability is upper bounded by (N − k)/N . We fix k = N − 1 throughout
this proposal.

The practicality of MPCitH is demonstrated by the ZKBoo scheme, the first
efficient MPCitH-based proof scheme proposed by Giacomelli et al. [GMO16].
One of the main applications of the MPCitH paradigm is to construct a post-
quantum signature. Picnic [CDG+17] is the first and the most famous signature
scheme based on the MPCitH paradigm; it combines an MPC-friendly block cipher
LowMC [ARS+15] and an MPCitH proof system called ZKB++, which is an opti-
mized variant of ZKBoo. Katz et al. [KKW18] proposed a new proof system KKW by
further improving the efficiency of ZKB++ with pre-processing, and updated Pic-
nic accordingly. The updated version of Picnic was the only MPCitH-based scheme
that advanced to the third round of the NIST PQC competition. BBQ [dSGMOS19]
and Banquet [BSGK+21] are AES-based signature schemes, where BBQ employs
the KKW proof system and Banquet improves BBQ by injecting shares for interme-
diate states.
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To fully exploit efficient multiplication over a large field in the Banquet proof
system, Dobraunig et al. [DKR+22] proposed MPCitH-friendly ciphers LS-AES and
Rain. They are substitution-permutation ciphers based on the inverse S-box over
a large field. This design strategy increases the efficiency of the resulting MPCitH-
based signature scheme, while the number of rounds should be carefully deter-
mined by comprehensive analysis on any possible algebraic attack due to their
simple algebraic structures. Kales and Zaverucha [KZ22] proposed several opti-
mization techniques to further improve the efficiency of the Baum and Nof’s proof
system [BN20], and their variant is called BN++.

2.3 BN++ Proof System

In this section, we briefly review the BN++ proof system [KZ22], one of the state-
of-the-art MPCitH zero-knowledge protocols. The BN++ protocol will be com-
bined with our symmetric primitive AIM2 to construct the AIMer signature scheme.
At a high level, BN++ is a variant of the BN protocol [BN20] with several opti-
mization techniques applied to reduce the signature size.

PROTOCOL OVERVIEW. The BN++ protocol follows the MPCitH paradigm [IKOS07].
In order to check C multiplication triples (xj, yj, zj = xj ·yj)C−1

j=0 over a finite field F
in the multiparty computation setting with N parties, helping triples ((aj, bj)C−1

j=0 , c)

are required, where aj ∈ F, bj = yj, and c =
∑C−1

j=0 aj · bj. Each party holds
secret shares of the multiplication triples (xj, yj, zj)

C−1
j=0 and the helping triples

((aj, bj)
C−1
j=0 , c). Then the protocol proceeds as follows.

• A prover is given random challenges ϵ0, · · · , ϵC−1 ∈ F.

• For i ∈ [N ], the i-th party locally sets α(i)
0 , · · · , α(i)

C−1 where α
(i)
j = ϵj ·x(i)

j +a
(i)
j .

• The parties open α0, · · · , αC−1 by broadcasting their shares.

• For i ∈ [N ], the i-th party locally sets

v(i) =
C−1∑
j=0

ϵj · z(i)j −
C−1∑
j=0

αj · b(i)j + c(i).

• The parties open v by broadcasting their shares and output Accept if v = 0.

The probability that there exist incorrect triples and the parties output Accept in
a single run of the above steps is upper bounded by 1/|F|.
SIGNATURE SIZE. By applying the Fiat-Shamir transform [DFM20], one can obtain
a signature scheme from the BN++ proof system. In this signature scheme, the
signature size is given as

6λ+ τ · (3λ+ λ · ⌈log2(N)⌉+M(C)),

where λ is the security parameter, τ is the number of parallel repetitions of the
multiplication checking protocol for reducing the soundness error, C is the number
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of multiplication gates in the underlying symmetric primitive, andM(C) = (2C +
1) · log2(|F|). In particular, M(C) has been defined so from the observation that
sharing the secret share offsets for (zj)

C−1
j=0 and c, and opening shares for (αj)

C−1
j=0

occurs for each repetition, using C, 1, and C elements of F, respectively. For more
details, we refer to [KZ22].

OPTIMIZATION TECHNIQUES. If multiplication triples use an identical multiplier in
common, for example, given (x0, y, z0) and (x1, y, z1), then the corresponding α
values can be batched to reduce the signature size. Instead of computing α0 =
ϵ0 ·x0+a0 and α1 = ϵ1 ·x1+a1, α = ϵ0 ·x0+ ϵ1 ·x1+a is computed, and v is defined
as

v = ϵ0 · z0 + ϵ1 · z1 − α · y + c,

where c = a · y. This technique is called repeated multiplier technique. Our sym-
metric primitive design allows us to take full advantage of this technique to reduce
the number of α values in each repetition of the protocol.

If the output of the multiplication zi can be locally generated from each share,
then the secret share offset is not necessarily included in the signature.

2.4 Fiat-Shamir Transform

The Fiat-Shamir transform [FS87] is a technique for taking an interactive proof
of knowledge and creating a non-interactive counterpart, or a digital signature
based on it. The core of the technique is to replace challenges from the verifier by
random oracle access which is realized by hashing of the transcript obtained so
far.

The Fiat-Shamir transform was originally targeted at a Σ-protocol, a three-
round interactive proof of knowledge. Let R be a relation such that, for a given x,
it is difficult to find an w such that R(x,w) = 1. Given public R and x, the value
w such that R(x,w) = 1 becomes the secret information that a prover P wants to
prove the knowledge of to the verifier V. Then, a Σ-protocol proceeds as follows.

1. Commitment: a random number r is generated, committed to by the prover,
and sent to the verifier.

P
com−−−→ V, where com = Commit(r).

2. Challenge: on receiving the commitment, the verifier sends a random chal-
lenge ch to the prover.

P
ch←−− V.

3. Response: the prover creates an appropriate response corresponding to the
challenge.

P
res−−→ V, where res = Response(w, r, ch).

Then, the verifier checks the validity of the response together with com and ch.
This Σ-protocol is transformed into a non-interactive version, by replacing the
challenge sent by the verifier by a random oracle access, using the previous tran-
script (x, com). Denoting the random oracle asRO, the challenge step of the above
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procedure is replaced by ch ← RO(x, com). This approach can be extended to
multi-round proofs. The security loss is known to be linear in the number of at-
tacker’s queries to the random oracle [AFK22].

2.5 Gröbner Basis Attack

The Gröbner basis attack aims to solve systems of equations by determining their
Gröbner basis through a structured approach. The process unfolds in several stages:

1. Calculation of a Gröbner basis using the graded reverse lexicographic (grevlex)
order.

2. Conversion of the basis into lexicographic (lex) order by reordering terms.

3. Identification and finding a solution of a univariate polynomial equation
within the basis.

4. Substitution of the solution back into the basis, with iterative applications of
the previous step for further solutions.

A system’s Gröbner basis in lex order always contains a univariate polynomial
when the system has a finite number of solutions within its algebraic closure.
When a single variable of the polynomial is replaced by a concrete solution, the
Gröbner basis still remains a Gröbner basis of the “reduced” system, allowing one
to obtain a univariate polynomial again for the next variable. For a comprehensive
understanding of Gröbner basis calculation, the reader is directed to [SS21].

The resilience of a cryptographic system against the Gröbner basis attack pri-
marily depends on the complexity of the first step, which is computing the Gröbner
basis in grevlex order, typically using the F4/F5 algorithm or its variants [Fau99,
Fau02]. This complexity can be estimated through the system’s degree of regular-
ity [BFS04]. Consider a system of m homogeneous equations {fi(x0, . . . , xn−1) =
0}m−1

i=0 in n Boolean variables. Let di denote the degree of fi for i = 0, 1, . . . ,m− 1.
Assuming that almost all polynomial sequences are semi-regular [Frö85], then the
degree of regularity can be estimated for overdetermined systems (m > n) by the
smallest degree of the terms with non-positive coefficients appearing in the Hilbert
series as follows.

(1 + z)n∏m−1
i=0 (1 + zdi)

.

For nonhomogeneous equations, the degree of regularity comes from the following
Hilbert series obtained by homogenization [BFSS13].

(1 + z)n

(1− z)
∏m−1

i=0 (1 + zdi)
. (2)

Given the degree of regularity dreg, the complexity is(
n

dreg

)ω
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ignoring the constant factor, where ω is the linear algebra constant (2 ≤ ω ≤ 3).
Combined with the hybrid approach of guessing some variables, the time complex-
ity of the hybrid Gröbner basis attack is given by

min
k

2k ·
(

n− k

dreg(n, k)

)ω

(3)

where dreg(n, k) denotes the minimal degree from the Hilbert series after adjusting
for guessed variables. This formula with ω = 2 provides a conservative estimate of
the complexity, and we use this formula to estimate the complexity in this paper.

3 Symmetric Primitive AIM2

3.1 Specification

AIM2 is designed to be a “tweakable” one-way function so that it offers multi-
target one-wayness. Given input/output size n and an (ℓ + 1)-tuple of exponents
(e0, . . . , eℓ−1, e∗) ∈ Zℓ+1, AIM2 : F2n × {0, 1}n → F2n is defined by

AIM2(pt, iv) = Mer[e∗] ◦ Lin[iv] ◦Mer[e0, . . . , eℓ−1]
−1 ◦ AddConst(pt)⊕ pt

where each function will be described below. See Figure 1 for the pictorial descrip-
tion of AIM2 with ℓ = 3.

Mer[e0]
−1

Mer[e1]
−1

Mer[e2]
−1

Linpt

γ0

γ1

γ2

Mer[e∗] ct

XOF[iv]

Figure 1: The AIM2-V one-way function with ℓ = 3. The input pt (in red) is the
secret key of the signature scheme, and (iv, ct) (in blue) is the corresponding public
key.

NON-LINEAR COMPONENTS. AIM2 uses two types of S-boxes: Mersenne S-box
Mer[e], and its inverse Mer[e]−1. These two S-boxes are defined by exponentiation
over a large field as follows. For x ∈ F2n,

Mer[e](x) = x2e−1,

Mer[e]−1(x) = xē where ē = (2e − 1)−1 (mod 2n − 1)
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for some e. The exponents e in AIM2 are selected for Mer[e]−1 to have 3n quadratic
equations. We remark that the exponents e are chosen such that gcd(e, n) = 1, and
hence the inverse exponent ē is well-defined. As an extension, Mer[e0, . . . , eℓ−1]

−1 :
Fℓ
2n → Fℓ

2n is defined by

Mer[e0, . . . , eℓ−1]
−1(x0, . . . , xℓ−1) = Mer[e0]

−1(x0)∥ . . . ∥Mer[eℓ−1]
−1(xℓ−1).

LINEAR COMPONENTS. AIM2 includes three types of linear components: constant
addition, an affine layer, and feed-forward. For fixed constants γ0, . . . , γℓ−1, AddConst :
F2n → Fℓ

2n is defined by

AddConst(x) = (x+ γ0)∥ . . . ∥(x+ γℓ−1)

where the constants are defined in Table 2.

AIM2-I
γ0 0x243f6a88 85a308d3 13198a2e 03707344

γ1 0xa4093822 299f31d0 082efa98 ec4e6c89

AIM2-III
γ0 0x452821e6 38d01377 be5466cf 34e90c6c c0ac29b7 c97c50dd

γ1 0x3f84d5b5 b5470917 9216d5d9 8979fb1b d1310ba6 98dfb5ac

AIM2-V
γ0 0x2ffd72db d01adfb7 b8e1afed 6a267e96 ba7c9045 f12c7f99 24a19947 b3916cf7

γ1 0x0801f2e2 858efc16 636920d8 71574e69 a458fea3 f4933d7e 0d95748f 728eb658

γ2 0x718bcd58 82154aee 7b54a41d c25a59b5 9c30d539 2af26013 c5d1b023 286085f0

Table 2: Constants γ0, . . . , γℓ−1 in AddConst are written in hexadecimal. These con-
stants are taken from the numbers below the decimal point of the π ratio.

The affine layer in AIM2 consists of multiplication by an n× ℓn random binary
matrix Aiv and addition by a random constant biv ∈ Fn

2 . The matrix

Aiv =
[
Aiv,0

∣∣ . . . ∣∣Aiv,ℓ−1

]
∈ (Fn×n

2 )ℓ

is composed of ℓ random invertible matrices Aiv,i. The matrix Aiv and the vector biv
are generated by an extendable-output function (XOF) with the initial vector iv.
Each matrix Aiv,i can be equivalently represented by a linearized polynomial Liv,i

on F2n. For x = (x0, . . . , xℓ−1) ∈ (F2n)
ℓ,

Lin[iv](x) =
∑

0≤i≤ℓ−1

Liv,i(xi)⊕ biv.

By abuse of notation, we will write Ax to denote
∑

0≤i≤ℓ−1 Liv,i(xi). Feed-forward
operation, which is addition by the input itself, makes the entire function non-
invertible.

RECOMMENDED PARAMETERS. Table 3 describes the recommended sets of parame-
ters for λ ∈ {128, 192, 256}. The irreducible polynomials for extension fields F2128,
F2192, and F2256 are as follows.

• F2128 : f(X) = X128 +X7 +X2 +X + 1,

• F2192 : f(X) = X192 +X7 +X2 +X + 1,

• F2256 : f(X) = X256 +X10 +X5 +X2 + 1.
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Scheme λ n ℓ e0 e1 e2 e∗

AIM2-I 128 128 2 49 91 - 3
AIM2-III 192 192 2 17 47 - 5
AIM2-V 256 256 3 11 141 7 3

Table 3: Recommended sets of parameters of AIM2.

3.2 Design Rationale

CHOICE OF FIELD. When a symmetric primitive is built upon field operations, the
field is typically binary since bitwise operations are cheap in most of modern archi-
tectures. However, when the multiplicative complexity of the primitive becomes a
more important metric for efficiency, it is hard to generally specify which type of
field has merits with respect to security and efficiency.

Focusing on a primitive for MPCitH-style zero-knowledge protocols, a primitive
over a large field generally requires a small number of multiplications, leading to
shorter signatures. However, any primitive operating on a large field of a large
prime characteristic might permit algebraic attacks since the number of variables
and the algebraic degree will be significantly limited for efficiency reasons. On the
other hand, binary extension fields enjoy both advantages from small and large
fields. In particular, matrix multiplication is represented by a polynomial of high
algebraic degree without increasing the proof size.

ALGEBRAICALLY SOUND S-BOXES. In an MPCitH-style zero-knowledge protocol, the
proof size of a circuit is usually proportional to the number of nonlinear operations
in the circuit. In order to minimize the number of multiplications, one might intro-
duce intermediate variables for some wires of the circuit. For example, the inverse
S-box (S(x) = x−1) has high (bitwise) algebraic degree n−1, while it can be simply
represented by a quadratic equation xy = 1 by letting the output from the S-box
be a new variable y. When an S-box is represented by a quadratic equation of its
input and output, we will say it is implicitly quadratic. In particular, we consider
implicitly quadratic S-boxes which are represented by a single multiplication over
F2n. This feature makes the proof size short and mitigates algebraic attacks at the
same time.

The inverse S-box is one of the well-studied implicitly quadratic S-boxes. The
inverse S-box has been widely adopted to symmetric ciphers due to its nice cryp-
tographic properties [DR02, AIK+01, SSA+07]. It is invertible, is of high-degree,
and has good enough differential uniformity and nonlinearity. Recently, it has been
used in symmetric primitives for advanced cryptographic protocols such as multi-
party computation and zero-knowledge proof [GKR+21, GLR+20, DKR+22].

Meanwhile, the inverse S-box has one minor weakness; a single evaluation of
the n-bit inverse S-box as a form of xy = 1 produces 5n − 1 linearly independent
quadratic equations over F2 [CDG06]. The complexity of an algebraic attack is
typically bounded (with heuristics) by the degree and the number of equations,
and the number of variables. In particular, an algebraic attack is more efficient
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with a larger number of equations, while this aspect has not been fully considered
in the design of recent symmetric ciphers based on algebraic S-boxes. When the
number of rounds is small, this issue might be critical to the overall security of the
cipher. For more details, see Section 6.3.2.

With the above observation, we tried to find an invertible S-box of high-degree
which is moderately resistant to differential/linear cryptanalysis as well as implic-
itly quadratic, and producing only a small number of quadratic equations. Since our
attack model does not allow multiple queries to a single instance of AIM2, we al-
low a relaxed condition on the DC/LC resistance, not being necessarily maximal.
As a family of S-boxes that beautifully fit all the conditions, we choose a family of
Mersenne S-boxes; they are exponentiation by Mersenne numbers 2e− 1 such that
gcd(n, e) = 1, are invertible, are of high-degree, need only one multiplication for
its proof, produce only 3n Boolean quadratic equations with its input and output,
and provide moderate DC/LC resistance. Furthermore, when the implicit equation
xy = x2e of a Mersenne S-box is computed in the BN++ proof system, it is not re-
quired to broadcast the output share since the output of multiplication x2e can be
locally computed from the share of x. AIM2 uses Mersenne S-boxes in the forward
and backward directions. The inverse Mersenne S-boxes enjoy the same algebraic
properties as Mersenne S-boxes, while they result in a harder polynomial system
as a whole.

REPETITIVE STRUCTURE. The efficiency of the BN++ proof system partially comes
from the optimization technique using repeated multipliers. When a multiplier is
repeated in multiple equations to prove, the proof can be done in a batched way,
reducing the overall signature size. In order to maximize the advantage of re-
peated multipliers, we put S-boxes at the first round in parallel and an additional
S-box at the second round with feed-forward to its output to make the implicit
equations from the S-boxes share the same multiplier pt (with constant differ-
ences).

AFFINE LAYER GENERATION. The main advantage of using binary affine layers in
large S-box-based constructions is to increase the algebraic degree of equations
over the large field. Multiplication by a random n× n binary matrix can be repre-
sented as

n−1∑
i=0

aix
2i = a0x+ a1x

21 + a2x
22 + · · ·+ an−1x

2n−1

where a0, a1, . . . , an−1 ∈ F2n. Similarly, our design uses a random affine map from
Fℓn
2 to Fn

2 . In order to mitigate multi-target attacks (in the multi-user setting), the
affine map is uniquely generated for each user; each user’s iv is fed to an XOF,
generating the corresponding linear layer.
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4 Specification of the AIMer Signature Scheme

4.1 Basic Algorithms

Before providing the detailed specifications of the AIMer signature scheme, we in-
troduce the foundational algorithms that underpin the signature scheme. In the
forthcoming sections, we provide detailed algorithmic descriptions of the conver-
sion processes for inputs and outputs, the exact functionalities of hash functions,
and various auxiliary functions that play crucial roles in our signature scheme.

4.1.1 Field Representation

Many variables in AIMer are considered to be elements of F2n, thus they need to
be converted to bitstrings to be used as inputs/outputs of hash functions, and to
be used as inputs/outputs of the linear layer of AIM2. The finite field is defined
as F2n = F2[X]/f(X) where f(X) is the irreducible polynomial defined in Sec-
tion 3.1. The conversions from an element in F2n to a vector or a bitstring are
defined as follows.

{0, 1}n ←→ F2n ←→ Fn
2

a0∥ . . . ∥an−1 ↔
∑

i∈[n] ai ·X i ↔ (a0, . . . , an−1)
⊤

For example, a bitstring 0xA0 0 . . . 0︸ ︷︷ ︸
28

01 represented in hexadecimal form can be

converted into X127+X125+1 in F2128. In our specification, we sometimes refer to
elements of F2n as elements of Fn

2 or {0, 1}n depending on the context.

4.1.2 Hash Functions

All of hash functions are instantiated using SHAKE128 if λ = 128, and SHAKE256
if λ ∈ {192, 256} [NIS15]. For a bitstring x and positive integer d, we denote

SHAKEλ(x, d) =

{
SHAKE128(x, d) if λ = 128

SHAKE256(x, d) if λ = 192, 256

where SHAKE128(x, d) and SHAKE256(x, d) means the digest of x using SHAKE128
and SHAKE256 with d-bit length, respectively. To distinguish between domains, we
hash the input with a single-byte prefix, which is the same as the number i in the
subscript of Hi. For example, H0 uses 0 as the domain separation prefix. Since
there are field elements, integers, and tuples in the inputs and outputs of hash
functions, we apply the following rules to them.

• For the field elements in inputs and outputs of hash functions, we use con-
version between field elements and n-bit strings as we described in 4.1.1.

• For integers in the inputs of hash functions, we use the standard byte repre-
sentation as they always fit in a byte (i.e. from 0 to 255).
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• For tuples used as input/output of hash functions, we convert each element
to/from a string and concatenate/split them in ascending order.

For example, H4: {0, 1}λ × [τ ] × [N ] × {0, 1}λ → ({0, 1}λ)2 is a domain-separated
hash function with prefix 4. Then,

H4 (salt, 1, 255, node) = (tape[: λ], tape[λ :])

where
tape = SHAKEλ(0x04 ∥ salt ∥ 0x01 ∥ 0xff ∥ node, 2λ).

The list of specific functions used in AIMer is as follows.

• H0: {0, 1}n×F2n×{0, 1}∗ → {0, 1}2λ, hash function for message pre-hashing,
domain separation prefix is different among the parameter sets. The prefix
is defined as follows.

– AIMer-128f: 0x00

– AIMer-128s: 0x10

– AIMer-192f: 0x20

– AIMer-192s: 0x30

– AIMer-256f: 0x40

– AIMer-256s: 0x50

• H1: {0, 1}2λ × {0, 1}λ × (({0, 1}2λ)N × F2n × (F2n)
ℓ × F2n)

τ → {0, 1}2λ, hash
function for generating challenge hash h1, domain separation prefix is 1.

• H2: {0, 1}2λ × {0, 1}λ × ((F2n)
N × (F2n)

N)τ → {0, 1}2λ, hash function for
generating challenge hash h2, domain separation prefix is 2.

• H3: {0, 1}2λ×F2n×{0, 1}λ → {0, 1}λ×({0, 1}λ)τ , hash function for generating
salt and root seeds, domain separation prefix is 3.

• H4: {0, 1}λ × [τ ] × [N ] × {0, 1}λ → ({0, 1}λ)2, hash function for expanding
seed trees, domain separation prefix is 4.

• H5: {0, 1}λ × [τ ] × [N ] × {0, 1}λ → {0, 1}2λ × F2n × (F2n)
ℓ × F2n × F2n, hash

function for committing and expanding seeds, domain separation prefix is 5.

• ExpandH1: {0, 1}2λ → ((F2n)
ℓ+1)τ , hash function for expanding challenge

hash h1, no domain separation prefix.

• ExpandH2: {0, 1}2λ → [N ]τ , hash function for expanding challenge hash h2,
no domain separation prefix. Note that this function is the only one that use
integers as outputs. Following is the detailed definition.

ExpandH2(h2) = (̄i0, . . . , īτ−1)

where
īk = SHAKEλ(h2, 8τ)[8k : 8k + 8] mod N

for k ∈ [τ ].

Note that ExpandH1 and ExpandH2 are not required to be domain-separated since
they just expand the output of other hash functions.
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4.1.3 GGM Tree Evaluation

In AIMer, GGM Tree [GGM86] is used to generate and publicize a set of seeds from
a master seed while a punctured seed is unknown to the verifier. The GGM tree
uses H4 as an inner pseudorandom generator. There are three following algorithms
related with evaluation of the GGM tree.

• ExpandTree: {0, 1}λ× [τ ]×{0, 1}λ → ({0, 1}λ)2N−1, tree expanding algorithm
with the salt, repetition index, and root seed.

• RevealAllBut: ({0, 1}λ)2N−1× [N ]→ ({0, 1}λ)logN , algorithm for reveal all but
one seeds.

• ReconstructTree: {0, 1}λ × ({0, 1}λ)logN × [τ ] × [N ] → ({0, 1}λ)N , recompute
all but one seeds. The seed of challenged party is filled with dummy bits.

The detailed specifications are in Figure 2.

4.1.4 AIM2 Functions

AIM2 is the symmetric primitive which is zero-knowledge proved in AIMer. AIM2
is computed in a plain manner in the AIM2 algorithm for key generation, and
computed in a secret-shared manner in the AIM2 MPC for signing and verification.
Generally, matrix multiplication can be performed more efficiently if the matrix is
provided in its transposed form. Consequently, the AIM2 GenerateLinear algorithm
in AIMer is deliberately designed to directly produce matrices in their transposed
form.

• AIM2 GenerateLinear: {0, 1}λ → (Fn×n
2 )ℓ × Fn×1

2 , generate the linear compo-
nents in AIM2.

• AIM2: {0, 1}n × {0, 1}λ → {0, 1}n, the AIM2 one-way function.

• AIM2 MPC: (Fn×n
2 )ℓ×Fn

2×F2n×(F2n)
ℓ → (F2n×F2n)

ℓ+1, a function to generate
multiplication inputs/outputs for MPC simulation of AIM2.

• AIM2 SboxOutputs: Fn
2 → (F2n)

ℓ, a function to generate outputs for first-
round S-boxes.

The detailed specifications are in Figure 3.

4.2 Signature Scheme

The AIMer signature scheme Π = (AIMer keygen,AIMer sign,AIMer verify) consists
of key generation, signing, and verification algorithms. Each algorithm calls the
corresponding internal algorithm (AIMer keygen internal, AIMer sign internal, AIMer verify internal).
The internal algorithms are deterministic, and all the probabilistic steps are han-
dled by external algorithms. The internal algorithms have been isolated for testing
purposes. For the normal use of signature scheme, the internal functions should
not be used without external functions.
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ExpandTree(salt, k, seed)

1 Initialize tree: nodes← (0λ)2N−1.
2 Set the root seed: nodes[0]← seed.
3 for i = 0, . . . , N − 2 do
4 nodes[2i+ 1], nodes[2i+ 2]← H4(salt, k, i, nodes[i])

5 Output nodes.

RevealAllBut(nodes, ī)

1 Initialize path: path← (0λ)logN .
2 j ← N + ī.
3 for d = 0, . . . , logN − 1 do
4 Copy the sibling node: path[d]← nodes[(j ⊕ 1)− 1]
5 Move to parent node: j ← ⌊(j − 1)/2⌋
6 Output path.

ReconstructTree(salt, path, k, ī)

1 Initialize tree: nodes← (0λ)2N−1.
2 j ← N + ī.
3 for d = 0, . . . , logN − 1 do
4 sib← (j ⊕ 1)− 1
5 nodes[sib]← path[d]

// Expand parital tree

6 for u = 0, . . . , d− 1 do
7 for v = 0, . . . , 2u − 1 do
8 w ← 2u · sib+ v
9 nodes[2w + 1], nodes[2w + 2]← H4(salt, k, w, nodes[w])

10 Move to parent: j ← ⌊(j − 1)/2⌋
11 Output nodes[N − 1 : 2N − 1].

Figure 2: Algorithms for GGM tree evaluation.
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AIM2 GenerateLinear(iv)

1 Initialize linear components:
2 for j ∈ [ℓ], Lj ← 0n×n.
3 for j ∈ [ℓ], Uj ← 0n×n.
4 b← 0n

5 tape← SHAKEλ(iv, ℓn
2 + n).

6 for j ∈ [ℓ] do
7 for r ∈ [n] do
8 for c ∈ [n] do
9 if c < r then

10 Set Lj[c][r]← tape[jn2 + rn+ c].
11 else if c = r then
12 Set Lj[c][r]← 1.
13 Set Uj[c][r]← 1.
14 else
15 Set Uj[c][r]← tape[jn2 + rn+ c].

16 Set Aj ← Lj · Uj

17 for r ∈ [n], b[r]← tape[ℓn2 + r].
18 Output ((Aj)j∈[ℓ], b).

AIM2(pt, iv)

1 Sample linear components: ((Aiv,j)j∈[ℓ], biv)← GenerateLinear(iv).
2 t∗ ← biv
3 for j ∈ [ℓ] do
4 tj ← Mer[ej]

−1(pt+ γj).
5 t∗ ← t∗ + Aiv,j · tj.
6 ct← Mer[e∗](t∗) + pt
7 Output ct.

AIM2 MPC((Aj)j∈[ℓ], b, ct, (t
(·)
j )j∈[ℓ]) - Run the MPC simulation

1 for j ∈ [ℓ] do
2 Set x(·)

j ← t
(·)
j ;

3 Set z(·)j ← (x
(·)
j )2

ej
+ γj · x(·)

j .

4 Set x(·)
ℓ ←

∑
j∈[ℓ]Aj · x(·)

j + b.

5 Set z(·)ℓ ← (x
(·)
ℓ )2

e∗
+ ct · x(·)

ℓ .
6 Output (x(·)

j , z
(·)
j )j∈[ℓ+1].

AIM2 SboxOutputs(pt)

1 for j ∈ [ℓ] do
2 tj ← Mer[ej]

−1(pt+ γj).

3 Output (tj)j∈[ℓ].

Figure 3: Algorithms used for AIM2 evaluation.19



• AIMer keygen(1λ)→ (sk, pk) : Sample uniform random pt←$ F2n, and iv←$

{0, 1}n. Compute ct ← AIM2(pt, iv) as described in Section 3, and set the
public key pk ← (iv, ct) ∈ {0, 1}n × F2n and the private key sk ← (pt, iv, ct) ∈
F2n × {0, 1}n × F2n.

• AIMer sign(sk,M, ctx) → σ : Take as input a private key sk = (pt, iv, ct),
a message m ∈ {0, 1}∗, and a context string ctx, and compute the zero-
knowledge proof π for the AIM2 one-way function circuit using m as a part
of the input to the challenge hash as described in Algorithm 10. Output the
corresponding signature σ ← π where |σ| = (5 + (log2N + ℓ+ 5)τ)λ

• AIMer verify(pk,M, σ, ctx) → Accept or Reject : Take as input a public key
pk = (iv, ct), a message m, a signature σ, and a context string ctx, and con-
duct the verification of NIZKPoK for the AIM2 one-way function circuit as
described in Algorithm 12. Output either Accept or Reject according to the
verification result of the ZKP.

The context string should not longer than 255 bytes, and bit-length of it should be
divisible by 8. If nothing is inputted in the context string, then it is the empty string
by default. Each algorithm will be described in detail in the following sections.

4.2.1 Key Generation

The key generation algorithm AIMer keygen(1λ) initiated by generating two ran-
dom λ-bit sequences, pt and iv. The secret key pt is encrypted under the AIM2
function using iv as the initialization vector, resulting in the ciphertext ct. Conse-
quently, the algorithm sets the secret key sk as a tuple comprising pt, iv, and ct,
and constructs the public key pk as a tuple comprising iv and ct. The final output
of the algorithm is the key pair (sk, pk) of the AIMer signature scheme.

Algorithm 8: AIMer keygen(1λ) - AIMer signature scheme, key generation
algorithm
1 Sample pt←$ {0, 1}λ.
2 Sample iv←$ {0, 1}λ.
3 if pt = null or iv = null then
4 Abort.

5 return AIMer keygen internal(pt, iv)

Algorithm 9: AIMer keygen internal(pt, iv) - AIMer signature scheme, inter-
nal key generation algorithm
1 Set ct← AIM2(pt, iv).
2 Set sk ← (pt, iv, ct), pk ← (iv, ct).
3 Output (sk, pk).
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4.2.2 Signature Generation

The signing algorithm consists of five phases as commented in Algorithm 10.

PHASE 1: COMMITTING TO THE SEEDS AND THE EXECUTION VIEWS OF THE PARTIES.
It first pre-hash the message, and computes an instance of AIM2 using the initial
vector. Next, together with sampling per-signature randomness, it generates the
salt and the root seeds. After that, for each parallel execution, it does the following.

1. It compute the parties’ seeds as leaves of a binary tree from the root seed of
each repetition.

2. It commits to each party’s seed and expands random tape.

3. It prepares for the multi-party computation among the N parties using the
parties’ seeds, by generating secret shares of the multiplication triples for
each S-box.

PHASE 2: CHALLENGING THE CHECKING PROTOCOL. It then computes the first chal-
lenge hash and expands it to the first challenge for the multiplication checking
protocol in BN++.

PHASE 3: COMMITTING TO THE SIMULATION OF THE CHECKING PROTOCOL. It com-
putes and outputs the broadcast values for the multiplication checking protocol of
BN++.

PHASE 4: CHALLENGING THE VIEWS OF THE MPC PROTOCOL. It computes the sec-
ond challenge hash and expands it to the second challenge for choosing unopened
views.

PHASE 5: OPENING THE VIEWS OF THE MPC AND CHECKING PROTOCOLS. It collects
the seeds to open the views of N − 1 parties for each repetition, and outputs a
signature.

Algorithm 10: AIMer sign(sk,M, ctx) - AIMer signature scheme, signing
algorithm.
1 if |ctx| > 2040 then
2 Abort.

3 Sample randomness: ρ←$ {0, 1}λ (ρ← 0λ for deterministic signature)
4 if ρ = null then
5 Abort.

6 M ′ ← (|ctx|/8)∥ctx∥M
// Byte-length of ctx is represented in a byte.

7 return AIMer sign internal(sk,M ′, ρ)

4.2.3 Signature Verification

The verification algorithm takes as input (pk = (iv, ct),m, σ), and outputs Accept
or Reject. We refer to Algorithm 12 for the detailed description.
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Algorithm 11: AIMer sign internal(sk = (pt, iv, ct),M ′, ρ) - AIMer signature
scheme, internal signing algorithm.
// Phase 1: Committing to the seeds and the execution views.

1 Compute the hash of the message: µ← H0(iv, ct,M
′)

2 Compute the first ℓ S-boxes’ outputs: (tj)j∈[ℓ] ← AIM2 SboxOutputs(pt)
3 Derive the AIM2 linear components (Aiv,j)j∈[ℓ] ∈ (Fn×n

2 )ℓ and biv ∈ Fn
2 :

((Aiv,j)j∈[ℓ], biv)← AIM2 GenerateLinear(iv)
4 Compute salt and root seeds: (salt, (seedk)k∈[τ ])← H3(µ, pt, ρ).
5 for each repetition k ∈ [τ ] do
6 Compute parties’ seeds:
7 nodesk ← ExpandTree(salt, k, seedk);
8 seed

(0)
k , . . . , seed

(N−1)
k ← nodesk[N − 1 : 2N − 1].

9 for each party i ∈ [N ] do
10 Commit to the seed and expand random tape:

(com
(i)
k , pt

(i)
k , (t

(i)
k,j)j∈[ℓ], a

(i)
k , c

(i)
k )← H5(salt, k, i, seed

(i)
k ).

11 Compute offsets and adjust last shares:
12 ∆ptk ← pt−

∑
i pt

(i)
k , pt

(N−1)
k ← pt

(N−1)
k +∆ptk;

13 for j ∈ [ℓ], ∆tk,j ← tj −
∑

i t
(i)
k,j, t

(N−1)
k,j ← t

(N−1)
k,j +∆tk,j;

14 ∆ck ←
∑

i a
(i)
k · pt−

∑
i c

(i)
k , c(N−1)

k ← c
(N−1)
k +∆ck.

15 for each party i ∈ [N ] do
16 Set b← biv if i = N − 1 or set b← 0n otherwise.
17 Run the MPC simulation and prepare the multiplication check

inputs: (x(i)
k,j, z

(i)
k,j)j∈[ℓ+1] ← AIM2 MPC((Aiv,j)j∈[ℓ], b, ct, (t

(i)
k,j)j∈[ℓ])

18 Set σ1 ← (salt, ((com
(i)
k )i∈[N ],∆ptk, (∆tk,j)j∈[ℓ],∆ck)k∈[τ ]).

// Phase 2: Challenging the multiplication checking protocol.

19 Compute challenge hash: h1 ← H1(µ, σ1).
20 Expand hash: ((ϵk,j)j∈[ℓ+1])k∈[τ ] ← ExpandH1(h1) where ϵk,j ∈ F2n.

// Phase 3: Committing to the multiplication check results.

21 for each repetition k ∈ [τ ] do
22 Simulate the multiplication checking protocol as in Section 2.3:
23 for i ∈ [N ], α(i)

k ← a
(i)
k +

∑
j∈[ℓ+1] x

(i)
k,j · ϵk,j.

24 Set αk =
∑

i∈[N ] α
(i)
k .

25 for i ∈ [N ], v(i)k ← c
(i)
k +

∑
j∈[ℓ+1] z

(i)
k,j · ϵk,j − αk · pt(i)k .

26 Set σ2 ← (salt, ((α
(i)
k )i∈[N ], (v

(i)
k )i∈[N ])k∈[τ ]).

// Phase 4: Challenging the views of the MPC protocol.

27 Compute challenge hash: h2 ← H2(h1, σ2).
28 Expand hash: (̄ik)k∈[τ ] ← ExpandH2(h2) where īk ∈ [N ].

// Phase 5: Opening the views of the MPC and checking

protocols.

29 for each repetition k do
30 pathk ← RevealAllBut(nodesk, īk).

31 Output σ ←
(
salt, h1, h2, (pathk, com

(̄ik)
k ,∆ptk, (∆tk,j)j∈[ℓ],∆ck, α

(̄ik)
k )k∈[τ ]

)
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First, given a public key, it computes the hash value of the message and an in-
stance of AIM2. From the signature, it expands hash values to obtain the challenges
in Phase 2 and 4 of the signing algorithm.

RECOMPUTATION OF PHASE 1 AND 2. It does the following for each parallel repe-
tition:

• Recomputes random seeds for disclosed parties, and re-generate commit-
ments and tapes.

• From the commitments and tapes, recomputes σ1 and the first challenge
hash.

RECOMPUTATION OF PHASE 3 AND 4. For each parallel repetition, it simulates
the multiplication checking protocol for each disclosed party. It recomputes the
broadcast values for each disclosed party. Also, it computes the remaining share of
the broadcast value v

(̄ik)
k . Finally, it recomputes σ2 and the challenge hash.

COMPARISON OF THE HASH VALUES. It compares the hash values in the input sig-
nature and those obtained from the recomputation. It outputs Accept only if both
hash values agree, and outputs Reject otherwise.

Algorithm 12: AIMer verify(pk = (iv, ct),M, σ, ctx) - AIMer signature
scheme, verification algorithm.
1 if |ctx| > 2040 then
2 Abort.

3 M ′ ← (|ctx|/8)∥ctx∥M
// Byte-length of ctx is represented in a byte.

4 return AIMer verify internal(pk,M ′, σ)

4.3 Recommended Parameters

For security levels L1, L3, and L5, recommended sets of parameters are given in
Table 4. For each value of security parameter λ, the corresponding sets of parame-
ters are expected to provide λ-bit security against all classical attacks, and λ/2-bit
security against quantum attacks.

5 Formal Security Analysis

5.1 EUF-CMA Security of AIMer in the Random Oracle Model

In this section, we prove the EUF-CMA (existential unforgeability under adaptive
chosen-message attacks [GMR88]) security of AIMer. To prove the EUF-CMA secu-
rity, we first show that AIMer is secure against key-only attack (EUF-KO) in The-
orem 1, where an adversary is given the public key and no access to the signing
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Algorithm 13: AIMer verify internal(pk = (iv, ct),M ′, σ) - AIMer signature
scheme, internal verification algorithm.

1 Parse σ as
(
salt, h1, h2,

(
pathk, com

(̄ik)
k ,∆ptk, (∆tk,j)j∈[ℓ],∆ck, α

(̄ik)
k

)
k∈[τ ]

)
.

2 Compute the hash value of the message: µ← H0(iv, ct,M
′)

3 Derive the AIM2 linear components (Aiv,j)j∈[ℓ] ∈ (Fn×n
2 )ℓ and biv ∈ Fn

2 :
((Aiv,j)j∈[ℓ], biv)← AIM2 GenerateLinear(iv)

4 Expand hashes:
((ϵk,j)j∈[ℓ+1])k∈[τ ] ← ExpandH1(h1) and (̄ik)k∈[τ ] ← ExpandH2(h2).

5 for each repetition k ∈ [τ ] do
6 Compute seeds except challenged one:

(seed
(0)
k , . . . , seed

(N−1)
k )← ReconstructTree(salt, pathk, k, īk)

7 for each party i ∈ [N ] \ {̄ik} do
8 Recompute (com

(i)
k , pt

(i)
k , (t

(i)
k,j)j∈[ℓ], a

(i)
k , c

(i)
k )← H5(salt, k, i, seed

(i)
k ).

9 if i = N − 1 then
10 Adjust last share:
11 pt

(i)
k ← pt

(i)
k +∆ptk;

12 for j ∈ [ℓ], t(i)k,j ← t
(i)
k,j +∆tk,j;

13 c
(i)
k ← c

(i)
k +∆ck

14 Set b← biv if i = N − 1 or set b← 0n otherwise.
15 Run the MPC simulation and prepare the multiplication check

inputs: (x(i)
k,j, z

(i)
k,j)j∈[ℓ+1] ← AIM2 MPC((Aiv,j)j∈[ℓ], b, ct, (t

(i)
k,j)j∈[ℓ])

16 Simulate the multiplication checking protocol as in Section 2.3:
17 for i ∈ [N ] \ {̄ik}, α(i)

k ← a
(i)
k +

∑
j∈[ℓ+1] x

(i)
k,j · ϵk,j.

18 Set αk =
∑

i∈[N ] α
(i)
k .

19 for i ∈ [N ] \ {̄ik}, v(i)k ← c
(i)
k +

∑
j∈[ℓ+1] z

(i)
k,j · ϵk,j − αk · pt(i)k .

20 Set v(̄ik)k = 0−
∑

i∈[N ]\{̄ik} v
(i)
k .

21 Set σ1 ←
(
salt,

(
(com

(i)
k )i∈[N ],∆ptk, (∆tk,j)j∈[ℓ],∆ck

)
k∈[τ ]

)
.

22 Set h′
1 ← H1(µ, σ1).

23 Set σ2 ←
(
salt, ((α

(i)
k , v

(i)
k )i∈[N ])k∈[τ ]

)
24 Set h′

2 = H2(h
′
1, σ2).

25 Output Accept if h1 = h′
1 and h2 = h′

2.
26 Otherwise, output Reject.
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Security Parameters λ n ℓ e1 e2 e3 e∗ Hash N τ

L1
AIMer-128f 128 128 2 49 91 - 3 SHAKE128 16 33
AIMer-128s 128 128 2 49 91 - 3 SHAKE128 256 17

L3
AIMer-192f 192 192 2 17 47 - 5 SHAKE256 16 49
AIMer-192s 192 192 2 17 47 - 5 SHAKE256 256 25

L5
AIMer-256f 256 256 3 11 141 7 3 SHAKE256 16 65
AIMer-256s 256 256 3 11 141 7 3 SHAKE256 256 33

Table 4: The recommended parameters for AIMer.

oracle. Then, we show that AIMer is EUF-CMA secure by proving that the signing
can be simulated without using the secret key in Theorem 2. In our security proof,
we followed the same arguments as the security proof of BN++ in [KZ22].

Theorem 1 (EUF-KO Security of AIMer). Assume that H0, H1, H2, H4, H5, ExpandH1,
and ExpandH2 be modeled as random oracles, and let (N, τ, λ) be parameters of the
AIMer signature scheme. Let A be a probabilistic polynomial-time (PPT) adversary
against the EUF-KO security of AIMer that makes a total of Q random oracle queries.
There exists a PPT adversary B such that

Adveuf-ko
AIMer(A) ≤

(τN + 1)Q2

22λ
+ Pr[X + Y = τ ] +Advowf

AIM2(B),

where Pr[X + Y = τ ] is as described in the proof.

Proof. We build an algorithm B that retrieves a pre-image for the one-way function
AIM2 using the EUF-KO adversary A as a subroutine. Suppose that all the queries
to H1, H2 and H5 are listed in Q1, Q2 and Q5, respectively.

Algorithm B takes the AIM2 one-way function value (iv, ct) as an input, and
forwards it to A as an AIMer public key for the EUF-KO game. B manages a set Bad
to keep track of all the answers from the three random oracles and two tables Tsh
and Tin to record the values derived from A’s RO queries as follows:

• Tsh to store secret shares of the parties, and

• Tin to store inputs to the MPC protocol.

We also program the random oracles for A as follows.

• H1 : When A commits to seeds and sends the offsets for the preimage pt
which is the secret key and the multiplication triples, B check the query list
Q5 to see if the commitments were output by its simulation of H5. If B finds
matching results for all i’s in some repetition k, then it can recover pt. See
Algorithm 14.

• H2 : See Algorithm 15.

• H5 : When A queries random oracle for H5, B records the query to match
the commitments and expanded random tape with its corresponding seeds.
See Algorithm 16.
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• H0, H4, ExpandH1 and ExpandH2 are not programmed.

After A terminates, B checks whether there is ptk ∈ Tin satisfying AIM2(iv, ptk) =
ct. If B finds a match ptk, B outputs it as a pre-image for the AIM2, otherwise B
outputs ⊥.

Given the algorithm of B as above, the probability that A wins is bounded as
below.

Pr[A wins] =Pr[A wins ∧ B aborts] + Pr[A wins ∧ B outputs ⊥]
+ Pr[A wins ∧ B outputs pt]
≤Pr[B aborts] + Pr[A wins | B outputs ⊥] + Pr[B outputs pt] (4)

We define Q1, Q2 and Q5 as the number of queries made by A to random oracles
H1, H2 and H5, respectively. Then we can bound the probability that B aborts (The
first term on the RHS of (4)) as follows.

Pr[B aborts] = (#times an r is sampled) · Pr[B aborts at that sample]

≤ (Q1 +Q2 +Q5) ·
max |Bad|

22λ

= (Q1 +Q2 +Q5) ·
(τN + 1)Q1 + 2Q2 +Q5

22λ

≤ (τN + 1)(Q1 +Q2 +Q5)
2

22λ
≤ (τN + 1)Q2

22λ
. (5)

We now analyze Pr[A wins | B outputs ⊥] (the second term in the RHS of (4)),
which means that pt corresponding to (iv, ct) is not found. We parse it into two
cases, which correspond to cheating in the first and second rounds, respectively.

CHEATING IN THE FIRST ROUND. Let q1 ∈ Q1 be a query to H1, and h1 = ((ϵk,j)j∈[ℓ+1])k∈[τ ]
be its corresponding answer. We collect the set of indices k ∈ [τ ] representing
“good executions” such that Tin[q1, k] is not empty and vk = 0, say G1(q1, h1). For
k ∈ G1(q1, h1), the challenges (ϵk,j)j∈[ℓ+1] were sampled so that the multiplication
check protocol presented in the Section 2.3 is passed in this repetition. According
to Lemma 1, if the secret shared inputs contain an incorrect multiplication triple,
since h1 is sampled uniformly at random, this happens with probability at most
1/2λ.

Lemma 1. If the secret-shared input (xj, y, zj)j∈[C] contains an incorrect multiplica-
tion triple, or if the shares of ((aj, y)j∈[C], c) form an incorrect dot product, then the
parties output Accept in the subprotocol with probability at most 1/2λ.
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Algorithm 14: H1(q1 = σ1):

1 Parse σ1 as
(
salt, ((com

(i)
k )i∈[N ],∆ptk,∆ck, (∆tk,j)j∈[ℓ])k∈[τ ]

)
.

2 for k ∈ [τ ], i ∈ [N ] do
3 com

(i)
k → Bad.

// If the committed seed is known for some k and i, then B
records the shares of the secret key and the views of the

parties, derived from that seed and the offsets in σ1.

4 for k ∈ [τ ], i ∈ [N ] do
5 if ∃seed(i)k : ((salt, k, i, seed

(i)
k ), com

(i)
k , pt

(i)
k , a

(i)
k , c

(i)
k , (t

(i)
k,j)j∈[ℓ]) ∈ Q5 then

6 if i = N − 1 then
7 pt

(i)
k ← pt

(i)
k +∆ptk, c

(i)
k ← c

(i)
k +∆ck and (t

(i)
k,j ← t

(i)
k,j +∆tk,j)j∈[ℓ]

8 (pt
(i)
k , c

(i)
k , (t

(i)
k,j)j∈[ℓ])→ Tsh[q1, k, i]

// If the shares of the various elements are known for every

party in that repetition, B records the resulting secret

key, multiplication inputs and S-box outputs.

9 for each k : ∀i, Tsh[q1, k, i] ̸= ∅ do
10 ptk ←

∑
i pt

(i)
k , ck ←

∑
i c

(i)
k , ak ←

∑
i a

(i)
k , (tk,j ←

∑
i t

(i)
k,j)j∈[ℓ].

11 for j ∈ [ℓ] do
12 Set xk,j ← tk,j and zk,j ← (xk,j)

2ej + γj · xk,j.

13 for j = ℓ do
14 Set xk,j ←

∑
j∈[ℓ]Aiv,j · xk,j + biv and zk,j ← (xk,j)

2e∗ + ct · xk,j.

15 ptk → Tin[q1, k].
16 r ←$ {0, 1}2λ.
17 if r ∈ Bad then
18 abort.

19 r → Bad.
20 (q1, r)→ Q1.

// Compute the multiplication check protocol values.

21 (ϵk,j)j∈[ℓ+1] ← ExpandH1(r).
22 for each k : Tin[q1, k] ̸= ∅ do
23 αk = ak +

∑
j∈[ℓ+1] ϵj · xj + ak.

24 vk = ck +
∑

j∈[ℓ+1] ϵj · zk,j − αk · pt.
25 Return r.
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Algorithm 15: H2(q2 = (h1, σ2)):
1 h1 → Bad.
2 r ←$ {0, 1}2λ.
3 if r ∈ Bad then
4 abort.

5 r → Bad.
6 (q2, r)→ Q2.
7 Return r.

Algorithm 16: H5(q5 = (salt, k, i, seed)):
1 r ←$ {0, 1}2λ.
2 if r ∈ Bad then
3 abort.

4 r → Bad.

5

(
pt

(i)
k , a

(i)
k , c

(i)
k , (t

(i)
k,j)j∈[ℓ]

)
←$ F2n × F2n × F2n × (F2n)

ℓ

6

(
qc, r, pt

(i)
k , a

(i)
k , c

(i)
k , (t

(i)
k,j)j∈[ℓ]

)
→ Qc.

7 Return
(
r, pt

(i)
k , a

(i)
k , c

(i)
k , (t

(i)
k,j)j∈[ℓ]

)
.

Proof. Let ∆zj = zj − xj · y and ∆c = −
∑

j∈[C] aj · y + c. Then,

v =
∑
j∈[C]

ϵj · zj − α · y + c

=
∑
j∈[C]

ϵj · zj −
∑
j∈[C]

ϵj · xj · y −
∑
j∈[C]

aj · y + c

=
∑
j∈[C]

ϵj · (zj − xj · y)−
∑
j∈[C]

aj · y + c

=
∑
j∈[C]

ϵj ·∆zj +∆c.

Define a multivariate polynomial

Q(X0, . . . , XC−1) = X0 ·∆z0 + · · ·+XC−1 ·∆zC−1 +∆c

over F2n and note that v = 0 if and only if Q(ϵ0, . . . , ϵC−1) = 0. In the case of a
cheating prover, Q is nonzero, and by the multivariate version of the Schwartz-
Zippel lemma, the probability that Q(ϵ0, . . . , ϵC−1) = 0 is at most 1/2λ, since Q has
total degree 1 and (ϵ0, . . . , ϵC−1) is chosen uniformly at random.

Given B outputs ⊥, the number of elements #G1(q1, h1)|⊥ ∼ Xq1 where Xq1 =
B(τ, p1), where B(τ, p1) is the binomial distribution with τ events, each with suc-
cess probability p1 = 1/2λ. We select the query-response pair (qbest1 , hbest1) such
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that #G1(q1, h1) is the maximum. Then, the following holds.

#G1(qbest1 , hbest1)|⊥ ∼ X = max
q1∈Q1

{Xq1}.

CHEATING IN THE SECOND ROUND. Let q2 = (h1, σ2) be a query to H2. Note that q2
can only be used in the winning EUF-KO game when the corresponding (q1, h1) ∈
Q1 exists. For the bad repetition k ∈ [τ ]\G1(q1, h1), either Tin[q1, k] is empty (which
means verification fails so that A loses) or vk ̸= 0 but the verification passes.
Hence, it should be the case that one of the N parties cheated. Since h2 = (̄ik)k∈[τ ] ∈
[N ]τ is distributed uniformly at random, the probability that one of the N parties
has cheated for all bad executions k is(

1

N

)τ−#G1(q1,h1)

≤
(

1

N

)τ−#G1(qbest1 ,hbest1
)

.

To sum up, we can analyze the probability that A wins conditioning on B
outputting ⊥ is

Pr[A wins | B outputs ⊥] ≤ Pr[X + Y = τ ], (6)

where X is as before, and Y = maxq2∈Q2{Yq2} where Yq2 variables are indepen-
dently and identically distributed as B(τ −X, 1/N).

Finally, combining (4), (5) and (6) all together, we obtain the following.

Pr[A wins] ≤ (τN + 1) ·Q2

22λ
+ Pr[X + Y = τ ] + Pr[B outputs pt],

where X and Y are defined as above. Setting AIM2 as a secure OWF, we achieve
(1) as desired.

Theorem 2 (EUF-CMA Security of AIMer). Assume that H0, H1, H2, H4, H5, ExpandH1,
and ExpandH2 are modeled as random oracles and that the (N, τ, λ) parameters of
AIMer are appropriately chosen. For a PPT adversaryA against the EUF-CMA security
of AIMer with total Qsig signing oracle queries and Q random oracle queries, there
exist a PPT adversary B against the EUF-KO security of AIMer (with same amount of
queries to random oracles) and a PPT adversary C against the PRF security of H3

1

such that

Adveuf-cma
AIMer (A) ≤ Qsig ·Advprf

H3
(C) + 2(τ + 1) logN · (Qsig +Q)2

22λ

+Adveuf-ko
AIMer(B).

Proof. Let A be an EUF-CMA adversary against AIMer for given (iv, ct). Let G0 be
the original EUF-CMA game. Let Osig be the signing oracle, and Qsig be the number
of different signing queries during the game by A, Qi for i = 0, 1, 2, 4, 5 be the

1H3 itself is not a PRF, but it is used as a PRF with key prepending. We use this notation for
convenience.
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number of queries made to Hi by A where Q5 includes queries to H5 made during
signing queries.

We begin to prove the security of the deterministic version of AIMer (ρ ← 0n),
and prove that of the probabilistic version later. Without loss of generality, we
assume that all messages in signing queries are distinct.

G1: This game acts same as G0 except that it aborts if there exists two different
queries on H0 with same outputs. As output length of H0 is 2λ, we have

Pr[G1 aborts] ≤ (Qsig +Q0)
2

22λ
.

G2: Osig replaces salt ∈ {0, 1}λ and root seeds (seedk)k∈[τ ] ∈ ({0, 1}λ)τ by ran-
domly sampled values, instead of computing H3(pt, µ, ρ). As µ are always
distinct for each query, the difference between this game and the previous
one reduces to the PRF security of H3 with secret key pt. Therefore, there
exists a PPT adversary C against the PRF security of H3 such that

|Pr[A wins G1]− Pr[A wins G2]| ≤ Qsig ·Advprf
H3
(C).

G3: Osig samples (nodes1[2j+1], nodes1[2
j+2]) in ExpandTree uniformly at random

instead of computing H4(salt, 0, 2
j−1, nodes[2j−1]) and programs the random

oracle H4 to output the sampled value for the corresponding query, for j ∈
[log2N ] in step by step. The simulation is aborted if the queries to H4 have
been made previously, for any j. As salt and nodes[2j−1] are random, this
game is indistinguishable with the previous game unless the simulation is
aborted, and the probability of abort is

Pr[G3 aborts] ≤ log2N ·Qsig(Qsig +Q4)

22λ
.

G4: Osig samples
(
com

(0)
0 , pt

(0)
0 , (t

(0)
0,j)j∈[ℓ], c

(0)
0

)
at random instead of computing

H5(salt, 0, 0, seed
(0)
0 ), and programs the random oracle H5 to output the same

value for the respective query. The simulation is aborted if the queries to
H5 have been made previously. As salt ∈ {0, 1}λ and seed

(0)
0 ∈ {0, 1}λ are

random, this game is indistinguishable with the previous game unless the
simulation is aborted, and the probability of abort is

Pr[G4 aborts] ≤ Qsig(Qsig +Q5)

22λ
.

G5: Osig samples h1 ∈ {0, 1}2λ at random instead of computing

H1(µ, salt, ((com
(i)
k )i∈[N ],∆ptk,∆ck, (∆tk,j)j∈[ℓ])k∈[τ ])

and program the random oracle H1 to output h1 for the respective query. The
first challenge (ϵk,j)k∈[τ ],j∈[ℓ+1] is derived by expanding h1. The simulation is
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aborted if the queries to H1 have been made previously. As com(0)
0 ∈ {0, 1}2λ

is random, this game is indistinguishable with the previous game unless the
simulation is aborted, and the probability of abort is

Pr[G5 aborts] ≤ Qsig(Qsig +Q1)

22λ
.

G6: Osig samples h2 ∈ {0, 1}2λ at random instead of computing

H2(h1, salt, ((α
(i)
k )i∈[N ], (v

(i)
k )i∈[N ])k∈[τ ])

and program the random oracle H2 to output h2 for the respective query.
The unopened parties (̄ik)k∈[τ ] are derived by expanding h2. The simulation
is aborted if the queries to H2 have been made previously. As h1 ∈ {0, 1}2λ
is random, this game is indistinguishable with the previous game unless the
simulation is aborted, and the probability of abort is

Pr[G6 aborts] ≤ Qsig(Qsig +Q2)

22λ
.

G7: Osig replaces the seed of the unopened parties seed(̄ik)k in the binary tree by a
random element for each k ∈ [τ ]. If ī1 = 0, it does not need to replace seed

(0)
0

with a random element again. Similarly to G3, it is indistinguishable from
the previous game with the advantage bounded by

|Pr[A wins G6]− Pr[A wins G7]| ≤
τ log2N ·Qsig(Qsig +Q4)

22λ
.

G8: Osig replaces the outputs of H5(salt, k, īk, seed
(̄ik)
k ) by randomly sampled ele-

ments for each k, and programs the random oracle H5 to output the same
values for the respective queries. Also, Osig sets v

(̄ik)
k ← 0 −

∑
i̸=īk

v
(i)
k for

each k ∈ [τ ]. Osig aborts if the replaced commitment value collides with that
in H5(x) where x is queried by A. Since (salt, seed

(̄ik)
k ) is a random string

of 2λ bits, this game is indistinguishable with the previous game unless the
simulation is aborted, and the probability of abort is

Pr[G8 aborts] ≤ τQsig(Qsig +Q5)

22λ
.

Note that for k ∈ [τ ] such that īk ̸= N − 1, α(̄ik)
k is also random and indepen-

dent to pt.

G9: Osig replaces
(∆ptk,∆ck, (∆tk,j)j∈[ℓ])k∈[τ ]

by random elements instead of computing them using pt and S-box outputs.
As

(
com

(̄ik)
k , pt

(̄ik)
k , (t

(̄ik)
k,j )j∈[ℓ], c

(̄ik)
k

)
k∈[τ ]

is random, the distribution of these vari-

ables does not change.
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Note that now for all k ∈ [τ ], (α(̄ik)
k )k∈[τ ] is random and independent of pt.

If the multiplication triple is wrong, then v
(̄ik)
k ← −

∑
i̸=īk

v
(i)
k is different

from an honest value derived from legitimate calculation. However (̄ik) is
unopened and the multiplication check is still passed. Since the signature
oracle in G8 does not depend on the secret key pt, and it implies that G8 can
be reduced to the EUF-KO security. Therefore, there exists a PPT adversary B
on EUF-KO security against AIMer such that

Pr[A wins G9] ≤ Adveuf-ko
AIMer(B).

All in all, we have

Adveuf-cma
AIMer (A) ≤ (Qsig +Q0)

2

22λ
+Qsig ·Advprf

H3
(A)

+ (τ + 1) logN · Qsig(Qsig +Q4)

22λ
+

(τ + 1)Qsig(Qsig +Q5)

22λ

+
Qsig(Qsig +Q1)

22λ
+

Qsig(Qsig +Q2)

22λ
+Adveuf-ko

AIMer(A)

≤ Qsig ·Advprf
H3
(C) + 2(τ + 1) logN · (Qsig +Q)2

22λ

+Adveuf-ko
AIMer(B)

provided that logN ≥ 4 and Q0 + Q1 + Q2 + Q4 + Q5 ≤ Q. The EUF-CMA advan-
tage is negligible in λ assuming that AIM2 is a secure one-way function and that
parameters (N, τ, λ) are appropriately chosen.

For the non-deterministic version of A, all games are defined in a manner al-
most identical to the deterministic version, with the exception of handling two
queries to Osig that involve the same messages and ρ values. If (m, ρ) are identical
in two queries, the outputs must also be identical; thus, we avoid random sampling
and use already programmed outputs for the random oracles in such cases. Conse-
quently, the differences between the adjacent games remain unchanged from the
deterministic version, leading to the same bounds on the advantage of A.

5.2 Information-Theoretic Security of AIM2 in the Random Per-
mutation Model

In this section, we consider the one-wayness of AIM2. More precisely, we will prove
the everywhere preimage resistance [RS04] of AIM2 when the underlying S-boxes
are modeled as public random permutations and iv is (implicitly) fixed.2 On the
other hand, we do not claim that the algebraic S-boxes of AIM2 behave like ran-
dom permutations. The point of the provable security of AIM2 is that one cannot
break the one-wayness of AIM2 without exploiting any particular properties of the
underlying S-boxes.

2The sum of two public random permutations is indifferentiable from a public random func-
tion up to 2

2n
3 queries [GBJ+23], implying the preimage security of AIM2 up to the same query

complexity, while we prove here its preimage security up to 2n queries.
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For simplicity, we will assume that ℓ = 2. The security of AIM2 with ℓ > 2 is
similarly proved. In the public permutation model and in the single-user setting,
AIM2 is defined as

AIM2(pt) = S2(A0 · S0(pt)⊕ A1 · S1(pt)⊕ b)⊕ pt

for pt ∈ {0, 1}n, where S0, S1, S2 are independent public random permutations,3

and A0 and A1 are fixed n×n invertible matrices, and b is a fixed n×1 vector over
F2.

In the preimage resistance experiment, a computationally unbounded adver-
sary A with oracle access to Si, i = 0, 1, 2, selects and announces a point ct ∈
{0, 1}n before making queries to the underlying permutations. After making q for-
ward and backward queries in total,4 A obtains a query history

Q = {(ij, xj, yj)}q−1
j=0

such that Sij(xj) = yj and A’s j-th query is either Sij(xj) = yj or S−1
ij

(yj) = xj for
j = 0, . . . q−1. We say that A succeeds in finding a preimage of ct if its query history
Q contains three queries S0(x0) = y0, S1(x1) = y1 and S2(x2) = y2 such that

x0 = x1,

x2 = A0 · y0 ⊕ A1 · y1 ⊕ b,

ct = y2 ⊕ x0.

In this case, we say that A wins the preimage-finding game, breaking the one-
wayness of AIM2. Assuming that A is information-theoretic, we can prove that A’s
winning probability, denoted Advepre

AIM2(A), is upper bounded as follows.

Advepre
AIM2(A) ≤

2q

2n − q
. (7)

PROOF OF (7). Since A is information-theoretic, we can assume that A is deter-
ministic. Furthermore, we assume that A does not make any redundant query.
More precisely, A never makes a query that will result in a triple (i, x, y) which is
already present in the query history.

Our security proof also uses the notion of “free” queries. Formally, these can be
modeled as queries which the adversary is “forced” to query (under certain con-
ditions), but for which the adversary is not charged: they do not count towards
the maximum of q queries which the adversary is allowed. However, these queries
become part of the adversary’s query history, just like other queries. In particular,
the adversary is not allowed, later, to remake these queries “on its own” (due to
the assumption that the adversary never makes a query which it already owns).
Precisely, we will modify A so that whenever A makes a (forward or backward)
query to S0 (resp. S1) obtaining S0(x) = y (resp. S1(x) = y), A makes an addi-
tional forward query to S1 (resp. S0) with x for free. This additional query will not
degrade A’s preimage-finding advantage since A is free to ignore it.

3We ignore constant addition to the S-box input or regard it as a part of the S-box.
4We assume that A evaluates AIM2 only by making oracle queries to the underlying permuta-

tions.
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An evaluation AIM2(pt) = ct consists of three S-box queries. Among the three
S-box queries, the lastly asked one is called the preimage-finding query. We distin-
guish two cases.

Case 1. The preimage-finding query is made to either S0 or S1. Since A con-
secutively obtains a pair of queries of the form S0(x) = y0 and S1(x) = y1,
any preimage-finding query to either S0 or S1 should be forward. If it is
S0(x) (without loss of generality), then there should be queries S1(x) = y for
some y and S2(z) = x⊕ ct for some z that have already been made by A. In
order for S0(x) to be the preimage-finding query, it should be the case that

S2(A0 · S0(x)⊕ A1 · S1(x)⊕ b) = x⊕ ct

or equivalently,
S0(x) = A−1

0 · (z ⊕ b⊕ A1 · y)
which happens with probability at most 1

2n−q
. Therefore, the probability of

this case is upper bounded by q
2n−q

.

Case 2. The preimage-finding query is made to S2. In order to address this case,
we use the notion of a wish list, which was first introduced in [AFK+11].
Namely, whenever A makes a pair of queries S0(x) = y0 and S1(x) = y1, the
evaluation

S2 : A0 · y0 ⊕ A1 · y1 ⊕ b 7→ x⊕ ct

is included in the wish listW. In order for an S2-query to complete an eval-
uation AIM2(pt) = ct for any pt, at least one “wish” in W should be made
come true. Each evaluation in W is obtained with probability at most 1

2n−q
,

and |W| ≤ q. Therefore, the probability of this case is upper bounded by
q

2n−q
.

Overall, we can conclude that

Advepre
AIM2(A) ≤

2q

2n − q
.

ONE-WAYNESS IN THE MULTI-USER SETTING. In the multi-user setting with u users,
A is given u different target images, where the adversarial goal is to invert any
of the target images. In this setting, the adversarial preimage finding advantage is
upper bounded by

2uq

2n − q
. (8)

The proof of (8) follows the same line of argument as the single-user security
proof. The difference is that the probability that each query to either S0 or S1

becomes the preimage-finding one is upper bounded by uq
2n−q

and the size of the
wish list (in the second case) is upper bounded by uq.

We note that the above bound does not mean that AIM2 provides only the
birthday-bound security in the multi-user setting. The straightforward birthday-
bound attack is mitigated since AIM2 is based on a distinct linear layer for every
user.
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6 Security Evaluation

6.1 Summary of Expected Security Strength

The AIMer signature scheme provides three levels of security: L1 (AES-128), L3
(AES-192), and L5 (AES-256). Each security level corresponds to the security of
AES in the parentheses, and it implies that we expect AIMer with L1, L3, and L5
parameters to be as secure as AES-128, AES-192, AES-256 respectively, against
both classical and quantum attacks. In this section, we examine the concrete secu-
rity of the three components of AIMer: the non-interactive zero-knowledge proof
of knowledge (NIZKPoK), the one-way function, and the hash functions.

SECURITY OF THE NIZKPOK SYSTEM. The NIZKPoK system in AIMer is basically
BN++ [KZ22] with slight modifications. The security of AIMer is proved in Sec-
tion 5.1 in the random oracle model.

In the quantum-accessible random oracle model (QROM), an adversary is al-
lowed to make superposition queries to the random oracle. The NIZKPoK system
in AIMer (and BN++) follows the spirit of the Fiat-Shamir transform [FS87], and
there has been a significant amount of research on the QROM security of the Fiat-
Shamir transform [LZ19, DFMS19, DFM20, DFMS22a, DFMS22b]. The NIZKPoK
system of AIMer should be seen as a variant of the original Fiat-Shamir transform,
while its security is not immediate from the above results, and we will prove it as
a future work.

The parameters N and τ are fixed based on the soundness analysis given in
[KZ22]; we see that an attacker should make at least 2λ guesses in order to pro-
duce a valid forgery without any knowledge of the secret key. Since a single guess
involves at least one hash or XOF call (where a single call of hash is more costly
than AES), AIMer with our recommended sets of parameters would provide a suf-
ficient level of security.

SECURITY OF AIM2. AIM2 is a one-way function, which does not follow the tradi-
tional design rationale of symmetric primitives. It takes random strings iv and pt
as input, and outputs ct = AIM2(iv, pt). We expect that finding pt∗ for a given pair
(iv, ct) such that ct = AIM2(iv, pt∗) is as hard as key recovery of AES with the same
security level. To support our claim, we not only prove the information-theoretic
security of AIM2 but also investigate its security against brute-force attacks, alge-
braic attacks, statistical attacks, and quantum attacks in Section 6.3.

In Section 5.2, we prove the everywhere preimage resistance [RS04] of AIM2
in the random permutation model. The one-wayness is proved assuming that the
S-boxes are modeled as public random permutations. Although our choice of S-
boxes is far from a random permutation, the proof itself exhibits that AIM2 is
one-way unless any particular properties of the underlying S-boxes are exploited.

For the algebraic attacks, we analyze the security of AIM2 against the fast
exhaustive search attacks [LMOM23, Bou22], Gröbner basis algorithm, Dinur’s
equation solving algorithm [Din21], and the linearization attack by Zhang et
al. [ZWY+23]. We argue that AIM2 is secure against these attacks under the as-
sumption of the semi-regular system even in case such that an adversary chooses
intermediate variables not only the outputs of the S-boxes. All the algebraic at-
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tacks on AIM2 require more gate-count complexity than required for AES, or re-
quire more than 2λ memory bits. For the statistical attacks, we lower bounded
the weights of differential and linear trails of AIM by near λ, although statistical
attacks are not possible with a single input-output pair. For quantum attacks, we
looked into Grover’s algorithm, quantum algebraic attacks, and quantum generic
attacks. The most powerful attack among them turns out to be Grover’s algorithm
while its complexity against AIM2 is not lower than that applied to AES with the
same security level. All the analysis on AIM2 is summarized in Section 6.3.

In the multi-user setting, we expect that finding one of pti given multiple pairs
{(ivi, cti)} such that cti = AIM2(ivi, pti) for some i is hard assuming that iv’s are
randomly chosen. If iv’s can be arbitrarily chosen, a collision of cti is connected to
a forgery. For example, if an IV value iv∗ collides q times in a set of public keys,
an attacker may compute the function AIM2(iv∗, pt) for c times with distinct pt’s.
Then, the probability of collision is approximately qc/2n, which implies a security
degradation.

Except for the risk of collision, multiple pairs {(ivi, cti)} do not lead to a strength-
ened attack on AIM2 to the best of our knowledge. For algebraic attacks, any two
sets of equations built for distinct pt’s are not compatible. For statistical attacks,
any two public-key pairs are not compatible with differential/linear cryptanalysis
if corresponding pt’s are distinct.

HASH FUNCTION SECURITY. The AIMer signature scheme requires a lot of calls to
hash functions and extendable output functions (XOFs). All the hash functions and
XOFs are based on NIST-standardized XOF SHAKE [NIS15]. SHAKE128 is used for
the L1 parameters, and SHAKE256 is used for the L3 and L5 parameters. All the
hash functions use 2λ-bit digests of the SHAKE output.

We expect the concrete security provided by SHAKE for collision and preim-
age resistance as claimed in [NIS15]. For λ ∈ {128, 256}, the preimage resistance
of SHAKE-λ with k-bit digest is claimed to be min(2k, 22λ) in the classical setting,
and a cryptographic hash function with k-bit digest is generally believed to have
O(2k/2) preimage resistance in the quantum setting [Gro96]. In both cases, hash
functions with 2λ-bit digests provide λ-bit preimage resistance. For collision resis-
tance, while a generic quantum algorithm of finding a hash collision is of complex-
ity O(2k/3) when the output size is k bits [BHT98], Bernstein pointed out that the
quantum hash collision algorithm has worse performance compared to classical
algorithms in practice [Ber09]. Since it is claimed that k-bit digests of SHAKE-λ
has collision resistance of min(2k/2, 2λ) against classical attacks, the 2λ-bit digest
also allows λ-bit collision resistance against classical and quantum attacks.

6.2 Soundness Analysis

In this section, we analyze the soundness error of the AIMer signature scheme
to determine the set of parameters (λ,N, τ). A more formal analysis is given in
Section 5.1. Let τ1 and τ2 denote the number of repetitions for which the attacker
needs to make correct guesses on the first challenge ϵk,j in Phase 2 and the second
challenge īk in Phase 4 in Algorithm 10, respectively. Then, it should be the case
that τ = τ1 + τ2. For i = 1, 2, let Pi be the probability that the attacker makes
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correct guesses for τi challenges in the i-th challenge space.
The first challenge is sampled from the set of size 2n, so the probability of

correctly guessing τ1 challenges in the first challenge space is given as

P1 =
τ∑

k=τ1

(
τ
k

)
pk · (1− p)τ−k

where p = 2−λ. On the other hand, since the second challenge space is of size N ,
and the attacker needs to make correct guesses in the remaining repetitions, one
has

P2 = 1/N τ2 = 1/N τ−τ1 .

Overall, the attack complexity is given as

min
0≤τ1≤τ

(1/P1 + 1/P2).

Our parameters are set in a way such that the attack complexity is larger than or
equal to2λ.

6.3 Known Attacks to AIM2

6.3.1 Brute-force Attack

Saarinen proposed an efficient brute-force attack for AIM using a linear feedback
shift register.5 Although the symmetric primitive in AIMer is changed to AIM2,
his attack remains valid and is the fastest brute-force attack. By introducing an
output of an inverse Mersenne S-box as a new variable, we can establish a simpler
equation. For example, in AIM2-I or AIM2-III, one may find y by iterating y and
y−1 such satisfies

Mer[e0](t0) = x+ γ0 where


x := y2

e1 · y−1 + γ1,

t∗ := Mer[e∗]
−1(x+ ct),

t0 := A−1
iv,0(biv + Aiv,1(y) + t∗).

An attacker may change the new variable y = Mer[ei]
−1(x + γi) for some i ∈

{0, . . . , ℓ− 1, ∗} where ct is regarded as γ∗, and its corresponding system to reduce
the amount of computation. Assuming that a multiplication by a fixed matrix does
not require any AND gate and a squaring of a finite field element requires n XOR
gates, the minimum complexities are 2147.0/2212.2/2277.7 for AIM2-I/III/V.6 These
values are still larger than the gate-count complexity of AES (2143/2207/2272). The
numbers of gates required to evaluate addition chains for S-boxes are in Table 5.

For a comparison, we note that the complexities of the brute-force attack with
direct computations are 2147.7/2212.9/2278.2 for AIM2-I/III/V. These values are slightly
(< 1 bit) larger than the costs of the former method.

5https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/BI2ilXblNy0
6This value is computed assuming that finite field multiplication costs 2n2 binary gates.
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Scheme Circuit
#Operations

FF Mult. FF Square

AIM2-I
Mer[3] / Mer[3]−1 2 / 8 2 / 126
Mer[49] / Mer[49]−1 7 / 11 48 / 127
Mer[91] / Mer[91]−1 9 / 11 90 / 127

AIM2-III
Mer[5] / Mer[5]−1 3 / 9 4 / 190
Mer[17] / Mer[17]−1 5 / 11 16 / 191
Mer[47] / Mer[47]−1 8 / 11 46 / 191

AIM2-V

Mer[3] / Mer[3]−1 2 / 10 2 / 255
Mer[7] / Mer[7]−1 4 / 11 6 / 255
Mer[11] / Mer[11]−1 5 / 10 10 / 255
Mer[141] / Mer[141]−1 10 / 10 140 / 253

Table 5: The number of operations for each type of operation in AIM2.

6.3.2 Algebraic Attacks

Since our attack model does not allow multiple evaluations for a single instance
of AIM2, we do not consider interpolation, higher-order differential, and cube at-
tacks. As discussed in [KHSL24], we consider the Gröbner basis attack on various
systems obtained from a single evaluation of AIM2. As several attacks on AIM were
proposed, we describe how those attacks are mitigated in AIM2. We also consider
algebraic attacks which have been recently studied for MPC/ZK-friendly ciphers
such as LowMC [ARS+15] and large S-box-based ones.

VARIOUS SYSTEMS OF AIM2. There are multiple ways of building a system of equa-
tions from an evaluation of AIM2. We can categorize them according to the number
of (Boolean) variables and find the optimal choice of variables to obtain a system
of the lowest degree. Since ℓ ∈ {2, 3} is recommended, we consider four types of
systems of Boolean equations as follows.

1. Systems in n variables.

2. Systems in 2n variables.

3. Systems in 3n variables.

4. Systems in 4n variables (only for ℓ = 3).

With (ℓ+1)n variables, we can establish a system Squad of quadratic equations. The
variables are denoted as follows.

- x: the input of AIM2, i.e., pt

- ti: the output of Mer[ei]
−1 for i = 0, . . . , ℓ− 1

- z: the output of Lin

38



From Mer[ei]
−1(x + γi) = ti, we obtain 3n Boolean quadratic equations in x and ti

induced by the following relations.
ti(x+ γi) = t2

ei

i ,

ti(x+ γi)
2 = t2

ei

i (x+ γi),

t2i (x+ γi) = t2
ei+1

i .

When x and ti are of higher degrees with respect to other variables, the first two
relations result in 2n equations of degree deg x + deg ti, while the last one results
in n equations of degree max(deg x + deg ti, 2 deg ti). There are also n Boolean
quadratic equations in ti and tj induced by the following.

(γi + γj)titj = t2
ei

i tj + tit
2ej
j .

We note that z has the same relation with ti with respect to x as z = Mer[e∗]
−1(x+

ct). Using the brute-force search of quadratic equations on toy parameters, we find
that these are all the possible (linearly independent) quadratic equations on AIM2
(see [KHSL24] for details). Hence, Squad consists of 3(ℓ + 1)n +

(
ℓ+1
2

)
n quadratic

equations.
With fewer variables, the resulting systems would have higher degrees. For

example, Mer[ei]
−1 implicitly determines 3n quadratic equations in x and ti as

above, while ti (resp. x) can be explicitly represented by a polynomial in x (resp.
ti). We can also explicitly represent ti using tj for j ̸= i or z as follows.

ti = Mer[ei]
−1 (Mer[ej](tj)⊕ γi ⊕ γj)

= Mer[ei]
−1 (Mer[e∗](z)⊕ ct) .

The degree of ti with respect to tj (resp. z) might be greater than the degree of
Mer[ei]

−1 ◦ Mer[ej] (resp. Mer[ei]
−1 ◦ Mer[e∗]) due to the constant addition, while

we estimate it as the degree of the composition (without constant addition) for
simplicity.

Table 6 summarizes a system of equations of the lowest degree for each type,
where such systems are denoted by S1, S2, . . . , Squad respectively, according to the
number of variables. The complexities are measured by (3) with ω = 2. For systems
of equations of type S1 in n variables, we did not compute precise complexities
since a system of degree near n/2 requires the Gröbner basis algorithm to use
approximately 2n monomials so that the time complexity will be close to O(22n).

FAST EXHAUSTIVE SEARCH. The fast exhaustive search attacks [BCC+10, Bou22]
are infeasible if the target polynomial system is of a high degree. Although the
time complexity of the fast exhaustive search is claimed to be 4d log(n)2n, there is
a hidden preprocessing cost

T =
d−1∑
k=0

k

(
n

k

)(
k

min(d− k, k)

)
≥ 2d

3
22d/3

(
n

⌊2d/3⌋

)
in binary operations where

(
n
↓k

)
=

∑k
i=0

(
n
i

)
. One can see that T ≫ d2n if d ≥

0.341n. Furthermore, if d ≥ n/2, then the memory complexity will also be higher
than 2n bits.
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Scheme Type #Var Variables (#Eq, Deg)
Gröbner Basis Dinur [Din21]

k dreg Time Time Memory

AIM2-I
S1 n t0 (n, 60) - - - 141.2 140.4
S2 2n t0, t1 (3n, 2) 62 15 207.9 244.6 177.2

Squad 3n x, t0, t1 (12n, 2) 0 16 185.3 330.1 258.9

AIM2-III
S1 n x (2n, 114) - - - 206.5 205.9
S2 2n t0, t1 (3n, 2) 100 20 301.9 330.1 258.9

Squad 3n x, t0, t1 (12n, 2) 0 22 262.4 487.7 381.0

AIM2-V

S1 n x (2n, 172) - - - 271.4 270.9
S2 2n t1, z (n, 2) + (2n, 38) 253 30 513.5 525.0 520.0
S3 3n t0, t1, t2 (6n, 2) 2 47 503.7 644.9 502.7

Squad 4n x, t0, t1, t2 (18n, 2) 9 32 411.4 854.4 664.7

Table 6: Optimal systems of equations and their security against algebraic attacks.
(#Eq,Deg) = (a, b) means that the system contains a equations of degree b. All the
complexities are measured by (3) with ω = 2. k is the number of guessed bits and
dreg is the degree of regularity. ‘Time’ and ‘Memory’ are in log.

INTRODUCING NEW VARIABLES OTHER THAN S-BOX OUTPUTS. We considered sys-
tems whose variables are inputs/outputs of the S-boxes. One might try to build
a system by introducing new variables other than S-box outputs. However, such
systems have no advantage over the previous ones in terms of algebraic attacks.
We refer to [KHSL24] for details.

LINEARIZATION ATTACKS ON AIM BY GUESSING. Zhang et al. [ZWY+23] proposed
an algebraic attack on AIM that linearizes the S-boxes at the first round by guess-
ing. This attack is not applicable to AIM2 since the constant addition by AddConst
makes the inputs to the S-boxes different. This is the simplest patch among the
possible ones proposed by the authors.

ALGEBRAIC ATTACKS ON SYMMETRIC PRIMITIVES WITH LARGE S-BOX. Several sym-
metric primitives based on large fields have been proposed with applications to
zero-knowledge proof systems such as MiMC [AGR+16], Jarvis [AD18], and Starkad/Poseidon [GKR+21].
Some of them have been analyzed with algebraic attacks exploiting the property
that their linear layers are represented as polynomials of low degrees over large
fields [ACG+19, EGL+20]. However, AIM2 uses a randomized linear layer which
is expected to have degree 2n−1 over F2n. For this reason, the above attacks would
not apply to AIM2.

APPLICABILITY OF ALGEBRAIC ATTACKS ON LOWMC. LowMC [ARS+15] is the first
FHE/MPC-friendly block cipher, and one of its applications is to the Picnic signa-
ture scheme. LowMC has been analyzed in the context of the signature scheme,
where an adversary is given only a single plaintext-ciphertext pair. In this setting,
a number of algebraic attacks on LowMC have been proposed [BBDV20, BBVY21,
LIM21b, Din21, LMSI22, BBCV22], mainly based on two algebraic techniques:
linearization by guessing, and the polynomial method [Bei93].
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The main idea of linearization-based algebraic attacks on LowMC, first pro-
posed in [BBDV20], is to linearize the underlying S-boxes by guessing a sin-
gle output bit for each S-box evaluation. In this way, one obtains a system of
low-degree polynomial equations at the cost of guessing a small number of bits,
and it can be solved efficiently. This linearization technique has been further ex-
tended [BBVY21, LIM21b]. For AIM2 having large S-boxes with dense implicit
equations, it seems to be infeasible to linearize the S-boxes by guessing some of
the input/output bits.

The polynomial method [Bei93] has been studied in complexity theory, and
later found its application to design algorithms for certain problems [Wil14],
one of which is to solve a system of polynomial equations over a finite field.
The resulting algorithm is known as the first algorithm that achieves exponential
speedup over the exhaustive search even in the worst case [LPT+17]. Recently,
Dinur [Din21] proposed a generic equation-solving algorithm based on the poly-
nomial method with time complexity O(n2 · 2(1−1/(2.7d))n) where n is the number of
variables and d is the degree of the system. One arguable issue of this algorithm
is its high memory complexity of O(n2 · 2(1−1/(1.35d))n), making it infeasible in prac-
tice. For AIM2, the memory complexity required by Dinur’s algorithm exceeds the
security level, i.e., more than 2λ bits of memory are required for each level of se-
curity λ. Table 6 shows the time and the memory complexity of Dinur’s algorithm
for each system of AIM2. Subsequent works [LMSI22, BBCV22] are proposed to
reduce the memory complexity of the algorithm at the cost of slightly increased
time complexity, while these variants do not apply to AIM2 since they all follow
the guess-and-linearization strategy on LowMC.

RESULTANT-BASED ATTACK. Sun et al. [SCL+25] proposed two resultant-based al-
gebraic attacks on AIM2. One is on AIM2-III, and the other is on AIM2-V. These
approaches basically model AIM2 as a system of few-variable polynomials over
a large field (GF (2λ)), reduce degree of the polynomials by setting intermediate
linear layer, and eliminate the variables using the Sylvester matrix. According to
the authors’ claim, these attacks costs 2211.51 binary operations for AIM2-III, and
2319.97 binary operations for AIM2-V even if linear algebra constant ω is 2. These
values are larger than the brute-force complexity of AES with the same security
level. Assuming that the finite field multiplication in GF (2n) costs n log n binary
operations via FFT (see Table 4 in [SCL+25]), this algebraic attack is slower than
the brute-force search of AIM2.

6.3.3 Differential and Linear Cryptanalysis

An adversary is allowed to evaluate AIM2 with an arbitrary input pair (pt, iv) in an
offline manner. However, such an evaluation is independent of the actual secret
key pt∗, so the adversary is not able to collect a sufficient amount of statistical
data which are related to pt∗. Furthermore, the linear layer of AIM2 is gener-
ated independently at random for every user. For this reason, we believe that our
construction is secure against any type of statistical attack including (impossible)
differential, boomerang, and integral attacks.

In the multi-target scenario, an adversary has no information on which users

41



have the same secret. Even for multiple users with the same iv, statistical attacks
would not be feasible since all the inputs and their differences are unknown to
the adversary. That said, to prevent any unexpected variant of differential and
linear cryptanalysis, we summarize a lower bound of the weight of differential
and correlation trails in this section.

DIFFERENTIAL CRYPTANALYSIS. Since AIM2 is a key-less primitive, we will esti-
mate the security of AIM2 against differential cryptanalysis by lower bounding the
weight of a differential trail (for example, as in [DVA12]).

Given a function f : {0, 1}n → {0, 1}m, the weight of a differential (∆x,∆y) ∈
{0, 1}n × {0, 1}m is defined by

wd(∆x
f−→ ∆y) := n− log |{x ∈ {0, 1}n : f(x⊕∆x)⊕ f(x) = ∆y}| .

The weight is not defined if there is no x such that f(x ⊕ ∆x) ⊕ f(x) = ∆y.
Otherwise, we say that ∆x and ∆y are compatible.

A differential trail is the composition of compatible differentials. For AIM2, a
differential trail from an input to the output (ignoring the feed-forward) can be
represented as follows.

Q = ∆0
Mer[e0,...,eℓ−1]

−1

−−−−−−−−−−→ ∆1
Lin−→ ∆2

Mer[e∗]−−−−→ ∆3

as AddConst does not affect differentials. Then, the weight of the differential trail
Q is defined as

wd(Q) :=
2∑

i=0

wd(∆i → ∆i+1).

The weight of a Mersenne S-box is determined by the number of solutions to
Mer[e](x⊕∆x)⊕Mer[e](x) = ∆y, which is a polynomial equation of degree 2e− 2.
Therefore, there are at most 2e − 2 solutions to this equation, which implies for
∆x ̸= 0,

wd(∆x
Mer[e]−−−→ ∆y) ≥ n− log2(2

e − 2) ≥ n− e.

Then we have

wd(Q) =
∑
i

wd(∆i → ∆i+1)

≥
∑

0≤j≤ℓ−1

(n− ej) = ℓn−
∑
j

ej

as ∆2 may be zero. So, for any differential trail Q, wd(Q) is close to λ with λ = n.
We note that a trail Q such that wd(Q) < λ never incurs a collision since ∆3 =
∆0, and the existence of such trail does not imply the feasibility of differential
cryptanalysis since an adversary is not given a large enough number of plaintext-
ciphertext pairs to mount the analysis.

DIFFERENCE ENUMERATION ATTACK. Recently, difference enumeration attacks to
LowMC have been proposed [RST18, LIM21a, LSW+22], which require only a cou-
ple of chosen plaintext-ciphertext pairs. In such attacks, an adversary enumerates
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all possible input and output differences and tries to find a collision and recover
the unknown key. This type of attack works for LowMC since it is based on small
S-boxes. So one can easily find all possible differentials in LowMC. On the other
hand, AIM2 is based on n-bit S-boxes, making it infeasible to enumerate all possi-
ble differences of each S-box.

LINEAR CRYPTANALYSIS. In contrast to differential cryptanalysis, security against
linear cryptanalysis has been rarely evaluated for key-less primitives since its goal
is to retrieve the secret key, not finding a collision or a second-preimage. That said,
we lower bound the weight of a correlation trail for completeness in a similar way
to differential cryptanalysis.

Given a function f : {0, 1}n → {0, 1}m, the weight of a correlation (α, β) ∈
{0, 1}n × {0, 1}m is defined by

wl(α
f−→ β) := n− log

∣∣2 ∣∣{x ∈ {0, 1}n : α⊤x = β⊤f(x)
}∣∣− 2n

∣∣ .
The weight is not defined if there are exactly 2n−1 values for x such that α⊤x =
β⊤f(x). Otherwise, we say that α and β are compatible.

A correlation trail is the composition of compatible correlations. For AIM2, a
correlation trail from an input to the output (ignoring the feed-forward) can be
represented as follows.

Q = α0
Mer[e0,...,eℓ−1]

−1

−−−−−−−−−−→ α1
Lin−→ α2

Mer[e∗]−−−−→ α3.

Then the weight of the correlation trail Q is defined as

wl(Q) :=
2∑

i=0

wl(αi → αi+1).

When d is not a power-of-2 and f(x) = xd is invertible over F2n, one has the
following generic bound [KSW19].∣∣2 ∣∣{x : α⊤x = β⊤f(x)

}∣∣− 2n
∣∣ ≤ (d− 1)2n/2

for any compatible correlation (α, β). Therefore the weight of a correlation trail of
a Mersenne S-box is lower bounded by wl(Q) ≥ n

2
− e. Then we have

wl(Q) =
∑
i

wl(αi → αi+1)

≥ max
i∈[ℓ]

(n/2− ei) + wl(α2 → α3)

≥ max
i∈[ℓ]

(n/2− ei) + (n/2− e∗)

= n− e0 − e∗.

As Lin is a (full-rank) compression function, α2 cannot be the zero mask. Since lin-
ear cryptanalysis requires 22wl(Q) plaintext-ciphertext pairs, AIM2 would be secure
against linear cryptanalysis if

2(n− e0 − e∗) ≥ λ

which is the case for AIM2. We emphasize again that linear cryptanalysis is not
practically relevant in our setting since AIM2 does not use any secret key, while all
the inputs are kept secret and every user is assigned a distinct linear layer.
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6.3.4 Quantum Attacks

Quantum attacks are classified into two types according to the attack model. In
the Q1 model, an adversary is allowed to use quantum computation without mak-
ing any quantum query, while in the Q2 model, both quantum computation and
quantum queries are allowed [Zha12].

As a generic algorithm for exhaustive key search, Grover’s algorithm has been
known to give quadratic speedup compared to the classical brute-force attack [Gro96].
In this section, we investigate if any specialized quantum algorithm targeting AIM2
might possibly achieve better efficiency than Grover’s algorithm in the Q1 model.

COST OF GROVER’S ALGORITHM. We consider the cost metric of NIST [NIS22],
which is defined as the product of the quantum circuit size and the quantum circuit
depth with respect to Clifford and T gates.

Given a one-way function f taking n bits as input, the circuit size and the
depth of the preimage-finding attack on f using Grover’s algorithm is estimated as
follows [BJ24].

(Grover’s circuit size/depth) = (size/depth of f)× 2×
⌊π
4

√
2n
⌋
.

The quantum circuit size and the depth of AIM2 can be computed in a modular
manner. AIM2 is based on three types of operations: finite field multiplication, fi-
nite field squaring, and random matrix multiplication. The costs of finite field mul-
tiplications, finite field squaring, and evaluation of the linear layer are estimated
using the result in [JOKS24].

In the context of quantum attacks, minimizing the circuit depth is crucial
compared to classical attacks. Therefore, when employing Grover’s algorithm for
AIM2, it might be more efficient to compute the inputs and outputs of the linear
layer in AIM2 for each candidate pt and check whether the intermediate vari-
ables satisfy proper linear equations, rather than searching for an x that satisfies
AIM2(iv, x) = ct. For example, given AIM2(iv, ·) = ct with ℓ = 2, one can find x
satisfying

Lin[iv](t0, t1) = t∗ where


t0 := Mer[e0]

−1(x+ γ0),

t1 := Mer[e1]
−1(x+ γ1),

t∗ := Mer[e∗]
−1(x+ ct).

(9)

Table 7 summarizes the total number of operations and the depth of operations
for each type of operation to implement (9), where the number of operations
required to evaluate addition chain for S-boxes are from Table 5. The depth of
each operation for evaluating a single S-box is the same as the number of the same
operations. Based on these numbers and the above references, we summarize the
estimated cost of Grover’s algorithm on AIM2 (in log) for each level of security in
Table 7. We see that AIM2-I, AIM2-III, and AIM2-V satisfy the security level I, III
and V, respectively.7

Comparatively, Song et al. proposed a quantum implementation of AIM2 and
estimates cost of the Grover’s algorithm on AIM2 [SJY+25]. The estimated costs

7In the call for proposals by NIST [NIS22], the security levels I, III, V are defined as the strength
of AES-128, AES-192, AES-256, respectively, against Grover’s algorithm.
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are 2164/2231/2296. As they estimate the cost for honest computation of AIM2 rather
than fast exhaustive search, this result shows a slightly larger value than the costs
in Table 7.

The total cost of Grover’s algorithm might be further reduced than expected;
a better representation of the AIM2 circuit with respect to the total cost might
be proposed, or more efficient addition chain might be discovered. However, we
believe that the advance of such optimization technique will not reduce the total
cost below that of AES with the same security level, since the amount attributable
to finite multiplications is more than the total cost of AES.

Scheme
#Operations, Depth Total

Cost
Level of
SecurityFF Mul FF Square

AIM2-I 30, 11 380, 127 162.6 I (≥157)
AIM2-III 31, 11 572, 191 229.2 III (≥221)
AIM2-V 41, 11 1018, 255 294.9 V (≥285)

Table 7: The number of operations and the depth for each type of operation used
in AIM2, and the total cost of Grover’s algorithm on AIM2 for each level of security.

QUANTUM ALGEBRAIC ATTACK. When an algebraic root-finding algorithm works
over a small field, the guess-and-determine strategy might be effectively combined
with Grover’s algorithm, reducing the overall time complexity.

The GroverXL algorithm [BY18] is a quantum version of the FXL algorithm [CKPS00],
which solves a system of multivariate quadratic equations over a finite field. A sin-
gle evaluation of AIM2 can be represented by Boolean quadratic equations using
intermediate variables. Precisely, we have a system of 3(ℓ+1)n+

(
ℓ+1
2

)
n quadratic

equations in (ℓ+1)n variables. For this system of equations, the time complexity of
GroverXL is given as 2(1.1062+o(1))n for AIM2-I, III and 2(1.3568+o(1))n for AIM2-V when
using ω = 2, which is worse than Grover’s algorithm.

The QuantumBooleanSolve algorithm [FHK+17] is a quantum version of the
BooleanSolve algorithm [BFSS13], which solves a system of Boolean quadratic
equations. In [FHK+17], its time complexity has been analyzed only for a system
of equations with the same number of variables and equations. A single evaluation
of AIM2 can be represented by 3(ℓ + 1)n +

(
ℓ+1
2

)
n quadratic equations in (ℓ + 1)n

variables. In the paper, the complexities are summarized only when the number
of equations are same as the number of variables. We numerically found the min-
imum complexities according to the number of guessed variables. The complexity
of probabilistic variant of QuantumBooleanSolve for AIM2-I, III is minimized to
O(21.047n) when 29%8 of variables are guessed, and that for AIM2-V is minimized
to O(21.320n) when 20% of variables are guessed, which is worse than Grover’s
algorithm.

In contrast to the algorithms discussed above, Chen and Gao [CG22] proposed
a quantum algorithm to solve a system of multivariate equations using the Harrow-
Hassidim-Lloyd (HHL) algorithm [HHL09] that solves a sparse system of linear

8In the original paper, this value is denoted by 1− γ.
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equations with exponential speedup. In brief, Chen and Gao’s algorithm solves a
system of linear equations from the Macaulay matrix by the HHL algorithm. It has
been claimed that this algorithm enjoys exponential speedup for a certain set of
parameters. When applied to AIM2, the hamming weight of the secret key should
be smaller than O(log n) to achieve exponential speedup [DGG+21]. Otherwise,
this algorithm is slower than Grover’s algorithm [DGG+21].

QUANTUM GENERIC ATTACK. A generic attack does not use any particular property
of the underlying components (e.g., S-boxes for AIM2). The underlying smaller
primitives are typically modeled as public random permutations or functions. The
Even-Mansour cipher [EM97], the FX-construction [KR01] and a Feistel cipher [LR86]
have been analyzed in the classic and generic attack model. As their quantum ana-
logues, the Even-Mansour cipher [KM12, BHNP+19], the FX-construction [LM17,
HS18] and a Feistel cipher [KM10] have been analyzed in the Q1 or Q2 model.
Most of these attacks can be seen as a combination of Simon’s period finding algo-
rithm [Sim97] (in the Q2 model), and Grover’s/offline Simon’s algorithms [BHNP+19]
(in the Q1 model). Since Simon’s period finding algorithm requires multiple queries
to a keyed construction (which is not the case for AIM2), we believe that the above
attacks do not apply to AIM2 in a straightforward manner.

6.4 Attacks in the Multi-User Setting

The analysis of the multi-user security of a cryptographic scheme is crucial, as most
cryptographic schemes are used by multiple users in practice. In this setting, an
adversary is given multiple users’ instances (e.g., public keys and corresponding
signatures), and it aims to attack one of them.

MULTI-USER EUF-CMA SECURITY. Since EUF-CMA security is a fundamental re-
quirement for digital signatures, it is natural to consider Multi-User EUF-CMA
(MU-EUF-CMA) security in the multi-user setting. Here, the adversary is given
multiple signing oracles (corresponding to distinct public keys), and tries to gen-
erate a valid forgery under one of the given public keys through a chosen message
attack. Thanks to the generic reduction from EUF-CMA security to MU-EUF-CMA
security [GMLS02], AIMer provides MU-EUF-CMA security with losses that are (at
most) linear in the number of users. In addition, the concrete design of AIMer takes
into account multi-user attacks, or more generally, multi-target attacks.

MULTI-TARGET ATTACKS. In multi-target attacks, an adversary is given a multiple
number of targets, for example, the outputs of a cryptosystem computed with
different secret keys. This is inherently possible in the multi-user setting, and even
in a single-user setting, when multiple targets are available to the adversary.

There are many examples of successful multi-target attacks. In [DN19], Dinur
and Nadler proposed an effective multi-target attack on Picnic version 1.0. The
main idea is that an attacker collects multiple outputs generated from unknown
seeds of the unopened party in the MPCitH protocol, compares them to the outputs
from guessed ones, trying to find a collision using a certain efficient algorithm
such as hash tables to recover the seed of the unopened party. Once the seed is
revealed, the secret key is also recovered from its additive shares. The above attack
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is mitigated in the next version of the Picnic signature by using a random salt and
domain seperation prefixes as an additional input of underlying hash functions
and XOFs.

Multi-target attacks have also been proposed on hash-based signature schemes
[BXKSN21, YAG21]. As many hash outputs are used as secret keys of the under-
lying one-time signature (OTS), the seed guessing technique also works in hash-
based signatures, and the recovered seed reveals the corresponding secret keys.
It can be mitigated by domain separation of the hash functions according to the
position of the OTS instances. Another multi-target attack on SPHINCS+ of the
L5 parameter set exploits the small state size of SHA-256 [PKC22], but it is not
applicable when SHAKE256 is used as the underlying hash function.

When it comes to AIMer, the use of iv mitigates multi-target attacks. AIM2 gen-
erates its linear layer from a random iv, so not only each user has a different
secret key (i.e., the input of AIM2), but also the functions themselves are all differ-
ent. Moreover, similarly to the mitigation techniques described above, all inputs
to hash functions hash at least 2λ-bit randomness (e.g. salt, seeds, or commits)
and domain separation is applied to each hash function and the XOF used in the
signature. It would prevent any type of efficient multi-target preimage search at-
tack, such as time/memory/data trade-off attacks [BS00] and parallel quantum
multi-target preimage attacks [BB18]. We refer to Section 4.1.2 for detailed spec-
ifications of the hash functions.

KEY SUBSTITUTION ATTACKS. In a key substitution attack (KSA), an adversary is
given a signature σA under a public key pkA. Then the adversary tries to pro-
duce a fake public key pkE such that σA is also a valid signature under pkE. This
type of attacks were first considered in [BWM99], under the name unknown key-
share attacks, and later formalized in [MS04]. Although the possibility of KSA
does not violate the MU-EUF-CMA security, it may need to be considered in practi-
cal applications of digital signatures, in particular, when non-repudation property
is required [KM13]. Fortunately, the security against KSAs can be achieved in the
generic way using the following theorem.

Theorem 3 (Theorem 6 in [MS04]). Let Π = (KeyGen, Sign,Verify) be an EUF-CMA
secure digital signature scheme. Then, Π′ = (KeyGen, Sign′,Verify) is a secure digital
signature scheme against KSAs with

Sign′ = Sign(sk,Encode(pk,m))

where Encode is an unambiguous encoding scheme of public keys and messages.

In AIMer, a (fixed length) public key is always appended to the message before
hashing, so we believe that AIMer is secure against KSAs.

6.5 Side-Channel Attacks

The key generation and signing algorithms, which manipulate the secret key of
AIMer, are executed in constant time. Therefore, we anticipate no vulnerabilities
to either simple power attacks [KJJ99] or timing attacks [Koc96].
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Numerous masking techniques designed to thwart side-channel attacks adopt
the principle of secret sharing [ISW03, BBP+17, KR19]. Since AIMer generates a
signature by simulating the secret-shared computation of a one-way function, it
seems to provide inherent mitigation against certain side-channel attacks.

Despite this, AIMer is expected to be susceptible to power attacks [KJJ99],
electromagnetic radiation attacks [QS01], and fault-injection attacks [BDL97] if
no countermeasures are implemented. Specifically, during the signing algorithm,
the secret key pt requires careful handling since it is used in field arithmetic oper-
ations. For ∆ptk in phase 1 of the signing algorithm, calculated as pt−

∑
i pt

(i)
k , it

is crucial to perform field additions by pt only after the complete computation of∑
i pt

(i)
k to avoid exposure through differential power attacks [KJJ99] or correla-

tion power attacks [BCO04]. This precaution is based on the fact that an adversary
knows most of pt(i)k values [HHL+23]. Therefore, all implementations ensure that
field addition involving pt occurs only once. Furthermore, in both reference and
optimized implementations, field multiplication employs a temporary table based
on the first input, with the second input serving as a table reference. Thus, to pre-
vent cache attacks [Ber05], pt is inputted as the first operand in field multiplication
operations.

Recently, machine learning techniques have been integrated with various exist-
ing side-channel attacks targeting both conventional and post-quantum encryption
schemes [DGD+19, WD20, DNGW23]. In response, we plan to develop effective
countermeasures against these attacks in the future.

7 Key and Signature Sizes

Table 8 presents the sizes of the public key, secret key, and signature for various
parameter sets using the NIST/SUPERCOP API9 functions crypto sign keypair,
crypto sign, and crypto sign open.

Parameters
Public key size Secret key size Signature size

(bytes) (bytes) (bytes)

AIMer-128f 32 48 5,888
AIMer-128s 32 48 4,160

AIMer-192f 48 72 13,056
AIMer-192s 48 72 9,120

AIMer-256f 64 96 25,120
AIMer-256s 64 96 17,056

Table 8: Key and signature sizes for various parameter sets.

9https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/

documents/example-files/api-notes.pdf
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8 Advantages and Limitations

8.1 General

AIMer shares similar advantages with other MPCitH-based signature schemes as
follows.

• The security of AIMer depends only on the security of the underlying sym-
metric primitives. In particular, the security of AIMer is reduced to the one-
wayness of AIM2 in the random oracle model.

• Among the signature schemes whose security depends only on symmetric
primitives, AIMer enjoys the smallest signature size.

• AIMer enjoys the small secret and public key size; the small key size makes
it easier to apply to many PKI applications based on multi-chain certificates
or frequent certificate transmission.

• Key generation is simple and fast.

• AIMer provides a trade-off between the execution time and the signature
size. This feature makes it possible to adjust the performance based on the
user’s requirements.

• AIMer is resistant to the reuse of the public randomnesses such as iv and salt.
To the best of our knowledge, multiple uses of an identical value of iv or
salt linearly increase the probability of a pk-collision or a multi-target hash
collision, respectively.

AIMer also has similar limitations to other MPCitH-based signature schemes as
follows.

• The signature size is relatively large compared to standardized lattice-based
schemes.

• Signing and verification are slower compared to standardized lattice-based
schemes.

8.2 Compatibility with Existing Protocols

The signature size of AIMer is larger than NIST selected algorithms such as CRYSTALS-
Dilithium [LDK+22] and Falcon [PFH+22] except SPHINCS+ [HBD+22], while the
bandwidth of AIMer is sufficiently small so that it is still compatible with many
existing protocols. We experimentally checked the compatibility of the AVX2 opti-
mized implementation of AIMer at all security levels with the Open Quantum Safe
(OQS) project.10 After creating X.509 certificates signed with AIMer, we were able
to establish TLS 1.3 connections without message fragmentation, where the key
exchange algorithm was the hybrid protocol with ECDH (p256/p384/p521) [BCR+18]
and CRYSTALS-Kyber [SAB+22] (512/768/1024) algorithms in OQS.

10http://github.com/open-quantum-safe/liboqs
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