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Abstract. In this documentation, we introduce a new lattice-based post-
quantum key encapsulation mechanism (KEM), a type of key exchange
algorithm, which we are submitting to Korean Post-Quantum Cryptogra-
phy Competition. Based on the hardness of the MLWE and MLWR prob-
lems, defined in module lattices, we design an efficient public key encryp-
tion (PKE) scheme SMAUG.PKE and KEM scheme SMAUG.KEM With
the choice of sparse secret, SMAUG.KEM has 16% smaller public key sizes
and at most 18% smaller ciphertext sizes with 30-45% faster running-time
compared to NIST’s 2022 standard KEMKyber. Compared to Saber, one
of the NIST’s finalist KEM, we have similar sizes but with a more con-
servative key generation. We base the key security to MLWE and use
MLWR only for the faster encryption.

Keywords: Lattice-based Cryptography · Post-Quantum Cryptogra-
phy · Key Encapsulation Mechanism.

⋆ This work is submitted to ‘Korean Post-Quantum Cryptography Competition’
(www.kpqc.or.kr).
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1 Introduction

SMAUG is an efficient post-quantum key encapsulation mechanism, whose se-
curity is based on the hardness of the lattice problems. The IND-CPA security
of SMAUG.PKE relies on the hardness of MLWE problem and MLWR problem,
which implies the IND-CCA2 security of SMAUG.KEM.

Our SMAUG.KEM scheme follows the approaches in recent constructions of
post-quantum KEMs such as Lizard [18] and RLizard [32], as the key security re-
lies on the MLWE problem and the ciphertext security relies on the MLWR prob-
lem. SMAUG consists of an underlying public key encryption (PKE) scheme
SMAUG.PKE, which can be turned into SMAUG.KEM via Fujisaki-Okamoto
transform. We also use the tweaks for the quantum FO transforms [33], also
used in Kyber [14] and Saber [21].

By using the module variants MLWE and MLWR problems, we reduce the
size of the public key and the ciphertext sizes. Compared to Kyber, selected as
NIST PQC standard in 2022, our SMAUG.KEM has ≈ 16% smaller public key
sizes and at most 18% smaller ciphertext sizes for the same security levels. The
first reference implementation, included in our submission, has 30-45% faster
running-time.

1.1 Design rationale

MLWE and MLWR. SMAUG is constructed on the hardness ofMLWE (Module-
Learning with Errors) and MLWR (Module-Learning with Rounding) problems
and follow the key structure of Lizard [18] and Ring-Lizard (RLizard) [32]. Since
LWE problem is a well-studied problem for last two decades, there are many LWE-
based schemes (e.g Frodo [13]). Ring and module LWE problems are variants de-
fined over structured lattices and regarded as hard as LWE. Many schemes base
their security on RLWE/MLWE (e.g. NewHope [5], Kyber [14] and Saber [21])
for efficiency reasons. We also chose the module structure which enables us to
fine-tune security and efficiency in a much more scalable way, unlike standard
and ring versions. Since MLWR problem is regarded as hard as MLWE prob-
lem unless we overuse the same secret to generate the samples [12], we chose
to use MLWR samples for the encryption. By basing the security of encryption
to MLWR, we reduce the ciphertext size in factor of log q/ log p than MLWE in-
stances so that more efficient encryption and decryption is possible.

Quantum Fujisaki-Okamoto transform. SMAUG consists of key encapsula-
tion mechanism SMAUG. KEM and public key encryption scheme SMAUG.PKE.
On top of the PKE scheme, we construct the KEM scheme using the Fujisaki-
Okamoto (FO) transform [23, 24]. Line of works on FO transform in the quantum
random oracle model [11, 27, 29, 33] make it possible to analyze the quantum se-
curity of our KEM scheme SMAUG constructed upon FO transform.
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Sparse secret key and ephemeral key. We design the key generation algo-
rithm based on MLWE problem using sparse secret, since MLWE with sparse se-
cret is still hard to solve if the min-entropy of the secret distribution is sufficiently
large [17]. In detail, we use sparse ternary secret and ephemeral polynomials.
Based on the reduction from the general MLWE problem to the MLWE problem
with sparse secret, we can take the advantage of the sparsity, that the secret and
public keys have smaller sizes and that an easier estimation of the error bound
is possible.

Choice of moduli. All our integer moduli are powers of 2. As described in
Saber, this has some advantages: (1) simple modular reduction by bit shifting,
(2) sampling uniformly modulo a power of 2 is easy. (3) The condition p|q implies
that the scaling operation maps the uniform distribution modulo q to the uniform
distribution modulo p.

No Number Theoretic Transform. By choosing moduli q and p power of 2
integers, our moduli are not suitable for Number Theoretic Transform (NTT)
which is a useful technique for fast polynomial multiplications. It would be slower
than using the primes suitable for NTT with similar sizes of moduli, but there
is no noticeable slowdown since the degree of the polynomials is small and also
the size of modulus we use is much smaller.

Additional hashes. In Lizard and RLizard, there is a hash value d used for
checking decryption failure and being one of the ciphertext components. This
comes from Dent [19], but since Jiang et al. [29] showed that the hash value
is unnecessary, so we get rid of it and gain a bit more efficiency: it reduces
the ciphertext size and skips additional hash operations. Instead, as in Kyber,
we use a hash of the public key and ciphertext during encapsulation and de-
capsulation, respectively. These additional hashes are unnecessary for security
reduction, however, they prevent certain kinds of multi-target attacks.

Negligible decapsulation failure probability. Since we base the security
to MLWE and MLWR, which have errors inherently, the decryption result of a
SMAUG.PKE ciphertext may different to the original message. Hence we make
the probability of decryption failure to be negligible. For this, we fine-tuned the
parameters to trade-off between reducing the size of errors (which reduces the
decryption failure probability), increasing the security, and making the scheme
more efficient. In case of the decryption failure in SMAUG.KEM, we return a
pseudo-random value computed by the secret bytes and hash of ciphertext. By
doing so, the security in the QROM with decryption failure can be guaranteed
via a FO variant proposed in [27].

We give estimated security as well as sizes for our parameter sets in Table 1.
The full parameters sets can be found in Section 3.5. The security is estimated via
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lattice estimator [2]. The decryption failure probability is calculated via a python
script modified from Lizard and RLizard. The python script for the security and
the decryption failure probability estimator is included in the submission file.
The probability is given in logarithm with base two. The sizes are shown in
bytes. We give the secret key sizes which is ready to use, not a seed, which is
beneficial in some restricted devices. The sizes in parenthesis are the sizes of the
secret key and the public key.

Parameters sets SMAUG128 SMAUG192 SMAUG256
Target security I III V

n 256 256 256
k 2 3 5

(p, q) (1024, 256) (1024, 256) (1024, 256)

Classical core-SVP hardness 120.0 180.2 260.3
Quantum core-SVP hardness 105.6 164.7 243.8

Decryption failure probability -177.2 -160.4 -168.0

Secret key size 174 (846) 185 (1177) 182 (1814)
Public key size 672 992 1632
Ciphertext size 768 1024 1536

Table 1. Security and sizes for our parameter sets.

1.2 Advantages and limitations

Advantages

– Our scheme relies on the difficulty of hard lattice problem LWE, which has
been well-studied for the last two decades.

– In terms of size, it presents the lower sizes compared to Kyber, and also
similar to or less then to Saber.

– We follow the FO-transform approaches in the ROM/QROM setting with
some tweaks used in Kyber, and also previously shown by many line of works.

– Implementation-wise, use of MLWR samples in encryption makes it much
easier to simply implement the encryption, which will also make the secure
implementation possible.

– We give the C reference code, which proves the completeness of the scheme.

Limitations

– We use MLWR problem which has been studied shorter than MLWE or
LWE problems. However, it has a reduction to MLWE, so the security is
guaranteed. We choose to use it for the encryption to reduce the sizes and
achieve efficiency as in Saber, but in a more conservative way.

– MLWE problem with sparse secret has a similar issue, but has been stud-
ied much more and is used in various applications for e.g. homomorphic
encryptions.
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2 Preliminaries

2.1 Notation

We denote matrices with bold type and upper case letters (e.g. A) and vectors
with bold type and lower case letters (e.g. b). Unless otherwise stated, the vector
is a column vector.

We define a polynomial ring R = Z[x]/(xn + 1) where n is a power of 2
integer and denote a quotient ring by Rq = Z[x]/(q, xn+1) = Zq[x]/(x

n+1) for
a positive integer q. For an integer η, we denote the set of polynomials of degree
less than n with coefficients in [−η, η] ∩ Z as Sη. Let S̃η be a set of polynomials
of degree less than n with coefficients in [−η, η) ∩ Z.

2.2 Lattice assumptions

We first define some well-known lattice assumptions MLWE and MLWR on the
structured Euclidean lattices.

Definition 1 (Decision-MLWEn,q,k,ℓ,η). For positive integers q, k, ℓ, η and the
dimension n of R, we say that the advantage of an adversary A solving the
decision-MLWEn,q,k,ℓ,η problem is

AdvMLWE
n,q,k,ℓ,η(A) =

∣∣Pr [b = 1 | A← Rk×ℓ
q ;b← Rk

q ; b← A(A,b)
]

− Pr
[
b = 1 | A← Rk×ℓ

q ; (s, e)← Sℓ
η × Sk

η ; b← A(A,A · s+ e)
] ∣∣

Definition 2 (Decision-MLWRn,p,q,k,ℓ,η). For positive integers p, q, k, ℓ, η with
q ≥ p ≥ 2 and the dimension n of R, we say that the advantage of an adversary
A solving the decision-MLWRn,p,q,k,ℓ,η problem is

AdvMLWE
n,p,q,k,ℓ,η(A) =

∣∣Pr [b = 1 | A← Rk×ℓ
p ;b← Rk

q ; b← A(A,b)
]

− Pr
[
b = 1 | A← Rk×ℓ

q ; s← Sℓ
η; b← A(A, ⌊p/q ·A · s⌉)

] ∣∣
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3 Specification

SMAUG.CCAKEM is an IND-CCA2-secure key-encapsulation mechanism (KEM)
based on the hardness of module-LWE and module-LWR. SMAUG.CCAKEM
is consisted of two steps: (1) first introduce an IND-CPA public-key encryp-
tion scheme encrypting messages of a fixed length of 32 bytes, which we call
SMAUG.CPAPKE. (2) Then we use a slightly tweaked Fujisaki-Okamoto (FO)
transform suggested by Kyber to construct the IND-CCA2-secure KEM. SMAUG
means SMAUG.CCAKEM unless otherwise stated.

3.1 Choice of symmetric primitives

We use two hash H : {0, 1}256 −→ {0, 1}256, G : M× {0, 1}256 −→ {0, 1}256,
one extendable function XOF, and one key derivation function KDF : M ×
{0, 1}256 −→ {0, 1}256. H is used for hashing a public key and ciphertext, G is
used for generation of a seed of r, XOF is used for generation of seeds of A and
s, and KDF is used for key derivation of a final shared key. We instantiate these
primitives as follows:

– H is instantiated with sha3-256;
– G is instantiated with sha3-512;
– XOF is instantiated with shake-128;
– KDF is instantiated with shake-256.

3.2 Specification of IND-CPA PKE of Smaug

Smaug is similar to Lizard [18] and Ring-Lizard (RLizard) [32]. Lizard and
RLizard are the first KEM schemes based on LWE and LWR, and their ring ver-
sion, respectively. They have small secret key size and simple implementation.
However, it is hard to scale between efficiency and sizes. The main difference
from the Lizard and RLizard is to use module structure instead of LWE and
LWR or their ring variant.

For generation of A, we follow Saber [21]’s approach since they do not use
NTT and their moduli are quite close with ours and expandA of line 3 of Al-
gorithm 1 is denoted the function generating a uniformly random matrix A
(see implementation details). We transpose the A while computing b and not
transpose A in Smaug.CPAPKE.Encrypt as same reasons in Saber.

Smaug samples s from sparse ternary distribution with hamming weight hs

and e from discrete Gaussian distribution. HWTh is denoted a sampling func-
tion from a distribution of {−1, 0, 1}n with the number of -1 and 1 is h and
discreteGaussian is denoted a sampling function from discrete Gaussian distribu-
tion with standard deviation σ = 1.0625. The discrete Gaussian sampling could
be one of threat points of side-channel attack, however, to avoid it we followed
the constant-time implementation suggested by Karmakar et al. [30].

To become an deterministic INC-CPA PKE scheme, we can take a seed of r
as an input of SMAUG.CPAPKE.Encrypt.
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Algorithm 1 SMAUG.CPAPKE.KeyGen: key generation

Output pk = (ρ,b) ∈ {0, 1}256 ×Rk
q

Output sk = s ∈ Sk
η

1: seed← {0, 1}256
2: (ρ, τ)← XOF(seed)
3: A← expandA(ρ) ∈ Rk×k

q

4: s← HWThs(τ) ∈ Sk
η

5: e← discreteGaussian(τ) ∈ Rk

6: b = −AT · s+ e mod q
7: pk = (ρ,b)
8: sk = s
9: Return (pk, sk)

Algorithm 2 SMAUG.CPAPKE.Encrypt: encryption

Input pk = (ρ,b)
Input message µ ∈ {0, 1}256
Input(Optional) a seed ρ′ ∈ {0, 1}256
Output ctxt = (c1, c2) ∈ Rk

p ×Rp

1: if ρ′ is not given then
2: ρ′ ← {0, 1}256
3: end if
4: r← HWThr (ρ

′) ∈ Sk
η

5: c1 := ⌊p/q ·A · r⌉ ∈ Rk
p

6: c2 := ⌊p/q ·
(
bT · r+ q/t · µ

)
⌉ ∈ Rp

7: Return ctxt = (c1, c2)

Algorithm 3 SMAUG.CPAPKE.Decrypt: decryption

Input sk = s ∈ Sk
η

Input ctxt = (c1, c2) ∈ Rk
p ×Rp

Output message µ′ ∈ {0, 1}256

1: µ′ := ⌊t/p · (c2 + c1
T · s)⌉

2: Return µ′
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3.3 Correctness

Theorem 1. Let A, b, s, e and r are defined as in SMAUG.CPAPKE. Let e1 ∈
Rk

Q and e2 ∈ RQ be the rounding errors introduced by scaling and rounding

A · r and bT · r, i.e. e1 = q
p · ⌊

p
q · A · r mod p⌉ − (A · r mod q) and e2 =

q
p · ⌊

p
q · b

T r mod p⌉ − (bT r mod q). If we set

δ = Pr
[
∥rTe+ sTe1 + e2∥∞ > q/2t

]
,

then the decryption failure probability of SMAUG.CPAPKE scheme is less than δ.

Proof. See Appendix A

Recall that e ← discreteGaussian(·) ∈ Rk and r ← HWThr (·) ∈ Sk
η . We can

also compute the distribution of the rounding errors as in [21].
In Table 2, we give the failure probabilities for the parameter sets in loga-

rithm of base two. They are computed using the python script included in the
submission file. The script is modified from the script of Lizard and RLizard [28].

Parameters sets SMAUG128 SMAUG192 SMAUG256

Decryption failure probability -177.2 -160.4 -168.0

Table 2. Decryption failure probability for our parameter sets.
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3.4 Specification of IND-CCA2 KEM of Smaug

SMAUG.CCAKEM is constructed from SMAUG.CPAKEM using Fujisaki-Okamoto
transformation [23]. We adopt the tweaked version of FO transformation pro-
posed in Kyber.

During encryption, a hash of public key is taken as an input of SMAUG.CPAPKE
.Encrypt along with message. This prevents multi-target attack.

The differences from Lizard and RLizard are (1) a hash of public key for
generating r and (2) no additional hash in encryption.

Algorithm 4 SMAUG.CCAKEM.KeyGen: key generation

Output a public key pk = (ρ,b) ∈ {0, 1}256 ×Rk
q

Output a secret key sk = (s, d) ∈ Sk
η × {0, 1}256

1: (pk, sk′) := CPAPKE.Keygen()
2: d← {0, 1}256
3: sk = (sk′, d)
4: Return (pk, sk)

Algorithm 5 SMAUG.CCAKEM.Encap: encapsulation

Input a public key pk = (ρ,b) ∈ {0, 1}256 ×Rk
q

Output a ciphertext ctxt = (c1, c2) ∈ Rk
p ×Rp

Output a shared key K ∈ {0, 1}256

1: µ← {0, 1}256
2: ctxt := CPAPKE.Encrypt

(
pk, µ; G(µ,H(pk))

)
3: K := KDF

(
µ,H(ctxt)

)
4: Return (ctxt,K)

3.5 Parameter sets

SMAUG is parameterized by integers n, k, q, p, t, hs and hr, and the standard
deviation σ for the discrete Gaussian error in the key. We use same n = 256,
q = 1024, p = 256, t = 2 and σ = 1.0625 for every parameter set.

3.6 Implementation details

Coefficient in MSB. For x ∈ Zq, rather than storing itself, we store the value
(x ≪ 16 LOG Q) in uint16 t, i.e. x is stored in log q most significant bits of
uint16 t. In other words, we identify Zq with the subspace of 16-bit data space
of which the components are all zero except the most significant log q bits. If
vectors or matrices (resp. polynomials) are defined over Zq, then the above data
storage strategy is applied to each of the components (resp. coefficient).
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Algorithm 6 SMAUG.CCAKEM.Decap: decapsulation

Input a public key pk = (ρ,b) ∈ {0, 1}256 ×Rk
q

Input a secret key sk = (s, d) ∈ Sk
η × {0, 1}256

Input a ciphertext ctxt = (c1, c2) ∈ Rk
p ×Rp

Output a shared key K′ ∈ {0, 1}256

1: µ′ := CPAPKE.Decrypt(sk.s, ctxt)
2: ctxt′ := CPAPKE.Encrypt

(
pk, µ′; G(µ′,H(pk))

)
3: if ctxt = ctxt′ then
4: Return K′ = KDF

(
µ,H(ctxt)

)
5: else
6: Return K′ = KDF

(
sk.d,H(ctxt)

)
7: end if

Parameters sets SMAUG128 SMAUG192 SMAUG256
Target security I III V

n 256 256 256
k 2 3 5
q 1024 1024 1024
p 256 256 256
t 2 2 2
hs 140 150 145
hr 132 147 140
σ 1.0625 1.0625 1.0625

Classical core-SVP hardness 120.0 180.2 260.3
Quantum core-SVP hardness 105.6 164.7 243.8

Decryption failure probability -177.2 -160.4 -168.0

Table 3. Parameter choices for security levels I, III, V.

Form of sparse polynomial. As mentioned above, sparse polynomial space
is Sη which means that coefficient belongs to −1, 0, 1. In addition, our sparse
polynomial s(x) and r(x) have hs and hr of non-zero coefficients, respectively,
since they are sampled from HWT. It is wasting memory to store polynomial
itself. Hence, we store degrees of non-zero coefficient. The degrees of coefficient
1 are stacked from the beginning of the array, and those of coefficient -1 are
stacked backward from the end of the array. The smallest index indicating the
degree of coeffients -1 is denoted by neg start. Converting to degree arrays from
sparse polynomial is done by convToIdx.

Packing and Unpacking. Packing means that conversion to uint8 t array
from polynomial in Rq and Rp, or new form of sparse polynomial described
above. Assume that coefficients of a polynomial in Rq and Rp are shifted to the
right by 16 LOG Q and 16 LOG P, respectively.

Rq to bytes is the function to pack a polynomial in Rq to uint8 t array. We
pack 4 coefficients to 5 uint8 t elements of array since q is 1024. First, pack 8
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least significant bits of each coefficients to the corresponding uint8 t elements,
and then left 2 bits store in the last 5-th uint8 t element.

Rp to bytes is the function to pack a polynomial in Rp to uint8 t array.
Unlike Rq, we pack each coefficient to uint8 t element directly as p is 256.
However, we cannot use memcpy on polynomial itself since data type of polyno-
mial is uint16 t.

Sx to bytes is the function to pack a degree array of spare polynomial de-
scribed in 3.6.2 to uint8 t array. We pack each degree to uint8 t element di-
rectly as our degree n is 256.

Unpacking is to recover a polynomial or degree array from packed uint8 t

array.

Polynomial multiplication. Polynomial multiplication in SMAUG operates
with polynomial in Rq or Rp and Sη. This implies that we do not need NTT
and toom-cook algorithm.

Algorithm 7 poly mult add(): polynomial multiplication

Input polynomial a(x) ∈ Rq

Input degree array b of sparse polynomial and its length len(b)
Input integer neg start

Output polynomial b(x) ∈ Rq

1: for i from 0 to len(b) do
2: degree = b[i]
3: branch = 2 · ((i− neg start)≫ 7 ∧ 0x01)− 1
4: for j from 0 to n− degree do
5: b[degree+ j] = b[degree+ j] + branch · f [i];
6: end for
7: for j from n− degree to n do
8: b[degree+ j] = b[degree+ j]− branch · f [i];
9: end for
10: end for
11: Return b

Sampling a uniformly random matrix A, expandA. Sample pseudorandom
bytes of length the number of elements in A and covert each polynomial from
uint8 t array by Unpacking function.

Sampling a sparse polynomial, HWTh with hamming weight h. This
function is used for sampling sparse polynomial s(x) and r(x) having h non-zero
coefficients. The reason for uint64 t is most efficient data type for sampling
compared with other data types, uint8 t, uint16 t, and uint32 t. We use 10
bits for each degree and ternary value and drop 4 bits.
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Algorithm 8 expandA(): sampling a uniformly random matrix A

Input a seed ρ ∈ {0, 1}256
Output a uniformly random A ∈ Rk×k

q

1: buf ← XOF(ρ)
2: for i from 0 to k − 1 do
3: for j from 0 to k − 1 do
4: A[i][j] = bytes to Rq(buf + offset1 · i+ offset2 · j)
5: end for
6: end for
7: Return A

Algorithm 9 HWTh(): sampling a sparse polynomial

Input a seed τ
Output degree array arr of sparse polynomial s

1: count = 0
2: hash idx = 0
3: hash = XOF(τ)
4: while count < h do
5: for i from 0 to 5 do
6: offset = 10 · i
7: degree = (uint8 t)(hash[hash idx]≫ offset)
8: if s[degree] = 0 then
9: s[degree] = ((uint8 t)(hash[hash idx]≫ offset+ 8) ∧ 0x02)− 1
10: count = count+ 1
11: end if
12: end for
13: hash idx = hash idx+ 1
14: end while
15: Return arr = convToIdx(s)
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4 Performance analysis

In this section, we report performance results of C reference implementation.

4.1 Description of platform

Table 4 and 5 report performance results of the reference implementation and
the sizes. All benchmarks were obtained on one core of an AMD Ryzen 3,700x
processor with clock speed 3,589 MHz (as reported by /proc/cpuinfo) with
TurboBoost and hyperthreading disabled. The benchmarking machine has 64
GB of RAM and is running Debian GNU/Linux with Linux kernel version 5.4.0.
Implementation were compiled with gcc version 9.4.0 and the compiler flags as
indicated in the CMakeLists included in the submission package.

4.2 Performance of reference implementation

All cycle counts reported are the median of the cycle counts of 10,000 executions
of the respective function. The implementation are not optimized for memory
usage, but generally SMAUG has only very modest memory requirements. This
means that in particular our implementations do not need to allocate any mem-
ory on the heap.

Scheme Keygen Encapsulation Decapsulation

SMAUG128 73584 81684 88920
SMAUG192 106956 115128 124812
SMAUG256 191268 200520 210240

Table 4. Cycle counts for all parameter sets of SMAUG. Cycle counts were obtained
on one core of an AMD Ryzen 7 3700X. For each funtions includes cycles of packing to
bytes array from each data structure such as public key, secret key, and ciphertext

and randombytes sampling.

The secret key is consisted of a vector of secret polynomial of vector length
k and a random bytes t. The publc key is consisted of a seed of A and a vector
of polynomial b in Rk

q . The ciphertext is consisted of a vector of polynomial c1
in Rk

p and a polynomial c2 in Rp.

Scheme sk pk ct

SMAUG128 174 (846) 672 768
SMAUG192 185 (1177) 992 1024
SMAUG256 182 (1814) 1632 1536

Table 5. Key and ciphertext sizes in bytes. The numbers in parenthesis are the sum
of secret key sk sizes and public key pk sizes.
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5 Security

Indistinguishability against adaptive Chosen Ciphertext Attacks (IND-CCA2) is
regarded as a strong security notion for the key encapsulation mechanisms. In
the IND-CCA2 security game, the adversary can access to the public key and the
decapsulation oracle, with adaptively chosen ciphertexts. That is, it can query a
sequence of ciphertexts ctxti and receives KEM.Decap(sk, ctxti), adaptively. At
some point during the run-time, the adversary may gets a pair (K, ctxt), where
K be either a session key corresponds to a ciphertext ctxt or a random key (with
ctxt output from KEM.Encap). In the end, the adversary outputs its guess on
whether the pair is a correct pair or not. It wins if the guess is correct.

Our key encapsulation mechanism SMAUG.CCAKEM has IND-CCA2 secu-
rity. Since our KEM is constructed based on the Fujisaki-Okamoto transform [23,
24] upon a public key encryption scheme SMAUG.CPAPKE, we first see the se-
curity notion for the underlying public key encryption scheme. If Indistinguisha-
bility against Chosen Plaintext Attacks (IND-CPA) security of the underlying
PKE is guaranteed, then the IND-CCA2 security of our SMAUG.CCAKEM is also
guaranteed due to FO transform.

IND-CPA is a security notion of public key encryption schemes. In the IND-
CPA game, the adversary has accesses to the public key and the encryption
oracle. At some point during the run-time, the adversary queries two messages
to the challenger and receives a ciphertext of one of the messages. It wins if it
guesses correctly on which message is used for the encryption.

5.1 Security definition

5.1.1 Security definitions and reductions.

Definition 3 (Indistinguishablity under Chosen Plaintext Attacks (IND-
CPA)). For a (randomized) public key encryption scheme PKE = (KeyGen, Enc,
Dec), an IND-CPA adversary A, with a sub-algorithm Asub, has an access to the
public key pk (as a result, it has accesses to the encryption oracle Enc(pk, ·)).
Then the advantage of the IND-CPA adversary A is

AdvIND−CPA
PKE (A) =∣∣∣Pr [ b = b′

(sk, pk)← KeyGen; (M0,M1)← Asub(pk);
b← {0, 1}; b′ ← A(pk,Enc(pk,Mb))

]
− 1

2

∣∣∣.
Definition 4 (Indistinguishablity under adaptive Chosen Ciphertext
Attacks (IND-CCA2)). For a (randomized) key encapsulation mechanism
KEM = (KeyGen, Encap, Decap), an IND-CCA2 adversary A has accesses to the
public key pk and the decapsulation oracle Decap(sk, ·). It can adaptively query
ciphertexts to the oracle. Then the advantage of the IND-CCA2 adversary A is

AdvIND−CCA2
KEM (A) =∣∣∣Pr [ b = b′

(sk, pk)← KeyGen; (K0, ctxt)← Encap(pk);
K1 ← K; b← {0, 1}; b′ ← A(pk, (Kb, ctxt))

]
− 1

2

∣∣∣.
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We first note that the underlying public key encryption scheme SMAUG.PKE is
IND-CPA secure against any (possibly quantum) adversary, assuming MLWE,
MLWR and the pseudo-randomness of PRF. We give the corresponding theorem
with a sketch of the proof.

Theorem 2 (IND-CPA security of SMAUG.PKE). Assume expandA and
HWT are random oracles. In the (quantum) random oracle model, for any IND-
CPA adversary A for SMAUG.PKE, there exist three adversaries B0, B1 and B2
of the PRF, MLWE and MLWR with roughly the same running time as A, such
that

AdvIND−CPA
SMAUG.PKE(A) ≤ AdvPRFexpandA(B0)+AdvMLWE

n,q,k,k,η,hs
(B1)+AdvMLWR

n,p,q,k+1,k,η,hr
(B2).

Proof (sketch). Assuming the pseudo-randomness of the PRFand the hardness

of the MLWE problem, the reconstructed public-key (A⊤ | b⊤)⊤ ∈ R(k+1)×k
q is

pseudo-random. Hence the ciphertext c = (c⊤1 , c2) ∈ Rk+1
p can be rewritten as

c =

[
c1
c2

]
=

⌊
p

q
·
(

A
b⊤

)
· r
⌉
+

p

t
·
[
0
µ

]
,

since t | p | q. Assuming the hardness of MLWR problem, c is indistinguishable

from the random sample from Rk+1
p added by the vector

p

t
·
[
0
µ

]
, which is also

a random sample in Rk+1
p . ⊓⊔

Tight reduction in ROM. We first give the tight reduction from IND-CPA
security to IND-CCA2 security in the random oracle model (ROM), which is
basically FO transform [23, 24] with some decryption failure probabilities [27].
Since the reduction is tight, we can directly analyze the security of our key
encapsulation scheme SMAUG.KEMfrom the following theorem.

Theorem 3 (IND-CPA-PKE ⇒ IND-CCA2-KEM, [27]). Assume G and H
are random oracles. For any classical IND-CCA2 adversary A for SMAUG.KEM,
there exists an IND-CPA adversary B for SMAUG.PKE with roughly the same
running time as A, such that

AdvIND−CCA2
SMAUG.KEM(A) ≤ AdvIND−CPA

SMAUG.PKE(B) + 4qROδ,

where qRO is the upper bound of the number of the random oracle queries that
the adversary can make and δ is a decryption-failure probability.

Non-tight reduction in QROM. For the security reductions in the quantum
random oracle model (QROM), the adversary now has accesses to quantum
random oracles. We shall follow the proofs in Kyber [14] and Saber [21], based
on the security reduction of the FO transforms in the QROM [27, 33].
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Theorem 4 ((Non-tight) IND-CPA-PKE⇒ IND-CCA2-KEM in QROM).
Assume expandA, G and H are random oracles. For any quantum adversary A
who can access to the quantum random oracles expandA, G and H, there exists
an IND-CPA adversary B for SMAUG.PKE, such that

AdvIND−CCA2
SMAUG.KEM ≤ 2qRO ·

√
AdvIND−CPA

SMAUG.PKE + 1/|M|+ 4qRO

√
δ,

where qRO is the upper bound of the number of the random oracle queries that
the adversary can make and δ is a decryption-failure probability.

Tight reduction in QROM under non-standard security notion. Since
the Theorem 4 is a non-tight reduction, it only gives the asymptotic security of
SMAUG.KEM. We therefore give a tight reduction for the security analysis as-
suming a non-standard assumption, that the deterministic version of the PKE is
pseudo-random in the QROM, following [27, 33]. We remark that we are not
aware of any quantum attack on deterministic version of SMAUG.PKE (and
even for other PQC PKE schemes) that performs better than breaking the
MLWE problem. With this assumption we give the following theorem.

Theorem 5 ((Tight) IND-CPA-PKE⇒ IND-CCA2-KEM in QROM, [33]).
Assume expandA, G and H are random oracles and assume that the underly-
ing deterministic SMAUG.DPKE is pseudo-random in QROM. For any quantum
adversary A who can access to the quantum random oracles expandA, G and
H, there exist adversaries B0, B1, B2 and B3 for PRF, MLWE, MLWR and the
pseudo-randomness of SMAUG.DPKE, such that

AdvIND−CPA
SMAUG.PKE(A) ≤ AdvPRF(B0) + AdvMLWE

n,q,k,ℓ,η(B1) + AdvMLWR
n,p,q,k,ℓ,η(B2)

+ AdvPRSMAUG.DPKE(B3) + 8q2ROδ,

where qRO is the upper bound of the number of the random oracle queries that
the adversary can make and δ is a decryption-failure probability.

5.2 Security strength categories

We target the security of our SMAUG.KEM to the NIST PQC security levels 1,
3 and 5, which is at least as secure as Kyber and Saber. Targeting such security
levels we use the Core-SVP methodology, a conservative security estimation
method in lattice-based cryptography (see section 5.3), and give the following
parameter sets correspond to the security levels.

5.3 Cost of known attacks

For the concrete security analysis, we list the best known lattice attacks and the
required cost upon attacking our key encapsulation mechanism SMAUG.KEM.
All the best known attacks are essentially finding a nonzero short vector in the
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Parameters sets SMAUG128 SMAUG192 SMAUG256
Target security I III V

Classical core-SVP hardness 120.0 180.2 260.3
Quantum core-SVP hardness 105.6 164.7 243.8

Table 6. Parameter choices for security levels I, III, V.

Euclidean lattices, using the Block–Korkine–Zolotarev (BKZ) lattice reduction
algorithm [16, 26, 34].

The BKZ algorithm is a lattice basis reduction algorithm that uses the Short-
est Vector Problem (SVP) solver repeatedly to small-dimensional sub-lattices,
which we call a block of size β, rather than in the entire high-dimensional lat-
tice. β-BKZ is the BKZ algorithm using SVP solver in the block size β, and the
parameter b determines the quality of the resulting basis and the time complex-
ity. Indeed there is a quality/time trade-off: If β gets larger, the better quality
will be guaranteed but also the time complexity for the SVP solver will be ex-
ponentially increased. The time complexity of the β-BKZ algorithm is same
with the SVP solver for dimension β with a polynomial factor. Hence the time
complexity differs depending on the SVP solver used. The most efficient SVP al-
gorithm is using the sieving method proposed by Becker et al. [10] which takes
time ≈ 20.292β+o(β) with classical solver. The fastest known quantum variant was
recently proposed by Chailloux and Loyer in [15], and takes time ≈ 20.257b+o(b).

Based on the BKZ algorithm, we will follow the Core-SVP methodology
as in [4] and in the subsequent lattice-based post-quantum schemes [3, 14, 20–
22], which is regarded as a conservative way to set the security parameters. We
ignore the polynomial factors and the o(β) terms in the exponent for the time
complexity of the BKZ algorithm.

We give the best known attacks for MLWE, namely primal attack, dual at-
tack and their hybrid variants with the Core-SVP hardness of the attacks. We
remark that any MLWEn,q,k,ℓ,η instance can be viewed as an LWEq,nk,nℓ,η in-
stance. Even though MLWE problem has some extra algebraic structure com-
pared to the LWE problem, we do not currently have any attack advantaged by
this structure. Hence we analyze the hardness of the MLWE problem over the
structured lattices as the hardness of the corresponding LWE problem over the
unstructured lattices.

When dealing with the hardness of the MLWR problem, however, we treat
it as an MLWE problem, since there are no known attacks that uses the of
the deterministic error term in MLWR structure. Further more, the reduction
from the (M)LWE problem to the (M)LWR problem were also given by Banerjee
et al. [9] and the improvements [6, 7, 12]. Basically, an MLWR sample given by
(A, ⌊p/q ·A·s⌉ mod p) for uniformly chosen A← Rk

q and s← Rℓ
p can be rewrit-

ten as (A, p/q ·(A ·s mod q)+e mod p). This sample can be transformed to an
MLWE sample over Rq by multiplying q/p as (A,b = A · s+ q/p ·e mod q). We
assume that the error term in the resulting MLWE sample is a random variable,
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uniform in the interval (−q/2p, q/2p], so that we can estimate the hardness of
the MLWR problem as the hardness of the corresponding MLWE problem.

We summarize the cost of the known attacks in Table 7. The security is
estimated via lattice estimator [2] and is represented as core-SVP hardness.

Parameters sets SMAUG128 SMAUG192 SMAUG256
Target security I III V

Classical core-SVP hardness for MLWE

Primal attack 120.0 187.2 317.1
Primal attack (BDD) 120.9 188.5 319.5
Primal attack (hybrid) 121.3 189.0 292.2

Dual attack 125.9 195.3 329.1
Dual attack (hybrid) 122.7 180.2 262.0

Classical core-SVP hardness for MLWR

Primal attack 120.0 187.8 317.7
Primal attack (BDD) 121.6 189.2 320.7
Primal attack (hybrid) 121.6 189.8 290.0

Dual attack 126.1 195.9 330.0
Dual attack (hybrid) 122.4 180.2 260.3

Quantum core-SVP hardness for MLWE

Primal attack 105.6 164.7 279.1
Primal attack (BDD) 106.5 166 281.3
Primal attack (hybrid) 106.9 166.4 269.2

Dual attack 110.8 171.9 289.6
Dual attack (hybrid) 111.5 165.6 245.1

Quantum core-SVP hardness for MLWR

Primal attack 105.6 165.3 279.6
Primal attack (BDD) 107.1 166.6 282.3
Primal attack (hybrid) 107.1 167.2 267.1

Dual attack 111 172.4 290.4
Dual attack (hybrid) 111.5 165.7 243.8

Table 7. Cost of known attacks. The security is represented as core-SVP hardness.

5.3.1 Description of Primal attack. Given an LWE instance (A,b) ∈
Zk×ℓ
q × Zk

q , we first define a lattice Λm = {v ∈ Zℓ+m+1 : Bv = 0 mod q},
where B =

(
A[m] | Idm | b[m]

)
∈ Zm×(ℓ+m+1)

q , where A[m] is the uppermost
m × ℓ sub-matrix of A and b[m] is the uppermost length m sub-vector of b
for m ≤ k. Then, short non-zero vector in the lattice Λm can be transformed
to a short non-trivial solution to the LWE equation. Primal attack solves the
SVP problem in the lattice Λm using β-BKZ, increasing the block size β, for all
possible m.

5.3.2 Description of Dual attack. Given an LWE instance (A,b) ∈ Zk×ℓ
q ×

Zk
q , we first define a lattice Λ′

m = {(u,v) ∈ Zm × Zℓ : A⊤
[m]u+ v = 0 mod q},

where A[m] is the uppermost m × ℓ sub-matrix of A for m ≤ k. Then, again,
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short non-zero vector in the lattice Λ′
m induces a short non-trivial solution to

the LWE problem. Dual attack solves the SVP problem in the lattice Λ′
m using

β-BKZ, increasing the block size β, for all possible m.

5.3.3 Description of the hybrid variants. For both Primal and Dual
attacks, there are some variants combining the attack with the combinatorial
attacks or the meet-in-the-middle (MITM) attack, which we call hybrid attacks.
These variants are usually slower than the original attacks, however, the attacks
may benefit by the special choice of the secret used in the LWE problem - small or
sparse. By exploiting the secret as a preprocessing, or using the MITM approach
with guessing the part of the sparse secret, the attacks may improved compared
to the original attacks.

Since hybrid attacks are combinations of lattice reduction attacks and combi-
natorial/MITM attacks, it is not natural to apply the Core-SVP method directly
to the hybrid attacks, focusing only on the BKZ block-size, since it may ignore
the part and parcel of the attack. We, instead, näıvely extend the Core-SVP
methodology to the case of the hybrid attacks by using the Core-SVP methodol-
ogy on the lattice reduction parts, and then divide by the probability of success
of the combinatorial/meet-in-the-middle attack parts. We will estimate the cost
by joining the information-theory and Core-SVP methodology. That is, we find
the best block-size β and calculate c · β − log2((Pr[guess is correct])) where c is
either cC = 0.292 or cQ = 0.257. Since the success probability of the guessing is
independent of the BKZ algorithm, this can be viewed as a näıve extension of
Core-SVP method to the hybrid attacks.

5.3.4 Beyond Core-SVP methodology. We also analyze the cost of the
attacks other than the Primal and Dual attacks variants. Algebraic attacks like
Arora-Ge attack and the variants [8, 1] using Gröbener’s basis or Coded-BKW
attacks [31, 25] are also considered, using the lattice estimator [2], but they have
much larger attack costs compared to the previously introduced attacks.
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6 Summary or Conclusion

Our key encapsulation scheme takes the approaches of FO transform in the
QROM to a public key encryption scheme which is IND-CPA secure based on
the MLWE and MLWR assumptions. Our goal was to make the underlying PKE
more smaller and simpler, so that the secure implementation could be done easily.
Keeping this in our mind, we found that it is much simpler to use MLWR as-
sumption for the encryption, not just for the key generation like in Saber.

The resulting PKE and KEM are now have smaller sizes compared to NIST’s
standard PQC KEM Kyber, and more efficient encryption and encapsulation al-
gorithm then NIST’s round 3 finalist Saber. The implemented SMAUG.PKE and
SMAUG.KEM are also following exactly the quantumly secure FO transforms.

Future works and directions. First, we will keep studying on the hardness of
sparse LWE problem and sparse LWR problem. These variants are already stud-
ied for a while, but more effort is needed since the hybrid attacks are especially
strong to the sparse secret. Secondly, we will implement more faster multiplica-
tion befit on the sparse polynomials, for the later release of the SMAUG. Third,
we will give optimized implementation of SMAUG in various devices. Fourth, we
will add more formal security analysis including side-channel attacks, and give
secure implementation against it.
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A Correctness

We here give the proof of Theorem 1.

Theorem 6. Let A, b, s, e and r are defined as in SMAUG.CPAPKE. Let e1 ∈
Rk

Q and e2 ∈ RQ be the rounding errors introduced by scaling and rounding

A · r and bT · r, i.e. e1 = q
p · ⌊

p
q · A · r mod p⌉ − (A · r mod q) and e2 =

q
p · ⌊

p
q · b

T r mod p⌉ − (bT r mod q). If we set

δ = Pr
[
∥rTe+ sTe1 + e2∥∞ > q/2t

]
,

then the decryption failure probability of SMAUG.CPAPKE scheme is less than δ.

Proof. Recall that t | p | q and that the rounding errors satisfy

c1 =
p

q
· (A · r+ e1) mod p and c2 =

p

q
·
(
bT r+ e2

)
+

p

t
· µ mod p.

By the definition of e1 and e2, each coefficient of e1 and e2 is in Z ∩ (− q
2p ,

q
2p ].

Thus, decryption of a ciphertext with respect to a message µ and a randomness
r can be written as⌊

t

p
· (c2 + cT1 · s mod p)

⌉
=

⌊
t

q
· rT · (AT s+ b) + µ+

t

q
· (sTe1 + e2)

⌉
mod t

= µ+

⌊
t

q
·
(
rTe+ sTe1 + e2

)⌉
mod t

and is equal to µ if and only if every coefficient of rTe + sTe1 + e2 is in the
interval [− q

2t ,
q
2t ). This concludes the proof of the theorem. ⊓⊔


