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Abstract. We propose a REinforced modified Dual-Ouroboros based
on Gabidulin codes, shortly called REDOG to the KpqC conpetition
round 2. This is a code-based cryptosystem based on the well-known
rank metric codes, Gabidulin codes. The public key sizes of REDOG are
4.38KB, 14.11KB, 32.66KB at the security levels of 128, 192, 256 bits
respectively. There is no decoding failure in decryption. REDOG is IND-
CPA. This paper describes the current status of REDOG and its attacks
for KpqC conpetition round 2.

Keywords: Modified Dual-Ouroboros · Gabidulin code · λ-dimensional
subspace · KpqC conpetition Round 2 .

Changelog

The following are the changes of (ALG)

– Considering about selection of the secret key S.
It is described in Section 3.2.

– Considering about decryption failure(depending on how the weight for the
error vector e “ pe1, e2q was configured).
It is described in Section 3.3.

– Considering about new attacks on the rank-metric code(BBB+, BBC+,
BBB+23 attacks).
It is described in Section 4.3.

‹ This work is submitted to ‘Korean Post-Quantum Cryptography Competition’
(www.kpqc.or.kr). Jon-Lark Kim is a principal investigator.
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– Reflecting the changes mentioned above, modifications have been made to
the parameters in the setup part and the selection of the secret key S in the
key generation part of the REDOG algorithm.
These changes are reflected in Section 3 specification.

1 Introduction

In this paper, we introduce a cryptographic system based on rank-metric codes
called REDOG. Cryptographic systems play a crucial role in ensuring secure
communication and information protection.

We initially proposed the REDOG system at the 2022 KpqC competition.
Subsequently, various attacks were proposed on multiple occasions. This paper
describes the new version of REDOG and its modifications following these at-
tacks and explains about modified version to KpqC conpetition round 2.

After the initial proposal of REDOG in the 2022 KpqC competition, several
attacks suggested by T. Lange et al. occurred on July 13, 2023, and August
9, 2023. We provided solutions and responses for each attack. The effectiveness
of these measures was later validated in a document presented by Lange et
al. on November 15, 2023. Additionally, further considerations were made for
various attacks on the newly proposed rank-metric code, and adjustments were
implemented in areas prone to decoding and decryption failures.

Through these processes, we were able to propose parameters superior to
those initially suggested for each security level in 2022. The history of attacks
can be checked in [17], with versions released on August 8, August 10, and
November 15.

1.1 Design rationale

The original version of the McNie series called McNie [21] had the features of both
McEliece and Niederreiter cryptosystems and was designed to be secure against
known structural attacks on code-based cryptosystems. Gaborit [22] suggested
a message recovery attack that reduced the dimension of a random code in the
public key. The security level of McNie decreased by almost a factor of 2, and
the original parameters suggested for McNie suffer from relatively high decryp-
tion failure probability since LRPC (low-rank parity check codes) decoding is a
probabilistic decoding algorithm.

To overcome those disadvantages, Dual-Ouroboros, a modification of Mc-
Nie, was proposed [10]. It was a non-cyclic dual version of Ouroboros-R [2],
which also employed the LRPC codes. Kim et al. [12] suggested a modified
Dual-Ouruboros(DO.Gab-PKE), which is a variant of Dual-Ouroboros obtained
by replacing LRPC codes from Dual-Ouroboros by Gabidulin codes over Fqm .
Gadibulin rn, ks codes have the advantage of the zero-decoding failure probabil-
ity and have a fast decoding complexity of Opn2q operations over Fqm [15] and an
improved decoding complexity of Opnm2 logmq operations over the ground field
Fq. Moreover, the modified DO.Gab-PKE using Gabidulin codes provides much
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stronger security against known plaintext-recovery attacks, including Overbeck’s
attack [18]. It was also shown in [12] that the DO.Gab-PKE achieves IND´ CPA
security, and the parameters achieve relatively lower key sizes compared to the
other code-based PKE that has no decryption failure.

However, the modified DO.Gab-PKE did not specify the secret key S se-
lection to ensure the modified DO’s security.Gab-PKE. If the secret key S is
invertible over Fqm without any restriction, then the modified DO.Gab-PKE
would be incorrect. If S is invertible over Fq without any restriction, the modi-
fied DO.Gab-PKE would be insecure. Therefore, we need to select S specifically
for the modified DO.Gab-PKE can be secure. This reinforced version was called
the modified DO.Gab[Λ]-PKE in [14]. Therefore, in this proposal, we describe
the modified DO.Gab[Λ]-PKE in [14], which is shortly called REDOG meaning
a REinforced modified Dual-Ouroboros based on Gabidulin codes.

There were several identified issues in the initial version of REDOG which
is proposed to KpqC conpetition round 1. One concern was the potential for
decryption failure depending on how the weight for the error vector e was config-
ured. Additionally, there was a lack of consideration for various newly proposed
attacks on the rank-metric code. Efforts have been made to address these issues,
and by making slight modifications to the cryptographic scheme, it was possible
to further reduce the key size.

1.2 Advantages and limitations

At first, REDOG adopts the same scheme as the modified DO.Gab-PKE [12] and
just clearly specifies how to select the secret key S to avoid the Frobenius weak
attack [13]. By using the same encryption algorithm, the structural stability of
the algorithm and the resistance to known attacks can be brought as it is. More-
over, by selecting the secret key S to be an invertible matrix over a λ-dimensional
subspace of Fqm , the public key matrix does not generate a r-Frobenius weak
code [16].

However, after we proposed the REDOG at the KpqC competition round
1, we had some problems with decoding and decryption. During the process
of making adjustments to enhance defense against multiple attacks, we were
able to prevent decoding and decryption failures through slight modifications
to the cryptographic algorithm. Additionally, we considered various rank-metric
attacks that were not previously taken into account. As a result, the size of the
public key, which was initially 14.25 KB when proposed at the KpqC competition
round 1 to achieve a 128-bit security level, has significantly decreased to 4.38
KB while maintaining the same security level.

2 Preliminaries

In this section, we introduce essential concepts related to rank metric codes and
discuss some key elements used in our cryptographic algorithm.
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2.1 Rank metric codes

Let q be a prime power and Fqm be the finite field with qm elements. Consider
a basis tβ1, ..., βmu of Fqm over the base field Fq.

Definition 1. An rn, ks linear code of length n and dimension k is a linear
subspace C of the vector space Fnqm , i.e. C Ď Fnqm . Let ` ď k , then an rn, `s linear
subcode C1 is an rn, `s linear code such that C1 Ď C.

Definition 2. Let x “ px1, ..., xnq P Fnqm . For each 1 ď j ď n, xj “
řm
i“1 cijβi

where cij P Fq. The rank of x in Fq, denoted by wtRpx) is defined as wtRpx)=wtRpX)
where X “ rcijs P Fmˆnq .

2.2 Gabidulin codes and partial cyclic codes

Definition 3. Let x “ px0, ..., xn´1q P Fnqm . The circulant matrix Cirnpxq in-
duced by x is defined as

Cirnpxq “
“

xi´j pmod nq

‰

ij
“

»

—

—

—

–

x0 xn´1 ¨ ¨ ¨ x1
x1 x0 ¨ ¨ ¨ x2
...

...
...

...
xn´1 xn´2 ¨ ¨ ¨ x0

fi

ffi

ffi

ffi

fl

The k ˆ n-partial circulant matrix induced by x, denoted by Cirkpxq is defined
as the first k rows of Cirnpxq.

Lau and Tan [13] defined the following code generated by Cirkpxq.

Definition 4. An rn, ks-partial cyclic code PCn,krxs generated by x P Fnqm is a
linear code with generator matrix Cirkpxq

These circulant matrices will be used as generator matrices of Gabidulin
codes as in Section 3.3 in order to reduce the key sizes.

The following are the definitions for the Moore matrix and Gabidulin codes.

Definition 5. Denote r`s “ q` as the `th Frobenius power for an integer `.
A matrix G “ rGijs P Fkˆnqm is called a Moore matrix induced by g if there
exists a vector g “ pg1, ..., gnq P Fnqm such that the ith row of G is equal to

gri´1s “ pg
ri´1s
1 , ..., g

ri´1s
n q for 1 ď i ď k, i.e., G is of the form

G “

»

—

—

—

–

g1 g2 ¨ ¨ ¨ gn

g
r1s
1 g

r1s
2 ¨ ¨ ¨ g

r1s
n

...
...

...
...

g
rn´1s
1 g

rn´1s
2 ¨ ¨ ¨ g

rn´1s
n

fi

ffi

ffi

ffi

fl

. (1)

Similarly, we define Gr`s “
”

G
r`s
ij

ı

. For any set S Ă Fnqm , we denote Spr`sq “

tsr`s|s P Su
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Definition 6. (Gabidulin code) Let g P Fnqm with wtRpg) = n ď m. The rn, ks
Gabidulin code Gabn,kpgq over Fnqm of dimension k with generator vector g is
the code generated by a Moore matrix G induced by g in the form of Equation
(1).

Theorem 1. There exists a Moore Matrix H P Fpn´kqˆnqm such that H is a
parity-check matrix of a Gabidulin code. In other words, the dual of a Gabidulin
code is also a Gabidulin code.

The error-correcting capability of Gabn,kpgq is r “
X

n´k
2

\

. There exist effi-
cient decoding algorithms for Gabidulin codes that can correct errors up to rank
r (for instance [15] with decoding complexity 5{2 n2 ´ 3{2 k2).

Definition 7. (r-Frobenius weak) Let C be an rn, ks-linear code. We say that
C is r-Frobenius weak if for some s relatively prime to m and for a generic
e P Fnqm of rank r, the space U spanned by the elements of rank one in Cext “
řr´1
i“0

`

C ` xeyFqm

˘rsis
, fulfills C X U “ t0u.

The algorithm of Frobenius weak attack [13] is as follows.

Algorithm : FrobeniusWeakAttack

Data : y “mGpub ` e (a ciphertext where m is the plaintext), the public key

pk “ Gpub with parameter r “ wtRpeq

Result : The plaintext m

1 Construct the matrix

Gpub,ext “

»

—

—

—

—

—

—

—

–

Gpub

y
...

G
rr´1s
pub

yrr´1s

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

2 Compute the space U generated by the elements of rank one in Cext “ xGpub,extyFqm .

3 Compute u “dimFqm pUq.
4 if u ď n´ k then

5
ˇ

ˇ

ˇ
Compute a parity-check matrix HU P Fpn´uqˆn

q for U .

6
ˇ

ˇ

ˇ
Solve ypHU q

T
´mrGpubpHU q

T
s for m,

7
ˇ

ˇ

ˇ
return m.

8 else

9
ˇ

ˇ return K
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3 Specification

We describe key generation, encryption, and decryption of REDOG as follows.

Setup: Generate global parameters with integers m,n, l, r, k such that ` ă n

and t1 ` λt2 ď r ď

Z

n´ k

2

^

. Output parameters = pm,n, `, k, r, λ, t1, t2q.

Key.Gen: Select H “ rH1H2s, H2 P GLn´kpFqmq, a parity check matrix of a
r2n´ k, ns

Gabidulin code C, with syndrome decoder Φ correcting r errors where r “
Z

n´ k

2

^

. Select a full rank matrix M P F`ˆnqm . Select a λ-dimensional sub-

space Λ Ă Fqm , seen as Fq-linear space, and select S´1 P GLn´kpΛq and
P P Fnˆnqm .

Output public key and secret key pair
pk “ pM,F “MP´1HT

1 rH
T
2 s
´1Sq, sk “ pP,H, S, Φq.

Encppk,m P F`qmq: Let m P F`qm be the plaintext message to be encrypted.

Generate uniformly random vector e “ pe1, e2q P F2n´k
qm with wtRpe1q “ t1,

and wtRpe2q “ t2, where e1 P Fnqm and e2 P Fn´kqm . Compute m1 “ m`Hpeq.
Compute c1 “ m1M ` e1 and c2 “ m1F ` e2.

Output ciphertext c “ pc1, c2q.

Decpsk, c “ pc1, c2qq: Compute
c1P

´1HT
1 ´ c2S

´1HT
2

“ m1MP´1HT
1 ` e1P

´1HT
1 ´m1MP´1HT

1 rH
T
2 s
´1SS´1HT

2 ´ e2S
´1HT

2

“ e1P
´1HT

1 ´ e2S
´1HT

2

“ pe1P
´1,´e2S

´1q

„

HT
1

HT
2



Let e1 “ pe1P
´1,´e2S

´1q. Since wtRpe
1q ď r, apply ΦH to obtain e1.

Compute e1 “ e1P
´1P and e2 “ e2S

´1S to obtain e “ pe1, e2q.
Finally, solve the system m1G “ c1 ´ e1 to recover m “ m1 ´Hpeq.

3.1 Notation

All the notations for specification are given above.

3.2 Specification of REDOG

In the previous version of REDOG which is proposed to KpqC competition
round 1, we take the secret key S in some conditions. To avoid the decryption
failure, we consider the matrix S´1 over some λ-dimensional subspace Λ Ă Fqm .

In the document [17], Lange et al. show the key-recovery attack from [14] and
show that its applicability is not as general as claimed. The attack is effective
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only when P P GLnpFqq, in contrast to the assertion in [14], where it is mentioned
for P is an isometry. The key-recovery attack operates on the assumption that
given M , the second part of the public key (F “ MP´1HT

1 rH
T
2 s
´1S) can be

represented as a system of linear equations over Fq using the coordinates of
H 11 “ H1pP

´1qT and H 12 “ H2pS
´1qT . The claim in [14] is that if H 11 and H 12

are Moore matrices, the system becomes overdetermined, reducing the number
of unknowns. This assertion is also utilized in the plaintext-recovery attack to
show that the public code is a subcode of a Gabidulin code. Consequently, Lange
et al. demonstrate that H 11 “ H1pP

´1qT is a Moore matrix only if P P GLnpFqq
and not in the general case where P is an isometry. Similarly, H 12 “ H2pS

´1qT

is a Moore matrix when S P GLn´ k.
We adopt the approach of selecting matrices S and S´1 and addressing the

associated decoding failure in Sections 7 and 8 [17]. These methods are incorpo-
rated with slight modifications to the key generation part of the existing algo-
rithm. As stated in Theorem 8.4, the modified version of REDOG is proven to
be correct without encountering any decryption failure.

Throughout this process, opting for a prime value of m during selection
serves to prevent a reduction in the number of variables within the system of
equations. Consequently, we have adjusted the parameter m from its initially
proposed values, opting to designate it as a prime number.

3.3 Selection for pe1, e2q

Since the initial observation of the rank and range of error e on July 13, 2023,
we have proposed a new method for error selection. However, in the REDOG
encryption algorithm based on the slightly modified key generation proposed by
[17], the optimal selection of error e “ pe1, e2q has also been newly suggested.
Their document [17] in Section 9 presents an extreme choice method and its
consequences (computational cost) for wtRpe1q “ t1 and wtRpe2q “ t2.

To make the best attacks as hard as possible, they consider attacks starting
from the left with (parts of) c1 and M or from the right with c2, F , and parts of
c1 and M . The attacks and sub-attacks differ in how many columns they require,
depending on the dimension and rank, and they scan the whole range of possible
lengths from both sides.

Since n “ ` ` t ` 1, for the t parameter in REDOG, for small choices of
t1 ď t the attack may take a punctured system on c1 and M to recover m1,
similar to the attacks which uses the GRS algorithm, or include part of c2 and
F while accepting an error of larger rank including part of t2. Hence, the search
from the left may start with the puncturing of c1. Once parts of c2 are included,
the rank typically increases by one for each extra position, again because m is
much larger than t1 and t2, until reaching t1` t2, after which the rank does not
increase with increasing length.

If t1 ą t ` 1 parts of c2 need to be considered in any case, with the corre-
sponding increases in the rank of the error, in turn requiring more positions to
deal with the increased rank, typically reaching t1 ` t2 before enough positions
are available. Starting from the right, the attacker will always need to include
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parts from c1 to even have an invertible system. Hence, the attack is hardest for
t1 maximal in r ě t1`λt2 provided that the brute-force attack is excluded. This
suggests choosing t2 “ 1, t1 “ r´ λ, as then the attacker is forced to decode an
unstructured code with an error of rank t1 ` t2 “ r ´ λ` 1.

After a computer search, they suggest the parameters for t1 and t2 with
the given parameters which we suggested for the security of 128, 192, and 256.
So we have adopted this approach, set t1 and t2 accordingly, and propose new
parameters that satisfy each security level.

3.4 Parameter sets

We present our proposed parameters for REDOG in Table 1. We consider M to
be an any p`ˆ nq full rank matrix, and S´1 to be an pn´ kq ˆ pn´ kq circulant
matrix. The public key size is sizepk “ m`pn´ kq{8 bytes, the secret key size is
sizesk “ pn

2`p3n´2kqmq{8 bytes, and the ciphertext size is sizect “ p2n´kqm{8
bytes.

After the modification of λ and the error weight t1 “ wtRpe1q, t2 “ wtRpe2q,
the costs go higher so we obtained calculation results show that smaller param-
eters than the previous parameters which we suggested for the KpqC competi-
tion round 1 can be used to satisfy a given security level. pn, k, `,m, r, λ, t1, t2q “
p30, 6, 25, 59, 12, 3, 6, 2q, pn, k, `,m, r, λ, t1, t2q “ p44, 8, 37, 83, 18, 3, 12, 2q and pn, k, `,m, r, λ, t1, t2q “
p58, 10, 49, 109, 24, 3, 15, 3q parameters satisfy security level of 128, 192 and 256,
respectively.

Table 1. Proposed parameters for REDOG

Instance pn, k, `, q,m, r, λ, t1, t2q sizepk sizesk sizect Security level

REDOG-1 (30,6,25,2,59,12,3,6,2) 4.17KB 0.65KB 0.38KB 128

REDOG-2 (44,8,37,2,83,18,3,12,2) 13.66KB 1.43KB 0.82KB 192

REDOG-3 (58,10,49,2,109,24,3,15,3) 31.87KB 2.50KB 1.44KB 256

To compare REDOG with other code-based algorithms such as HQC, BIKE,
and Classic McEliece, all of which are based on the Hamming metric and ad-
vanced to the 4th round of the NIST PQC competition, we display their security
level and the corresponding key sizes of these algorithms.

Note that HQC and BIKE algorithms have decryption failure which is a
disadvantage although their key sizes are much smaller than REDOG. REDOG
does not have a decryption failure. Classic McEliece has no decryption failure
but has a large public key size of 1047KB at the 256 bits of security level while
REDOG has a much smaller public key size of 31.87 KB. Therefore, REDOG is
a strong competitor for HQC, BIKE, and Classic McEliece.
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Table 2. Security level and key sizes of HQC [1]

Instance pk size sk size ct size

hqc-128 2,249bytes 40bytes 4,481bytes

hqc-192 4,522bytes 40bytes 9,026bytes

hqc-256 7,245bytes 40bytes 14,469bytes

Table 3. Security level and key sizes of BIKE [3]

Quantity Size AES-128 AES-192 AES-256

Private key wrlog2prqs 2,130bits 2,296bits 4,384bits

Public key n 20,326bits 43,786bits 65,498bits

Ciphertext n 20,326bits 43,786bits 65,498bits

Table 4. Parameters, security level and key sizes of Classic McEliece [19]

Variant n m t k “ n´mt pk size sk size Security level

mceliece6960119 6960 13 119 5413 1047KB 13.6KB 256

mceliece8192128 8192 13 128 6528 1358KB 13.75KB 256

4 Security

This section covers various aspects related to the security of the REDOG crypto-
graphic system. We describe issues such as the RSD problem, the DRSD problem
arising from the configuration of matrices for encryption, and various decoding
methods for Rank-metric codes. The presented results provide parameters sat-
isfying security levels of 128, 192, and 256. Additionally, we introduce an alter-
native method proposed by Lange et al. for setting the rank weight t1, t2 of the
error vector e1, e2.

4.1 Security definition

Problem 1 ([14]) (Rank syndrome decoding (RSD) Problem) Let H be a full
rank pn ´ kq ˆ n matrix over Fqm , s P Fn´kqm , and r is an integer. The Rank
Syndrome Decoding problem RSDHpq,m, n, k, rq is to determine a vector x P
Fnqm such that wtRpxq “ r and s “ xHT .

The RSD problem is analogous to the classical syndrome decoding problem
in Hamming metric, which was shown to be an NP-complete problem. Gaborit
and Zémor (2014) showed that if there were efficient probabilistic algorithms
for solving the RSD problem, there exists an efficient probabilistic algorithm to
solve the syndrome decoding problem in the Hamming metric.

Problem 2 ([12],[14]) Given a full rank ` ˆ n matrix M and a matrix F “

MHT
1 rH

T
2 s
´1S where rH1H2s is a parity-check matrix for a Gabidulin code,
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and S is an invertible matrix. This problem is to distinguish F from R where R
is a random `ˆ pn´ kq matrix over Fqm .

Problem 3 ([12],[14]) (Decisional rank syndrome decoding (DRSD) problem)
Let H be a full rank pn´kqˆn matrix over Fqm , s P Fn´kqm and r an integer. The
Decisional Rank Syndrome Decoding problem DRSDHpq,m, n, k, rq is to distin-
guish the distribution pH, sq where s “ xHT and x P Fnqm such that wtRpxq “ r,

from the distribution pH,yq where y is a random vector in Fn´kqm .

Problem 2 is a form of matrix factorization problem. The random invert-
ible matrix S prevents Overbeck’s attack from being used to attack Problem 2.
Problem 3 is the decisional version of the RSD problem. Therefore, these two
problems were suitable to be candidates for the hard problems with the modified
DO.Gab-PKE is based on.

Theorem 2. Theorem 2 ([12, Theorem 1]) The modified DO.Gab-PKE is IND-
CPA secure under the assumptions of Problems 2 and 3.

4.2 Security strength categories

The below information is in table 1.

To achieve 128 security in our cryptosystem, we need 4.38KB for sizepk,
0.65KB for sizesk, and 0.38KB for sizect.

To achieve 192 security in our cryptosystem, we need 14.11KB for sizepk,
1.43KB for sizesk, and 0.82KB for sizect.

To achieve 192 security in our cryptosystem, we need 32.66KB for sizepk,
2.50KB for sizesk, and 1.44KB for sizect.

4.3 Cost of known attacks

1. IND´ CPA security: REDOG achieves IND´ CPA security. Kim et al. [12]
have shown that the modified Do.Gab-PKE achieves IND´ CPA security, and
so does REDOG. The only difference is the secret matrix S. In REDOG,
S´1 P GLn´kpΛq, distinguishing F from a random R is no longer an easy
instance of Problem 2, in Lau et al. [13]. Thus, by Theorem 2 in Lau et al.
[13], REDOG achieves IND´ CPA security.

2. Key recovery attack : In the key equation FS´1HT
2 “ MP´1HT

1 , there
are 2pn´ kq2 unknown variables of quadratic power and npn´ kq unknown
linear variables. Even if we rewrite the key equation over Fq, there are a
total of pn ´ kq2m ` pn ´ kqm unknown variables of quadratic power and
nm unknown linear variables. It is generally difficult to solve such equations,
i.e., the complexity to solve for the solution is of high exponential power.
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3. Our plaintext recovery attack: Rewrite the public key matrix

Gpub “ rM | MP´1HT
1 rH

T
2 s
´1Ss “MP´1rIn | H

T
1 rH

T
2 s
´1s

„

P 0
0 S



Although the matrix rIn | H
T
1 rH

T
2 s
´1s is a generator matrix for a Gabidulin

code, the right scramble matrix

„

P 0
0 S



does not preserve the Frobenius in-

variant subspace. This implies that the matrix M is of full rank. Therefore,
Gpub noes not generate an r-Frobenius weak code. Thus REDOG resists the
Frobenius weak attack [4]. We perform simulations of the Frobenius weak
attack on REDOG and the simulation result confirms that REDOG is secure
against Frobenius weak attack.

4. Message recovery attacks.
An adversary can try to recover the message by directly attacking the ci-
phertext. This is now an instance of the Rank Syndrome Decoding(RSD)
problem, i.e., the problem of decoding a noisy codeword from a random
code. The public code is generated by the ` ˆ p2n ´ kq matrix pM |F q over
Fqm . The error vector added to the ciphertext is chosen to have rank t. In
this paper, we use the notation ` for the dimension and t for the error rank.
Also, we denote the length by N . The complexity of algorithms in [6] and
[8] also depends on the matrix multiplication exponent which we denote as
ω.
Description and cost of (Combinatorial attacks)-GRS algorithm
The GRS [11] algorithm is a combinatorial attack on the rank decoding
problem. The idea behind this algorithm is to guess a vector space containing
the space spanned by the error vector. In this way, the received vector can
be expressed in terms of the basis of the guessed space. The last step is to
solve the linear system associated with the syndrome equations. This has
complexity

O
´

pN ´ `q3m3qminttt`m{Nu,pt´1qtp``1qm{Nuu
¯

.

The attack AGHT [5] is an improvement over the GRS combinatorial at-
tack. The underlying idea is to guess the space containing the error in a
specific way that provides a higher chance of guessing a suitable space. It
has complexity

O
´

pN ´ `q3m3qtp``1qm{N´m
¯

.

Description and cost of (Algebraic attack) The second attack, intro-
duced in [11], which we denote GRS-alg, is an algebraic attack. Under the
condition that l ą rppt` 1qp`` 1q ´N ´ 1q{ts the decoding problem can be
solved in

Opt3l3qtprppt`1qp``1q´N´1q{tsq.



12 Kim et al.

5. BBB+ attack.
The BBB+ attack [6] translates the rank metric decoding problem into a
system of multivariate equations and then uses Gr:obner-basis methods to
find solutions. Much of the analysis is spent on determining the degree of
regularity, depending on the length, dimension, and rank of the code and
error. If the condition m

`

N´`´1
t

˘

` 1 ě
`

N
t

˘

is fulfilled then the problem can
be solved in

O
ˆˆ

ppm`Nqtqt

t!

˙ω˙

.

If the condition is not satisfied then the complexity of solving the decoding
problem becomes

O
ˆˆ

ppm`Nqtqt`1

pt` 1q!

˙ω˙

.

or the same for t ` 2 in place of t ` 1. The authors of [6] use this in their
calculations and thus we include this as well.

6. BBC+ attack.
The paper [8] introduces 3 algorithms BBC+-Overdetermined, BBC+-Hybrid,
and BBC+-SupportMinors. They make the use of extended linearization as
a technique to compute Grobner bases.
BBC+-Overdetermined case applies to the overdetermined case, which matches
m
`

N´`´1
t

˘

` 1 ě
`

N
t

˘

, and permits to solve the system in

O

˜

m

ˆ

N ´ `´ 1

t

˙ˆ

N

t

˙ω´1
¸

.

These costs match matrix computations on a matrix with m
`

N´`´1
t

˘

rows

and
`

N
t

˘

columns.
In the case of an undetermined system, BBC+-Hybrid is a hybrid attack
that fixes some of the unknowns in a brute-force manner to produce an
overdetermined system in the remaining variables. The costs are testing all
possible values for j positions, where j is the smallest non-negative integer
such that m

`

N´`´1
t

˘

` 1 ě
`

N´j
t

˘

, and for each performing the same matrix
computations as in BBC on j columns less. This leads to a total complexity
of

O

˜

qjtm

ˆ

N ´ `´ 1

t

˙ˆ

N ´ j

t

˙ω´1
¸

The brute-force part in BBC+-Hybrid quickly becomes the dominating fac-
tor. The BBC+-SupportMinors algorithm introduces terms of larger degrees
first and then linearizes the system. This consists of multiplying the equa-
tions by some homogeneous monomials of degree b to obtain a system of
homogeneous equations. However, for the special case of q “ 2 the equations
in the system might not be homogeneous. In this case, homogeneous equa-
tions coming from smaller values of b are considered. To state the conditions
for this and the next algorithms we first introduce some notation from [8].
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Ab :“
b
ÿ

j“1

ˆ

N

t

˙ˆ

m`` 1

j

˙

,

Cb :“
b
ÿ

j“1

j
ÿ

s“1

ˆ

p´1qs`1

ˆ

N

t` s

˙ˆ

m` s´ 1

s

˙ˆ

m`` 1

j ´ s

˙˙

.

The degree of the equations formed in BBC+-SupportMinors depends on b,
where 0 ă b ă 2 ` t is minimal such that Ab ´ 1 ď Cb if such a b exists. In
this case, the problem can be solved with complexity

Oppm`` 1qpt` 1qA2
bq.

The last two attacks are presented in [8] as the underlying approach has
been pointed out to be incorrect in [7]. More precisely, [7] shows that the
independence assumptions made in [8] are incorrect.

7. BBB+23 attack.
The Supportinors and MaxMinors modeling in [8] are not as independent as
claimed, and [7] introduces a new approach BBB+23 that combines them
while keeping independence, at least conjecturally and matched by experi-
ments. They introduce the following notation:

N Fq

b “ N Fqm

b ´N Fq

b,syz,

N Fqm

b “
ÿ̀

s“1

ˆ

N ´ s

t

˙ˆ

`` b´ 1´ s

b´ 1

˙

´

ˆ

N ´ `´ 1

t

˙ˆ

`´ b´ 1

b

˙

N Fq

b,syz “ pm´ 1q
b
ÿ

s“1

p´1qps`1q

ˆ

`` b´ s´ 1

b´ s

˙ˆ

N ´ `´ 1

t` s

˙

, and

MFq

b “

ˆ

`` b´ 1

b

˙ˆˆ

N

t

˙

´m

ˆ

N ´ `´ 1

t

˙˙

.

The problem can then be solved by linearization whenever N Fq

b ěMFq

b ´ 1.
The complexity of solving the system is

T pm,N, l, tq “ O
´

m2N Fq

b pM
Fq

b q
ω´1

¯

.

Moreover, [7] introduces a hybrid strategy. Compared to BBC+-Hybrid it
randomly picks matrices from GLnpFqq to compute Fq-linear combinations
of the entries of the error vector and applies the same transformation to
the generator matrix, hoping to achieve that the last a positions of the
error vector are all 0 and then shortening the code while also reducing the
dimension.
This technique has complexity

min
aě0

pqta ¨ T pm,N ´ a, `´ a, tqq



14 Kim et al.

Here, we post about the computational cost for each attack. It is computed
by the fixed sage code. The lowest cost showed as blue color.

Table 5. Security level and cost for each parameter of REDOG

Instance pn, k, `, q,m, r, λ, t1, t2q AGHT GRS BBB` BBC` BBB ` 23 Security level

REDOG-1 (30,6,25,2,59,12,3,6,2) 198.41 226.01 140.05 144.99 145.79 128

REDOG-2 (44,8,37,2,83,18,3,12,2) 423.23 462.03 229.45 358.13 357.75 192

REDOG-3 (58,10,49,2,109,24,3,15,3) 749.01 800.30 324.24 666.09 672.91 256

4.4 Performance of reference implementation

Lange et al.[17] uploaded their sage code about the computation of the cost for
known attacks. But there are some mistakes in the version released on August
9, 2023, so we just fixed those things. In their paper, they write about the Cb as
follows:

Cb :“
b
ÿ

j“1

ˆ

p´1qi`1

ˆ

N

t` s

˙ˆ

m` s´ 1

s

˙ˆ

m`` 1

j ´ s

˙˙

.

Moreover, at their sage code, they wrote the p´1qi`1 part to p´1qs ` i, so the
computation was wrong. To make this right, we fix p´1qi`1 to p´1qs`1 which we
checked from [8], and edit the sage code also. After doing this process, the com-
putational cost that they posted was changed. So here, we repost the corrected
costs for each security. And also, the document [17] was corrected similarly.

After that,
After the fix of λ and the error weight t1 “ wtRpe1q, t2 “ wtRpe2q, the costs

go higher so we obtained calculation results show that smaller parameters than
the existing parameters can be used to satisfy a given security level. And we
checked about the attacks on [7]. But the cost of BBB+ is the lowest in every
case as in the table 5.

5 Performance analysis

The public key size for REDOG is larger than the public key size for the modified
DO.Gab-PKE because we have to choose S specifically so that REDOG can be
secure. In what follows, we describe the relation between parameters. As the
rank of the error is now t instead of r, the error correcting capability r has to
increase, increasing the value of n ´ k. Moreover, for H to be a parity-check
matrix of a r2n´k, ns-Gabidulin code, it is required that m ě 2n´k. Moreover,
the parameter ` is always larger than or equal to n´ k. As n´ k increases, the
values for m and ` increase. Therefore, the public key size is larger than the
public key of the modified DO.Gab-PKE.
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5.1 Description of platform

To implement our REDOG cryptosystem, we used the following software and
hardware platforms:

¨ Windows 10 Pro
¨ Visual Studio 2022
¨ Intel(R) Core(TM) i5-10500 CPU @ 3.10GZ 3.10GHz
¨ GTX 960
¨ 64GB RAM

The performance results of implementing the REDOG cryptosystem using
the platform described above are as follows.

Table 6. Performance of REDOG

Instance pn, k, `, q,m, r, λ, t1, t2q KeyGentime Enctime Dectime Security level

REDOG-1 (30,6,25,2,59,12,3,6,2) 1.6 sec 0.00004 sec 0.270 sec 128

REDOG-2 (44,8,37,2,83,18,3,12,2) 3.5 sec 0.00006 sec 0.565 sec 192

REDOG-3 (58,10,49,2,109,24,3,15,3) 7.2 sec 0.0001 sec 1.160 sec 256

6 Summary or Conclusion

We have enhanced the code-based cryptosystem REDOG, which utilizes the rank
metric, presented in the first round of the KpqC competition. In the 4th round
of the NIST PQC competition, four algorithms—BIKE, HQC, Classic McEliece,
and SIKE—were selected. Among these, the first three algorithms are code-
based cryptosystems, all constructed using codes based on the Hamming metric.
In contrast, REDOG employs the rank metric instead of the Hamming metric,
which can enhance the speed and efficiency of the cryptographic system. Ongoing
research into rank metric codes continues, and the principal investigator and
several co-authors have conducted extensive research and presentations on code-
based cryptosystems utilizing the rank metric in various academic journals and
conferences. Comparative analysis reveals that the parameters of REDOG are
significantly favorable compared to the aforementioned algorithms. Furthermore,
we thoroughly investigated BBB+ and BBC+ attacks, which were not considered
when proposing this algorithm for the first round of the KpqC competition,
addressing issues presented in that version such as problems with the setting of
errors e1 and e2 and the selection of secret key S. By appropriately modifying
the existing REDOG system and conducting additional calculations, we obtained
superior parameters compared to previous proposals. Therefore, we are confident
in REDOG’s potential as a robust contender for KpqC standardization.
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