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Abstract. We propose a REinforced modified Dual-Ouroboros based
on Gabidulin codes, shortly called REDOG. This is a code-based cryp-
tosystem based on the well-known rank metric codes, Gabidulin codes.
The public key sizes of REDOG are 14KB, 33KB, 63KB at the security
levels of 128, 192, 256 bits respectively. There is no decoding failure in
decryption. REDOG is IND-CPA.

Keywords: Modified Dual-Ouroboros - Gabidulin code - A-dimensional
subspace.

1 Introduction

1.1 Design rationale

The original version of McNie series called McNie [13] had the features of both
McEliece and Niederreiter cryptosystem and was designed to be secure against
known structural attacks on code-based cryptosystems. Gaborit [14] suggested
a message recovery attack which reduced the dimension of a random code in
the public key. The security level of McNie decreased by almost a factor of
2, and the original parameters suggested for McNie suffer from relatively high
decryption failure probability since LRPC (low rank parity check codes) decoding
is a probabilistic decoding algorithm.

* This work is submitted to ‘Korean Post-Quantum Cryptography Competition’
(www.kpgc.or.kr). Jon-Lark Kim is a principal investigator.
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To overcome those disadvantages, Dual-Ouroboros which is a modification
of McNie was proposed [7]. It was a non-cyclic dual version of Ouroboros-R
[2], which also employed the LRPC codes. Kim et al. [8] suggested a modified
Dual-Ouruboros(DO.Gab-PKE), which is a variant of Dual-Ouroboros obtained
by replacing LRPC codes from Dual-Ouroboros by Gabidulin codes over Fgm.
Gadibulin [n, k] codes have advantage of the zero-decoding failure probability
and have a fast decoding complexity of O(n?) operations over F,m[11] and an
improved decoding complexity of O(nm?logm) operations over the ground field
F, [17]. Moreover, the modified DO.Gab-PKE using Gabidulin codes provides
a much stronger security against known plaintext-recovery attacks, including
Overbeck’s attack [15]. It was also shown in [8] that the DO.Gab-PKE achieves
IND — CPA security, and the parameters achieve relatively lower key sizes com-
pared to the other code-based PKE that has no decryption failure.

However, the modified DO.Gab-PKE did not specify the selection of secret
key S to ensure the security of the modified DO.Gab-PKE. If the secret key S
is invertible over Fym without any restriction, then the modified DO.Gab-PKE
would be incorrect. If S is invertible over I, without any restriction, the modified
DO.Gab-PKE would be insecure. Therefore, we need to select S specifically so
that the modified DO.Gab-PKE can be secure. This reinforced version was called
the modified DO.Gab[A]-PKE in [10]. Therefore, in this proposal, we describe
the modified DO.Gab[A]-PKE in [10], which is shortly called REDOG meaning
a REinforced modified Dual-Ouroboros based on Gabidulin codes.

1.2 Advantages and limitations

REDOG adopts the same scheme as the modified DO.Gab-PKE [8] and just
clearly specifies how to select the secret key S in order to avoid the Frobe-
nius weak attack [9]. By using the same encryption algorithm, the structural
stability of the algorithm and the resistance to known attacks can be brought
as it is. Moreover, by selecting the secret key S to be invertible matrix over
a A-dimensional subspace of Fym, the public key matrix does not generate a 7-
Frobenius weak code [12]. Such an approach results in larger key size, for instance
14.25 KB of public key size required to achieve the 128-bit security level.

2 Preliminaries

In this section, we introduce necessary concepts and results on rank metric codes.

2.1 Rank metric codes

Let g be a prime power and Fym be the finite field with ¢ elements. Consider
a basis {f1, ..., Bm} of Fym over the base field F,.

Definition 1. An [n, k] linear code of length n and dimension k is a linear
subspace C of the vector space Fy.., i.e. C € Fg. Let | < k , then an [n,1] linear
subcode C’ is an [n,[] linear code such that C" < C.
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Definition 2. Let x = (z1,...,2,) € Fym. Foreach 1 < j <n, z; = > B
where ¢;; € F,. The rank of x in Fy, denoted by rk(x) is defined as rk(x)=rk(X)
where X = [c;;] € Fj*>™.

2.2 Gabidulin codes and partial cyclic codes

Definition 3. Let x = (29, ..., 2n—1) € Fjm. The circulant matrix Cir,(x) in-
duced by x is defined as

o Tp—1 -1
) T To T2
CZTn(X) = [xifj (mod n)]l] =

Tp—1 Tp-2 " To

The k x n-partial circulant matrix induced by x, denoted by Cirg(x) is defined
as the first k rows of Cir,(x).

Lau and Tan [9] defined the following code generated by Cirg(x).

Definition 4. An [n, k]-partial cyclic code PC,, x[x] generated by x € Fy.. is a
linear code with generator matrix Ciry(x)

These circulant matrices will be used as generator matrices of Gabidulin
codes as in Section 3.3 in order to reduce the key sizes.

The following are the definitions for Moore matrix and Gabidulin codes.

Definition 5. Denote [I] = ¢' as the [th Frobenius power for an integer I.
A matrix G = [Gy;] € IE";,E" is called a Moore matriz induced by g if there
exists a vector g = (g1,...,9n) € Fym such that the ith row of G is equal to

gli—1]l — (ggifl], ...,g,[f*l]) for 1 <i <k, i.e., G is of the form

om0
1 1
g g .« .. g
a=| 7t 77 (1)
ggnfl] ggnfl] L gLnfl]

Similarly, we define GI!l = [GZ]] For any set S < Fy., we denote S ([ =
{sll|s e S}

Definition 6. (Gabidulin code) Let g € Fy.. with rk(g) = n < m. The [n, k]
Gabidulin code Gab,, x(g) over F.. of dimension k with generator vector g is
the code generated by a Moore matrix G induced by g in the form of Equation

(1).
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Theorem 1. There exists a Moore Matrix H € Féﬁfk)xn such that H is a
parity-check matrix of a Gabidulin code. In other words, the dual of a Gabidulin

code also a Gabidulin code.

The error-correcting capability of Gab,, x(g) is r = |“7%|. There exist effi-
cient decoding algorithms for Gabidulin codes which are able to correct error up
to rank r (for instance [11] with decoding complexity 5/2 n? — 3/2 k?).

Definition 7. (r-Frobenius weak) Let C be an [n, k]-linear code. We say that
C is r-Frobenius weak if for some s relatively prime to m and for a generic
e € Fy. of rank 7, the space U spanned by the elements of rank one in Cext =

STZH(C + (er,. )Y, fulfills € A U = {0},

The algorithm of Frobenius weak attack [9] is as follows.

Algorithm : FrobeniusWeakAttack

Data : y = mGpup + € (a ciphertext where m is the plaintext), the public key
pk = Gpup with parameter r = rk(e)
Result : The plaintext m
1 Construct the matrix
Ghpub
y
Gpub,ext = :
G |
y[T*I]
2 Compute the space U generated by the elements of rank one in Cext = <Gpub7ext>]pqm.
3 Compute u =dimg, ).
4 if u <n—k then
5 | Compute a parity-check matrix Hy € ]Fl(lnfu)xn for U.
6 | Solve y(Hu)" — m[Gpu(Hy)"] for m,
7 return m.
8 else
9

return 1
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3 Specification

We describe key generation, encryption, and decryption of REDOG [10] as fol-
lows.

Setup: Generate global parameters with integers m,n,[,r, k such that [ < n

and M <r < anJ Output parameters = (m,n,l, k,r, A\, t).

Key.Gen: Let [HyHj] be a parity check matrix for a [2n — k,n] Gabidulin
code C over Fym, where Hy € GL,,_1(Fgm ). Let @5 be an efficient decoding
algorithm for C with error correcting capability of r = {anJ Let H be a
hash function from ]Fgﬁ,*k to Ffzm.

Generate a generator matrix G for a random [n, ] code over Fym. Generate a
random n x n isometric matrix P.

Generate a random A-dimensional subspace, A < Fym such that 1 € A.

Generate a random (n — k) x (n — k) invertible matrix S~! € GL,,_j(A).

Output public key and secret key pair

pk = (G, F = GP'HT[HT|"'S),sk = (P, H, S, &y).

Enc(pk, m): Let m € IFfIm be the plaintext message to be encrypted. Generate
randomly vector e = (e,es) € Fgl}fk such that rk(e)=t, e; € Fj.. and
ey € ]Fg;k. Let m’ = m + #H(e). Compute ¢; = m'G + e1,¢co = m'F + e5.

Output ciphertext ¢ = (c1, ¢3).

Dec(sk, ¢): Compute
et P7YHT — cyS7'HYT

— 'GP HY T e, P HT — m/GP - HT[HF] 'S~ HT — ey S~ HY

— e PUHT — eySTUHT

—1 1y [HE
(e1P71, —e2S7H) |:H2T:|
Let € = (e; P71, —e3S™1). Since tk(e’) < 7, apply @5 to obtain €.
Compute e; = ey P71P and e = €251 to obtain e = (eq, e2).
Finally, solve the system m’'G = ¢; — e; to recover m = m’ — H(e).

3.1 Notation

All the notations for specification are given above.

3.2 Specification of REDOG

REDOG is a reinforced version of the modified Dual-Ouruboros with Gabidulin
(DO.Gab-PKE) [8]. We explain how to select the invertible matrix S.
For the secret key .5,
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1. If S €GL,,_;(Fgm) and F is in echelon form, then the decryption algorithm
of the modified DO.Gab-PKE is incorrect.

2. If S eGL,,—k(F,), then the decryption algorithm of the modified DO.Gab-
PKE can be performed correctly.

We can recover the secret key of the modified DO.Gab-PKE with S eGL,,_(F,)
in polynomial time which is the case 2. Thus the modified DO.Gab-PKE is inse-
cure if S'e€ GL,,—x(Fy).

To overcome this bad choice of S, we give an example to show that the modi-
fied DO.Gab-PKE can be both correct and secure if we impose some conditions on
the secret key S. In particular, we employs Loidreau’s approach [12] to consider
matrix S~! over some A-dimensional subspace A < F,m, which is a subspace of
Fgm and its Fy-dimension is A. Note that by the choice of A, S = (S~!)~! is not
necessarily a matrix over A.

Take S~! as an (n — k) x (n — k) invertible matrix over A, where A is a
A-dimensional subspace of ;= which contains the element 1, and take the error

r
e as a random vector of rank ¢ < lXJ

From the decryption process, since rk(e) = ¢t and A is a A-dimensional sub-
space of Fym, we have rk(e’) = At < r, and thus, the decoding algorithm #y can
recover € correctly.

3.3 Parameter sets

We present our proposed parameters for REDOG in Table 1. We consider G
to be an (I x n)-partial circulant matrix, and S=! to be an (n — k) x (n — k)
circulant matrix. The public key size is size;x = m(n + I[(n — k))/8 bytes, the
secret key size is sizege = (n? + (3n — 2k)m)/8 bytes, and the ciphertext size is
sizect = (2n — k)m/8 bytes.

Table 1. Proposed parameters for REDOG

Instance (n,k,l,q,m, 7, \, t) sizepy sizegy sizect Security level
REDOG-1| (44,8,37,2,83,18,3,6) | 14.25KB | 1.45KB | 0.83KB 128
REDOG-2 | (58,10,49,2,109,24,3,8) | 32.84KB | 2.52KB | 1.44KB 192
REDOG-3 | (72,12,61,2,135,30,3,10) | 62.98KB | 3.80KB | 2.23KB 256

In order to compare REDOG with other code-based algorithms such as HQC,
BIKE, and Classic McEliece, all of which are based on Hamming metric and
advanced to the 4th round of the NIST PQC competition, we display their
security level and the corresponding key sizes of these algorithms.

Note that HQC and BIKE algorithms have decryption failure which is a
disadvantage although their key sizes are much smaller than REDOG. REDOG
does not have a decryption failure. Classic McEliece has no decryption failure
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but has large public key size of 1047KB at the 128 bits of security level while
REDOG has a much smaller public key size of 14KB. Therefore, REDOG is a
strong competitor for HQC, BIKE, and Classic McEliece.

Table 2. Security level and key sizes of HQC [1]

Instance pk size sk size ct size

hqc-128 | 2,249bytes | 40bytes | 4,481bytes
hqc-192 | 4,522bytes | 40bytes | 9,026bytes
hqc-256 | 7,245bytes | 40bytes | 14,469bytes

Table 3. Security level and key sizes of BIKE [3]

Size AES-128 | AES-192 | AES-256
2,130bits | 2,296bits | 4,384bits
43,786bits | 65,498bits

Quantity

Private key | w[logz ()]
Public key n 20,326bits
Ciphertext n 20,326bits | 43,786bits | 65,498bits

Table 4. Parameters, security level and key sizes of Classic McEliece [16]

k=mn—mt| pk size sk size | Security level
5413 1047KB | 13.6KB 128
1358KB | 13.75KB 256

Variant n m t
mceliece6960119 | 6960 | 13 | 119
mceliece8192128 | 8192 | 13 | 128 6528
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4 Performance analysis

The public key size for REDOG is larger than the public key size for the modified
DO.Gab-PKE because we have to choose S specifically so that REDOG can be
secure. In what follows, we describe the relation between parameters. As the
rank of the error is now t instead of r, the error correcting capability r has
to increase, resulting in the increase for the value of n — k. Moreover, for H
to be a parity-check matrix of a [2n — k, n]-Gabidulin code, it is required that
m = 2n — k. Moreover, the paremeter [ is always larger than or equal to n — k.
As n — k increases, the values for m and [ increase. Therefore, the public key
size is larger than the public key of the modified DO.Gab-PKE.

4.1 Description of platform

To implement our REDOG cryptosystem, we used the following software and
hardware platforms:

- SageMATH 9.2 version

- Python 3.7.7 version

- Visual studio 2019

- 3.8GHz Intel(R) Core(TM) i7 processor with 32GB of memory

4.2 Performance of reference implementation

The performance results of implementing the REDOG cryptosystem using the
platform described above are as follows.

Table 5. Performance of REDOG

Instance (n,k,l,q,m,r, A\, t) KeyGen,me | Enctime Deciime | Security level
REDOG-1 | (44,8,37,2,83,18,3,6) 2.5 sec | 0.035 sec | 1.434 sec 128
REDOG-2 | (58,10,49,2,109,24,3,8) 4.7 sec 0.06 sec | 3.254 sec 192
REDOG-3 | (72,12,61,2,135,30,3,10) | 10.0 sec 0.1 sec | 6.366 sec 256




(REDOG) 9

5 Security

5.1 Security definition

Problem 2 ([10]) (Rank syndrome decoding (RSD) Problem) Let H be a full
rank (n—k) x n matrix over Fym, s € ]F‘Z,Zk, and r an integer. The Rank Syndrome
Decoding problem RSD g (g, m, n, k,r) is to determine a vector € Fm such that
rk(x) =7 and s = xH”.

The RSD problem is analogous to the classical syndrome decoding problem
in Hamming metric, which was shown to be an NP-complete problem. Gaborit
and Zémor (2014) showed that if there were efficient probabilistic algorithms for
solving the RSD problem, then there would exist efficient probabilistic algorithm
to solve the syndrome decoding problem in Hamming metric.

Problem 2 ([8],[10]) Given a full rank ¢ x n matrix G’ and a matrix F =
G'HT[HT]7S where [H;Hs] is a parity-check matrix for a Gabidulin code,
and S is an invertible matrix. This problem is to distinguish F' from R where R
is a random ¢ x (n — k) matrix over Fym.

Problem 3 ([8],[10]) (Decisional rank syndrome decoding (DRSD) problem)
Let H be a full rank (n — k) x n matrix over Fym, s € IF:}Ik and r an integer.
The Decisional Rank Syndrome Decoding problem DRSDg (g, m,n,k,r) is to
distinguish the distribution (H,s) where s = xH” and x € F7,, such that rk(x) =
r, from the distribution (H,y) where y is a random vector in Fg.. k.

Problem 2 is a form of matrix factorization problem. The random invert-
ible matrix S prevents Overbeck’s attack from being used to attack Problem 2.
Problem 3 is the decisional version of the RSD problem. Therefore, these two
problems were suitable to be the candidates for the hard problems which the
modified DO.Gab-PKE is based on.

Theorem 2. Theorem 2 ([8, Theorem 1]) The modified DO.Gab-PKE is IND-
CPA secure under the assumptions of Problems 2 and 3.

5.2 Security strength categories

The below information is on table 1.

To achieve 128 security in our cryptosystem, we need 14.25KB for sizepy,
1.45KB for sizeg, and 0.83KB for size.

To achieve 192 security in our cryptosystem, we need 32.84KB for sizey,
2.52KB for sizeg, and 1.44KB for sizeg.

To achieve 256 security in our cryptosystem, we need 62.98KB for sizepy,
3.89KB for sizeg, and 2.23KB for size.
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5.3 Cost of known attacks

1.

IND — CPA security: REDOG achieves IND — CPA security. Kim et al. [8]
has shown that the modified Do.Gab-PKE achieves IND — CPA security,
so does REDOG. The only difference is the secret matrix S. In REDOG,
S eGL,_x(A), distinguishing F from a random R is no longer an easy
instance of Problem 2, in Lau et al. [9]. Thus, by Theorem 2 in Lau et al.
[9], REDOG achieves IND — CPA security.
Key recovery attack : In the key equation FS™'HY = GP~'HY, there are
2(n — k)? unknown variables of quadratic power and n(n — k) unknown
linear variables. Even if we rewrite the key equation over F,, there are a
total of (n — k)?m + (n — k)m unknown variables of quadratic power and
nm unknown linear variables. It is generally difficult to solve such equations,
i.e., the complexity to solve for the solution is of high exponential power.
Our plaintext recovery attack : Rewrite the public key matrix
1 Ty T1-1 ~1 Trrr-17 |0
G = (G| GPHT[HT) 18] = GP11, | BT 11 9

Although the matrix [I,, | H{ [HI]7!] is a generator matrix for a Gabidulin

code, the right scramble matrix does not preserve the Frobenius in-

PO
0S8
variant subspace. This implies that the extension matrix Gey is of full rank,
ie. tk(Gext) = 2n — k. Therefore, Gpyp noes not generate an r-Frobenius
weak code. Thus REDOG resists the Frobenius weak attack [4]. We perform
simulations of the Frobenius weak attack on REDOG and the simulation
result confirms that REDOG is secure against Frobenius weak attack.
Message recovery attacks.

An adversary acn try to recover the message by directly attacking the cipher-
text. This is now an instance of Rank Syndrome Decoding(RSD) problem,
i.e., the problem of decoding a noisy codeword from a random code. The
following are the best known attacks for solving the RSD problem with pa-
rameters (n, k, ).

Description and cost of (Combinatorial attacks) These types of at-
tacks consider the support of a codeword and apply an analogous ISD in rank
metric sense. The best known strategy in Aragon et al. [5] has complexity
(n— k)3m3qr(k+nl)m -,

Description and cost of (Algebraic attack) This attack is natural for
rank metric case and is most useful when ¢ increases. It uses several types
of algebraic equations settings to try to solve a multivariate system with
Grobner basis. The best knwon attack in Gabidulin et al. [6] has complexity

[(T+1)(k+rl)*("+1)]

upper bounded by r3k3¢"

Moreover, basis guessing attack to recover A : Since 1 € A, then the complex-

ity of guessing basis {1, w1, ..., ws_1} is lower bounded by ¢*—D(m=(A-1),
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6 Summary or Conclusion

We have proposed a code-based cryptosystem based on rank metric, called RE-
DOG. In the 4th round of NIST PQC competition, only four algorithms such as
BIKE, HQC, Classic McEliece, and SIKE were announced in July 2022. The first
three algorithms are code-based cryptosystems based on Hamming metric. As
an alternative to Hamming metric, it is highly desirable to consider code-based
cryptosystems based on rank metric. The PI and some of the co-authors have
worked on code-based cryptosystems based on rank metric and published them
on journals/conferences. The parameters of REDOG are reasonably good when
compared with the above three algorithms. Therefore, we believe that REDOG
can be a strong candidate for the KPQC standardization.
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