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Chapter 1

Introduction

1.1 Design Rationale

PALOMA is a code-based key encapsulation mechanism that has the following features.

(1) Trapdoor based on SDP(syndrome decoding problem)

(2) IND-CCA2-secure KEM(Key Encapsulation Mechanism) based on FO(Fujisaki-Okamoto) trans-

formation

(3) Parameters supporting 128/192/256-bit security strength

1.1.1 Trapdoor

1.1.1.1 Syndrome Decoding Problem

SDP is a problem finding the preimage vector with a specific Hamming weight for a given random

binary parity-check matrix and a syndrome. In 1978, SDP was proven to be NP-hard because it is

equivalent to the 3-dimensional matching problem[9, 3]. McEliece and Niederreiter cryptosystems

are designed with the trapdoor based on SDP[15, 17]. However, because the public key of a SDP-

based trapdoor is a random-looking matrix, the public key is larger than that of other ciphers.

Therefore, there have been attempts to reduce the size of a public key through cryptographic design

using SDP-variant, such as rank metric-based SDP and quasi-cyclic code-based SDP. However,

SDP-variants assume the problem’s difficulty because one cannot guarantee the NP-hard property

of SDP.

Post Quantum Cryptography is not a cryptographic scheme that provides additional function-

ality but an alternative to the current cryptosystem against quantum attacks. Therefore, we design

PALOMA based on SDP with a conservative perspective because SDP is NP-hard and it is judged

that the analysis method is sufficiently mature.

1.1.1.2 Niederreiter-type Code Scrambling.

In general, code-based cryptographic schemes use the information of a scrambled code Ĉ, which is

an equivalent code of the base code C, as a public key, and the decoding information for C as a

private key. Similar to the Niederreiter cryptosystem, PALOMA uses the parity check matrix Ĥ of
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a scrambled code Ĉ that is defined by SHP where H is the parity-check matrix of C, S and P are

an invertible matrix and a permutation matrix, respectively. P is randomly chosen. However, to

reduce the size of a public key, the invertible matrix S is obtained from the reduced row echelon

form procedure applying to HP, so that Ĥ is the form of systematic, i.e., Ĥ = [I |M]. PALOMA

uses the submatrix M of Ĥ as a public key like Classic McEliece[4]. Figure 1.1 shows the trapdoor

framework of PALOMA.

C = [n, k,≥ 2t+ 1]2 Ĉ = [n, k,≥ 2t+ 1]2

H Ĥ = SHP = [I |M]

ê Decrypt ŝ Encrypt ê (wH(ê) = t)

scrambling

S−1,P−1

n n−k n−k n

Figure 1.1: PALOMA: Trapdoor Framework

The Niederreiter cryptosystem needs to convert messages into vectors with a specific Hamming

weight for decoding. This conversion performs a large amount of computation, which significantly

affects encryption/decryption performance. However, PALOMA is designed to work without this

conversion.

1.1.1.3 Binary Separable Goppa Code.

There are no critical attacks on cryptographic schemes based on an SDP defined with a binary sep-

arable Goppa code[7], for example, McEliece cryptosystem, which is the first code-based cipher[15].

Many researchers have tried to design code-based ciphers using various codes such as GRS and

RM to increase efficiency in terms of public key size and decryption speed, but most of them

have been attacked due to their structural properties, and the rest still need more rigid security

proof[20, 16]. Therefore, PALOMA chooses a binary separable Goppa code that has no attack even

though it has been studied for a long time with a conservative perspective.

A binary separable Goppa code C = [n, k,≥ 2t + 1]2 is defined with a support set L and a

Goppa polynomial g(X) that is separable. Because every irreducible polynomial is separable, an

irreducible polynomial is chosen as a Goppa polynomial, in general. However, since the algorithms

generating irreducible polynomials are probabilistic, i.e., non-constant time. PALOMA defines a

support set and a Goppa polynomial with randomly chosen n+ t elements of F213 as follows:

[α0, α1, . . . , α2m−1]← Shuffle(F2m), L← [α0, α1, . . . , αn−1], g(X)←
n+t−1∏
j=n

(X − αj).

After shuffling of all F2m elements, the set of the first n elements is defined as a support set and

the next t elements are the root of a Goppa polynomial with degree t. Note that g(X) is separable

but not irreducible in F213 [X]. Thus, PALOMA generates a binary separable Goppa code efficiently

within constant time.

Patterson and Berlekamp-Massey are decoding algorithms of a binary separable Goppa[18, 2, 12].

Patterson seem to be better than Berlekamp-Massey in terms of speed performance, however, it
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operates when a Goppa polynomial g(X) is irreducible. So, PALOMA adapts the extended Patterson

decoding to deal with a non-irreducible Goppa polynomial[5].

1.1.2 KEM structure

In IND-CCA2 security game(INDistinguishability against Adaptive Chosen-Ciphertext Attack) for

KEM = (GenKeyPair,Encap,Decap), the challenger sends a challenge (key, ciphertext) pair

to the attacker, and the attacker guesses if the pair is right or not. (“right” means the pair (key,

ciphertext) is an output of Encap) Here it is allowed for the attacker to query the Decap oracle

except for the challenge. We say KEM is IND-CCA2-secure when the winning probability of any

polynomial time attackers in IND-CCA2 game is negligible. Figure 1.2 shows the IND-CCA2 game.

Challenger Adversary A

(pk, sk)← GenKeyPair(1n)
ODecap(sk;∗)
−−−−−−−−→ A queries ODecap(sk;∗)

(k, c)← Encap(pk)

b
$←− {0, 1}

If b = 0, then k
$←− {0, 1}l (k,c)−−−→ A queries ODecap(sk;∗) except c

If b = b′, then A wins, else A loses.
b′←−− If A thinks that k is right, then b′ ← 1,

else b′ ← 0

Figure 1.2: Security Game for IND-CCA2 KEM

In general, IND-CCA2-secure schemes are constructed with OW-CPA-secure trapdoors and hash

functions that are considered random oracles. FO transformation is a representative IND-CCA2-

secure scheme design method, which is also proven to be IND-CCA2-secure in QROM(Quantum

Random Oracle Model)[6, 8, 22]. PALOMA guarantees IND-CCA2-secure since it is designed by the

FO-variant transformation KEM 6⊥, introduced in [8].

1.1.3 Parameter Sets

The security of PALOMA is evaluated by the number of bit computations of generic attacks

to SDP because there are no known attacks on binary separable Goppa codes. ISD(Information

Set Decoding) is the most powerful generic attack of an SDP. The complexity of ISD has been

improved by changing the specific conditions for the information set[19, 10, 11, 21, 13, 1, 14] and

birthday-type search algorithms. PALOMA evaluated the security strength level in computational

complexity for the most effective attack.

PALOMA provides three parameter sets: PALOMA-128, PALOMA-192 and PALOMA-256, which

are 128-bit, 192-bit, and 256-bit security strength level, respectively. Each parameter was selected

as a parameter satisfying the following conditions regarding implementation efficiency.

(i) Binary separable Goppa codes are defined in F213

(ii) n ≡ k ≡ t ≡ 0 mod 64

(iii) n+ t ≤ 213

(iv) k/n > 0.7
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1.2 Advantages and Limitations

PALOMA is a KEM designed by combining an NP-hard SDP-based trapdoor using binary sepa-

rable Goppa codes and FO transformation that guarantees IND-CCA2-secure in ROM and QROM

both, which are strongly considered safe in cryptographic communities. Therefore, we believe that

PALOMA provides sufficiently reliable security in classical computers and quantum computers.

Since PALOMA is an SDP-based trapdoor, the public key size is essentially over 300 KB. In

addition, the generation of a public key that is the parity check matrix of the scrambled Goppa

code is relatively slow compared to other post-quantum ciphers. So, in the server-client protocol,

generating ephemeral keys can burden the server. Therefore, PALOMA is suitable for server-to-

client protocols that use static keys and client-to-client protocols, such as E2EE.
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Chapter 2

Mathematical Background

In this chapter, we introduce the mathematical background needed to figure out the operating

principles of PALOMA.

2.1 Syndrome Decoding Problem

2.1.1 Binary Linear Codes

A k-dimensional binary linear code C of length n defined in a binary finite field F2 is a k-dimension

subspace of the n-dimensional vector space Fn
2 . It means that C is the solution space of the following

n− k linear equations.

h0,0X0 + h0,1X1 + · · · + h0,n−1Xn−1 = 0,

h1,0X0 + h1,1X1 + · · · + h1,n−1Xn−1 = 0,
...

hn−k−1,0X0 + hn−k−1,1X1 + · · · + hn−k−1,n−1Xn−1 = 0.

Therefore, a binary linear code C can be expressed as follows.

C = {c ∈ Fn
2 : Hc = 0n−k},

where 0n−k is a zero vector in Fn−k
2 and

H = [hi,j ] :=


h0,0 h0,1 · · · h0,n−1
...

...
. . .

...

hn−k−1,0 hn−k−1,1 · · · hn−k−1,n−1

 ∈ F(n−k)×n
2 .

Note that all vectors are considered as column vectors in this paper. The vector c ∈ C and the

matrix H are called a codeword and a parity check matrix of C, respectively.

2.1.2 Syndrome Decoding Problem

For a vector r ∈ Fn
2 , Hr ∈ Fn−k

2 is called the syndrome of r. If a syndrome is 0n−k, the vector r is

the codeword of C. For any codeword c ∈ C and an arbitrary vector e ∈ Fn
2 , the vector r = c + e
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satisfies the following.

Hr = H(c+ e) = Hc+ He = He.

SDP is the problem of finding a preimage vector of a syndrome that has a specific Hamming

weight. The formal definition of SDP is as follows:

Definition 2.1.1 (Syndrome Decoding Problem, SDP). Given a parity check matrix H ∈ F(n−k)×n
2

of a random binary linear code C = [n, k]2, a syndrome s ∈ Fn−k
2 and w ∈ {1, 2, . . . , n}, find the

vector e ∈ F(n−k)×n
2 that satisfies the following two conditions.

He = s and wH(e) = w.

SDP is proven as an NP-hard problem because it is equivalent to the 3-dimensional matching

problem in 1978[9, 3].

2.1.2.1 Number of Roots of SDP.

Hamming weight wH(v) of a vector v = (v0, . . . , vn−1) ∈ Fn
2 is defined as |{j : vj 6= 0}|. Hamming

distance dH(u, v) of the two vectors u, v ∈ Fn
2 is defined as wH(u+ v). Assume that there are two

distinct vectors v1, v2 ∈ Fn
2 with Hamming weight of

⌊
d−1
2

⌋
having same syndrome where d is the

minimum Hamming distance of the linear code C, i.e., d(= min
c∈C\{0n}

wH(c)). Since H(v1 + v2) =

0n−k, it becomes v1 + v2 ∈ C. However, since the minimum distance of C is d, the following

contradiction occurs.

d ≤ |supp (v1 + v2) | ≤ |supp (v1) |+ |supp (v2) | ≤ 2

⌊
d− 1

2

⌋
≤ d− 1,

where supp (v) := {j : vj 6= 0}. Therefore, the preimage vector with Hamming weight less than

equal to
⌊
d−1
2

⌋
is unique. Generally, in SDP-based schemes, the Hamming weight condition w of

SDP is set to
⌊
d−1
2

⌋
for the uniqueness of root and root candidates more that 2256.

2.2 Binary Separable Goppa Code

Binary separable Goppa codes are special cases of algebraic-geometric codes proposed by V. D.

Goppa in 1970[7]. Many code-based ciphers, such as McEliece and Classic McEliece, use it as the

base codes. The formal definition of a binary separable Goppa code over F2 is as follows.

Definition 2.2.1 (Binary Separable Goppa code). For a set of distinct n(≤ 2m) elements L =

[α0, α1, . . . , αn−1] of F2m and a separable polynomial g(X) ∈ F2m [X] of degree t that all elements

of L are not roots of g(X), i.e., g(α) 6= 0 for all α ∈ L, a binary separable Goppa code of length

n over F2 is the subspace CL,g of Fn
2 defined by

CL,g :=

(c0, . . . , cn−1) ∈ Fn
2 :

n−1∑
j=0

cj(X − αj)
−1 ≡ 0 (mod g(X))

 ,
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where (X − α)−1 is the polynomial of degree t− 1 satisfying the following.

(X − α)−1(X − α) ≡ 1 (mod g(X)).

L and g(X) are called a support set and a Goppa polynomial, respectively. CL,g is called a

binary irreducible Goppa code when g(X) is an irreducible polynomial in F2m [X]. The dimension

k and the minimum Hamming distance d of CL,g satisfy the following inequalities.

k ≥ n−mt, d ≥ 2t+ 1.

PALOMA set the dimension k of CL,g to n−mt and the Hamming weight condition of the SDP to

t for uniqueness of root.

2.2.1 Parity-check Matrix

The parity check matrix H of CL,g is defined with each coefficient of the polynomial (X − αj)
−1

with degree t− 1, and H can be decomposed into the product of the following matrices A, B, and

C.

H = ABC ∈ Ft×n
2m ,

where

A :=


g1 g2 · · · gt

g2 g3 · · · 0
...

...
. . .

...

gt 0 · · · 0

 ∈ Ft×t
2m , B :=


α0
0 α0

1 · · · α0
n−1

...
...

. . .
...

αt−2
0 αt−2

1 · · · αt−2
n−1

αt−1
0 αt−1

1 · · · αt−1
n−1

 ∈ Ft×n
2m ,

C :=


g(α0)−1 0 · · · 0

0 g(α1)−1 · · · 0
...

...
. . .

...

0 0 · · · g(αn−1)−1

 ∈ Fn×n
2m .

(2.1)

Since the matrix A is invertible (gt 6= 0), BC is another parity check matrix of CL,g. Classic

McEliece uses BC as a parity check matrix.

2.2.2 Extended Patterson Decoding for Binary Separable Goppa code

Patterson decoding is the algorithm for binary irreducible Goppa codes, not separable Goppa code.

However, it can be extended for binary separable Goppa codes[18, 5]. Given a syndrome vector s,

the extended Patterson decoding procedure to find the preimage vector e of s with wH(e) = t is

as follows. (Note that preimage vector is called an error vector in coding theory)

Step 1. Convert the syndrome vector s ∈ Fn−k
2 into the syndrome polynomial s(X) ∈ F2m [X].

Step 2. Derive the key equation for finding the error locator polynomial σ(X) ∈ F2m [X].

Step 3. Solve the key equation using the extended Euclidean algorithm.
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Step 4. Calculate σ(X) using a root of the key equation.

Step 5. Find all roots of σ(X) and compute the preimage vector e ∈ Fn
2 . At this time, in order to

have resistance against timing attacks, we use exhaustive search.

In the above procedure, the error locator polynomial σ(X) is

σ(X) :=
∏
j∈E

(X − αj) ∈ F2m [X] where E = {i ∈ [n] : ei 6= 0}.

σ(X) satisfies the following identity.

σ(X)s(X) ≡ σ′(X) (mod g(X)). (2.2)

Note that since the number of errors is t, σ(X) that satisfies (2.2) is unique. In F2m [X], all

polynomials f(X) has polynomials a(X) and b(X) such that

f(X) = a(X)2 + b(X)2X where deg(a) ≤
⌊
t

2

⌋
, deg(b) ≤

⌊
t− 1

2

⌋
.

Thus, if σ(X) = a(X)2 + b(X)2X, (2.2) can be transformed as follows.

b(X)2(1 +Xs(X)) ≡ a(X)2s(X) (mod g(X)). (2.3)

When g(X) is irreducible, s−1(X) and
√
s−1(X) +X exist in modulo g(X). Patterson decoding

uses the extended Euclidean algorithm to find solutions a(X) and b(X) of the following key

equation to generate the error locator polynomial σ(X).

b(X)
√

(s−1(X) +X) ≡ a(X) (mod g(X)), deg(a) ≤
⌊
t

2

⌋
, deg(b) ≤

⌊
t− 1

2

⌋
.

However, if g(X) is separable, the existence of s−1(X) cannot be guaranteed because g(X) and

s(X) are unlikely to be relatively prime. We define

s∗(X) := 1 +Xs(X), g1(X) := gcd(g(X), s(X)), g2(X) := gcd(g(X), s∗(X)).

Since gcd(s(X), s∗(X)) = gcd(s(X), s∗(X) mod s(X)) = gcd(s(X), 1) ∈ F2m \ {0}, we know

g | b2s∗ + a2s ⇒ g1 | b2s∗ + a2s ⇒ g1 | b2s∗ ⇒ g1 | b2 ⇒ g1 | b,

g | b2s∗ + a2s ⇒ g2 | b2s∗ + a2s ⇒ g2 | a2s ⇒ g2 | a2 ⇒ g2 | a.

Therefore, the following polynomial can be defined.

b1(X) :=
b(X)

g1(X)
, a2(X) :=

a(X)

g2(X)
, g12(X) :=

g(X)

g1(X)g2(X)
,

s∗2(X) :=
s∗(X)

g2(X)
, s1(X) :=

s(X)

g1(X)
.

(2.3) can be expressed as follows.

b(X)2s∗(X) ≡ a(X)2s(X) (mod g(X))

13



⇒ b21(X)g21(X)s∗2(X)g2(X) ≡ a22(X)g22(X)s1(X)g1(X) (mod g12(X)g1(X)g2(X))

⇒ b21(X)g1(X)s∗2(X) ≡ a22(X)g2(X)s1(X) (mod g12(X)).

We know gcd(g2(X)s1(X), g12(X)) ∈ F2m because of gcd(g2(X), g12(X)), gcd(s1(X), g12(X)) ∈
F2m . Therefore, there exists the inverse of g2(X)s1(X) modulo g12(X), and we have the following

equation.

b21(X)u(X) ≡ a22(X) (mod g12(X)) where u(X) := g1(X)s∗2(X)(g2(X)s1(X))−1.

Since u(X) has a square root modulo g12(X) (Remark 2.2.1), a(X) = a2(X)g2(X) and b(X) =

b1(X)g1(X) are obtained by calculating a2(X) and b1(X) that satisfy the following equations

using the extended Euclidean algorithm.

b1(X)
√
u(X) ≡ a2(X) (mod g12(X)), deg(a2) ≤

⌊
t

2

⌋
− deg(g2), deg(b1) ≤

⌊
t− 1

2

⌋
− deg(g1).

Remark 2.2.1. Since all elements of F213 are roots of the equation X213 −X = 0, we know

g12(X) | X213 −X ⇒ X213 ≡ X (mod g12(X)) ⇒
√
X ≡ X212 mod g12(X).

A polynomial u(X) =
∑l

i=0 uiX
i ∈ F213 [X] of degree l can be written as follows.

u(X) =

b l
2c∑

i=0

√
u2iX

i


2

+

b
l−1
2 c∑

i=0

√
u2i+1X

i


2

X.

where
√
aj = (aj)

212 for all j. Thus, the square root
√
u(X) of u(X) modulo g12(X) is

√
u(X) ≡

b l
2c∑

i=0

√
u2iX

i

+

b
l−1
2 c∑

i=0

√
u2i+1X

i

√X mod g12(X).

We give the sage code for a binary separable Goppa code used in PALOMA in Appendix A.
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Chapter 3

Specification

3.1 Definitions

The notations, symbols and functions used throughout this paper are listed below.

Notation

[l] integer set {0, 1, . . . , l − 1}
[l1 : l2] integer set {l1, l1 + 1, . . . , l2 − 1}
{0, 1}l set of all l-bit strings

a‖b concatenation of two bit strings a and b

a[l] first l-bit string a0‖a1‖ · · · ‖al−1 of a bit string a = a0‖a1‖ · · ·
a[i:j] substring ai‖ai+1‖ · · · ‖aj−1 of a bit string a = a0‖a1‖ · · ·
Fq finite field with q elements

Fm×n
q set of all m× n matrices over a field Fq

Fl
q set of all l×1 matrices over a field Fq, i.e., Fl

q := Fl×1
q (v ∈ Fq

l is considered

as a column vector)

0l zero vector with length l

vI subvector (vj)j∈I ∈ F|I|q of a vector v = (v0, v1, . . . , vl−1) ∈ Fl
q

supp (e) function that returns the non-zero position set of a given vector e

wH(e) function that returns Hamming weight of a given vector e

dH(u, v) function that returns Hamming distance of given two vectors u, v

M−1 the inverse matrix of a matrix M

MT the transposed matrix of a matrix M

Il l × l identity matrix

MI submatrix [mr,c]c∈I of a matrix M = [mr,c] where r and c are row index

and column index, respectively

MI×J submatrix [mr,c]r∈I, c∈J of a matrix M = [mr,c] where r and c are row

index and column index, respectively

[A | B] concatenated matrix of two matrices A and B

Pl set of all l × l permutation matrices

[n, k, d]2 linear code over F2 with length n, dimension k and minimum distance d

15



A mod B function that returns the remainder after dividing A by B

div(A,B) function that returns the quotient and the remainder after dividing A by B

deg(f) degree of a given polynomial f

gcd(f(X), g(X)) function that returns the monic greatest common divisor polynomial of

f(X) and g(X)

x
$←− X x randomly chosen in a set X

Symbols

pk public key

sk secret key

e, ê error vectors

s, ŝ syndrome vectors

r, r̂ random bit string

L support set

g(X) Goppa polynomial

C, CL,g binary separable Goppa code generated by a support set L and a Goppa

polynomial g(X)

H parity-check matrix of C
Ĉ scrambled code of C
Ĥ parity-check matrix of Ĉ

Functions

GenKeyPair function that returns a public key and a secret key pair

Encrypt function that returns the syndrome vector of a given error vector with a

public key

Decrypt function that returns the error vector of a given syndrome vector with a

secret key

Encap function that returns a key and a ciphertext with a public key

Decap function that returns a key of a given ciphertext with a secret key

Lsh 512-bit hash function LSH-512, the national standard of South Korea (KS

X 3262), that returns an 512-bit hash value of a given bit string

Rref function that returns the reduced row echelon form of a given matrix

3.2 Parameter Sets

The followings are the parameters of PALOMA.
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m degree of a binary field extension, i.e., m = [F2m : F2]

t number of correctable errors

n length of a codeword (n ≤ 2m − t)
k dimension of a code (k = n−mt)

PALOMA consists of PALOMA-128, PALOMA-192, PALOMA-256 with 128/192/256-bit security

strength, respectively. Table 3.1 shows each parameter set.

Table 3.1: Parameter Sets of PALOMA

Parameter m t n† k‡

PALOMA-128 13 64 3904 3072

PALOMA-192 13 128 5568 3904

PALOMA-256 13 128 6592 4928

† n ≤ 2m − t, ‡ mt = n− k

Finite field F213 used in PALOMA is F2[z]/ 〈f(z)〉 where f(z) is an irreducible polynomial

f(z) = z13 + z7 + z6 + z5 + 1 ∈ F2[z].

3.3 Key Generation

The trapdoor of PALOMA is designed with SDP based on a scrambled code Ĉ of a binary separable

Goppa code C. In PALOMA, the public key is the submatrix of the systematic parity-check matrix

of Ĉ, and the private key is the information for decoding and scrambling of C. The key generation

of PALOMA is as follows. (Algorithm 1 shows the pseudo-code of the key generation)

Step 1. Generation of a random binary separable Goppa code C. (Algorithm 2)

Generate a support set L ⊆ F213 , a Goppa polynomial g(X) ∈ F213 [X] for a Goppa code

CL,g, and compute the parity check matrix H ∈ F13t×n
2 of CL,g.

(i) Reorder elements of F213 with a random 256-bit string r using the Shuffle, defined

in Algorithm 4.

F213 = [0, 1, z, z + 1, z2, . . . , z12 + · · ·+ 1]
Shuffle with r−−−−−−−−−−→ [α0, . . . , α2m−1].

(ii) Set a support set L = [α0, . . . , αn−1].

(iii) Set a separable Goppa polynomial g(X) with degree t whose roots are αn, . . . , αn+t−1,

i.e.,

g(X) =

t∑
j=0

gjX
j =

n+t−1∏
j=n

(X − αj) ∈ F213 [X].

(iv) Compute the parity check matrix H = ABC where A,B,C are defined in (2.1).
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(v) Parse H as a matrix in F13t×n
2 because a Goppa code is the subfield subcode of the

code, i.e.

H = [hr,c] ∈ Ft×n
213 ⇒ H := [h0 | h1 | · · · | hn−1] ∈ F13t×n

2 ,

where hc := [h
(0)
0,c | · · · | h

(12)
0,c | h

(0)
1,c | · · · | h

(12)
1,c | · · · | h

(12)
t−1,c]

T ∈ F13t
2 and h

(j)
r,c ∈ F2

such that hr,c =
∑12

j=0 h
(j)
r,czj ∈ F213 for r ∈ [t] and c ∈ [n].

Step 2. Generation of a scrambled code Ĉ of C. (Algorithm 3)

The parity check matrix H of C is scrambled below.

(i) Reorder elements of [n] with a random 256-bit string r using the Shuffle. (Algo-

rithm 4)

[n] = [0, 1, 2, . . . , n− 1]
Shuffle with r−−−−−−−−−−→ [l0, . . . , ln−1].

(ii) Compute HP where P ∈ Pn is the permutation matrix defined by

P := P0,l0P1,l1 · · ·Pn−1,ln−1
,

and Pj,lj ∈ Pn is the permutation matrix for swapping j-th column and lj-th column.

(Algorithm 5) Note that P−1 is Pn−1,ln−1 · · ·P1,l1P0,l0 .

(iii) Compute the reduced row echelon form Ĥ of HP. If Ĥ[n−k] 6= In−k, back to (i).

(iv) There exists the invertible matrix S ∈ F(n−k)×(n−k)
2 such that Ĥ = SHP, i.e.,

S−1 = (HP)[n−k].

Step 3. Since Ĥ is a systematic form matrix, i.e., Ĥ[n−k] = In−k, return Ĥ[n−k:n] as a public key

pk and (L, g(X),S−1, r) as a secret key sk.

pk := Ĥ[n−k:n] ∈ F(n−k)×k
2 , sk := (L, g(X),S−1, r).

Shuffle parses a 256-bit random bit string r = r0‖r1‖ · · · ‖r255 ∈ {0, 1}256 as a 16-bit sequence

(r[16w:16(w+1)])w=0,...,15 and uses each as a random integer required in the Fisher-Yates shuffle.

Algorithm 4 shows the process of Shuffle in detail.

Remark 3.3.1. Since S−1 can be computed from L, g(X), and L, g(X) are generated from a

256-bit random string r′, the secret key can be defined as a 512-bit string r′‖r ∈ {0, 1}512.

3.4 Encryption and Decryption

Encryption

PALOMA encryption is as follows. (Algorithm 6)

Step 1. Retrieve the parity check matrix Ĥ = [I | Ĥ[n−k:n]] of the scrambled code Ĉ from the

public key pk = Ĥ[n−k:n] ∈ F(n−k)×k
2 .

Step 2. Return the (n−k)-bit syndrome ŝ(= Ĥê) of an n-bit input ê ∈ {0, 1}n for Ĥ as a ciphertext

of ê.
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Algorithm 1 PALOMA: Generation of Key Pair

Input: Parameter set (t, n)

Output: A public key pk and a secret key sk

1: procedure GenKeyPair(t, n)

2: L, g(X),H← GenRandGoppaCode(t, n)

3: S−1, r, Ĥ← GetScrambledCode(H) . Ĥ = SHP

4: pk ← Ĥ[n−k:n] . Ĥ[n−k:n] is the submatrix of Ĥ consisting of the last k columns

5: sk ← (L, g(X),S−1, r)

6: return pk and sk

7: end procedure

Algorithm 2 PALOMA: Generation of a Random Goppa Code

Input: Parameter set (t, n)

Output: A support set L, a Goppa polynomial g(X) and a parity-check matrix H of C
1: procedure GenRandGoppaCode(t, n)

2: r
$←− {0, 1}256

3: [α0, . . . , α213−1]← Shuffle(F213 , r) . Algorithm 4

4: L← [α0, . . . , αn−1] . support set of C

5: g(X)←
n+t−1∏
j=n

(X − αj) . separable Goppa polynomial of C

6: H = [hr,c]← ABC ∈ Ft×n
213

. A,B,C are defined in (2.1)

7: hc ← [h
(0)
0,c | · · · | h

(12)
0,c | h

(0)
1,c | · · · | h

(12)
1,c | · · · | h

(12)
t−1,c]

T ∈ F13t
2 for c ∈ [n] where h

(j)
r,c ∈ F2 such that

hr,c =
∑12

j=0 h
(j)
r,cz

j ∈ F213

8: H← [h0 | h1 | · · · | hn−1] ∈ F13t×n
2 . parity-check matrix of C

9: return L, g(X), H

10: end procedure

Algorithm 3 PALOMA: Generation of a Scrambled Code

Input: A parity-check matrix H of C
Output: An invertible matrix S−1, a random bits r and a systematic parity-check matrix Ĥ of Ĉ
1: procedure GetScrambledCode(H)

2: r
$←− {0, 1}256

3: P,P−1 ← GenRandPermMat(r) . Algorithm 5

4: [Ĥ | S]← Rref([HP | In−k]) . Ĥ ∈ F(n−k)×n
2 , S ∈ F(n−k)×(n−k)

2

5: if Ĥ[n−k] 6= In−k then . Ĥ[n−k] is the submatrix of Ĥ consisting of the first n− k columns

6: Go back to line 2.

7: end if

8: S−1 ← (HP)[n−k]

9: return S−1, r, Ĥ

10: end procedure
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Algorithm 4 PALOMA: Shuffling with an 256-bit seed

Input: An ordered set A = [A0, A1, . . . , Al−1] and a random 256-bit string r

Output: A shuffled set A

procedure Shuffle(A, r)

r ← r‖r‖r‖ · · ·
w ← 0

for i← l − 1 downto 1 do

j ← B2I(r[16w:16(w+1)]) mod i+ 1 j
$←− [i+ 1] . B2I(r0‖ · · · ‖r15) =

∑15
j=0 rj2

j

swap(Ai, Aj)

w ← w + 1

end for

return A

end procedure

Algorithm 5 PALOMA: Generation of a Random Permutation Matrix

Input: A random 256-bit string r

Output: An n× n permutation matrix P,P−1

1: procedure GenRandPermMat(r)

2: [l0, . . . , ln−1]← Shuffle([n], r) . Algorithm 4

3: P←
∏n−1

j=0 Pj,lj = P0,l0P1,l1 · · ·Pn−1,ln−1 where Pi,j :=



1

.
.
.

0 1

.
.
.

1 0

.
.
.

1


.

4: P−1 ← Pn−1,ln−1 · · ·P1,l1P0,l0

5: return P,P−1

6: end procedure
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Decryption

PALOMA decryption is as follows. (Algorithm 6)

Step 1. Convert the syndrome ŝ ∈ {0, 1}n−k of the input Ĉ into the syndrome s(= S−1ŝ) of C by

multiplying the secret key S−1.

Step 2. Recover the error vector e corresponding to s with the secret key L, g(X), which are de-

coding information of C. At that time, we use the extended Patterson decoding introduced

by Section 2.2.2. (Algorithm 7)

Step 3. Return the error vector ê(= P−1e) of Ĉ obtained from e and the permutation matrix P−1

generated by the secret key r.

Figure 3.1 shows these operations.

Algorithm 6 PALOMA: Encryption and Decryption

Input: A public key pk = Ĥ[n−k:n] ∈ F(n−k)×n
2 and an error vector ê ∈ Fn

2 with wH(ê) = t

Output: A syndrome vector ŝ ∈ Fn−k
2

1: procedure Encrypt(pk = Ĥ[n−k:n]; ê)

2: Ĥ← [In−k | Ĥ[n−k:n]] ∈ F(n−k)×n
2

3: ŝ← Ĥê ∈ Fn−k
2

4: return ŝ

5: end procedure

Input: A secret key sk = (L, g(X),S−1, r) and a syndrome vector ŝ ∈ Fn−k
2

Output: An error vector ê ∈ Fn
2 with wH(ê) = t

1: procedure Decrypt(sk = (L, g(X),S−1, r); ŝ)

2: s← S−1ŝ

3: e← RecErrVec(L, g(X); s) . Algorithm 7

4: P,P−1 ← GenRandPermMat(r) . Algorithm 5

5: ê← P−1e

6: return ê

7: end procedure

r GenRandPermMat

Ĥ[n−k:n] S−1 L, g(X) P,P−1

Ĥ = [In−k | Ĥ[n−k:n]] × ŝ × RecErrVec ×

ê ê

SHPê HPê Pê

Encrypt Decrypt

Figure 3.1: PALOMA: Encryption and Decryption
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Algorithm 7 PALOMA: Recovering an Error Vector in C (Extended Patterson Decoding)

Input: A support set L, Goppa polynomial g(X) and a syndrome vector s ∈ Fn−k
2

Output: An error vector e ∈ Fn
2 with wH(e) = t

1: procedure RecErrVec(L, g(X); s)

2: s(X)← ToPoly(s)

3: ŝ(X), g1(X), g2(X), g12(X)← ConstructKeyEqn(s(X), g(X)) . Algorithm 8

4: a2(X), b1(X)← SolveKeyEqn(ŝ(X), g12(X),
⌊
t
2

⌋
− deg(g2),

⌊
t−1
2

⌋
− deg(g1)) . Algorithm 9

5: a(X), b(X)← a2(X)g2(X), b1(X)g1(X)

6: σ(X)← a2(X) + b2(X)X . σ is the error locator polynomial of e

7: e← FindErrVec(σ(X))

8: return e

9: end procedure

Input: A syndrome vector s = (s0, s1, . . . , s13t−1) ∈ F13t
2

Output: A syndrom polynomial s(X) ∈ F213 [X]

1: procedure ToPoly(s)

2: for j = 0 to t− 1 do

3: wj ←
∑12

i=0 s13j+iz
i ∈ F213

4: end for

5: s(X)←
∑t−1

j=0 wjX
j ∈ F213 [X]

6: return s(X)

7: end procedure

Output: An error locator polynomial σ(X) and a support set L

Input: An error vector e ∈ Fn
2

1: procedure FindErrVec(σ, L)

2: e = (e0, . . . , en−1)← (0, 0, . . . , 0)

3: for j = 0 to n− 1 do

4: if σ(αj) = 0 then

5: ej ← 1

6: end if

7: end for

8: return e

9: end procedure

Algorithm 8 PALOMA: Key Equation for an Error Locator Polynomial

Output: A syndrome polynomial s(X) and a Goppa polynomial g(X)

Input: ŝ(X), g1(X), g2(X), g12(X) ∈ F213 [X]

1: procedure ConstructKeyEqn(s(X), g(X))

2: s∗(X)← 1 +Xs(X)

3: g1(X), g2(X)← gcd(g(X), s(X)), gcd(g(X), s∗(X))

4: g12(X)← g(X)
g1(X)g2(X)

5: s∗2(X), s1(X)← s∗(X)
g2(X)

, s(X)
g1(X)

6: u(X)← g1(X)s∗2(X)(g2(X)s1(X))−1 mod g12(X)

7: ŝ(X)←
√
u(X) mod g12(X)

8: return ŝ(X), g1(X), g2(X), g12(X)

9: end procedure
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Algorithm 9 PALOMA: Solving a Key Equation for an Error Locator Polynomial

Output: ŝ(X), g12(X), dega, degb

Input: a1(X), b2(X) such that b2(X)ŝ(X) ≡ a1(X) (mod g12(X)) and deg(a1) ≤ dega,deg(b2) ≤ degb
1: procedure SolveKeyEqn(ŝ(X), g12(X), dega, degb)

2: a0(X), a1(X)← ŝ(X), g12(X)

3: b0(X), b1(X)← 1, 0

4: while a1(X) = 0 do

5: q(X), r(X)← div(a0(X), a1(X))

6: a0(X), a1(X)← a1(X), r(X)

7: b2(X)← b0(X)− q(X)b1(X)

8: b0(X), b1(X)← b1(X), b2(X)

9: if deg(a0) ≤ dega and deg(b0) ≤ degb then
10: break

11: end if

12: end while

13: return a0(X), b0(X)

14: end procedure

3.5 Encapsulation and Decapsulation

Random Oracles

PALOMA is a KEM designed by random oracle model. PALOMA uses two random oracles, ROG

and ROH , defined as the Korean KS standard hash function LSH-512. Algorithm 10 shows the

definition.

Algorithm 10 PALOMA: Random Oracles

Input: An l-bit string x ∈ {0, 1}l

Output: An 256-bit string r ∈ {0, 1}256

1: procedure ROG(x)

2: return LSH("PALOMAGG"‖x)[:256] . ASCII("PALOMAGG") = 0x50414c4f4d414747

3: end procedure

1: procedure ROH(x)

2: return LSH("PALOMAHH"‖x)[:256] . ASCII("PALOMAHH") = 0x50414c4f4d414848

3: end procedure

Encapsulation

PALOMA Encap has a public key pk as an input and returns a key k and the ciphertext c = (r̂, ŝ)

of the k. The procedure is as follows. (Algorithm 11)

Step 1. Reorder elements of [n] with a random 256-bit string r∗ using the Shuffle. (Algorithm

4)

[n] = [0, 1, 2, . . . , n− 1]
Shuffle with r∗−−−−−−−−−−−→ [l0, . . . , ln−1].

Step 2. Define n-bit error vector e∗ ∈ {0, 1}n such that supp (e∗) = {l0, . . . , lt−1}.
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Step 3. Query e∗ to the random oracle ROG and obtain a 256-bit string r̂ ∈ {0, 1}256.

Step 4. Compute the permutation matrix P,P−1 ∈ Pn corresponding to r̂ using Algorithm 5.

Step 5. Compute ê = Pe∗.

Step 6. Obtain the syndrome ŝ ∈ {0, 1}n−k of ê using Encrypt equipped with the public key pk.

Step 7. Query (e∗‖r̂‖ŝ) to the random oracle ROH and obtain a 256-bit key k ∈ {0, 1}256.

Step 8. Return the key k and its ciphertext c = (r̂, ŝ).

Figure 3.2a outlines Encap.

Algorithm 11 PALOMA: Encapsulation

Input: A public key pk ∈ {0, 1}(n−k)×n

Output: A key k ∈ {0, 1}256 and a ciphertext c = (r̂, ŝ) ∈ {0, 1}256 × {0, 1}n−k

1: procedure Encap(pk)

2: r∗
$←− {0, 1}256

3: e∗ ← GenRandErrVec(r∗) . Algorithm 13

4: r̂ ← ROG(e∗) . r̂ ∈ {0, 1}256

5: P,P−1 ← GenRandPermMat(r̂) .

6: ê← Pe∗

7: ŝ← Encrypt(pk; ê) . ŝ ∈ {0, 1}n−k

8: k ← ROH(e∗‖r̂‖ŝ) . k ∈ {0, 1}256

9: return k and c = (r̂, ŝ)

10: end procedure

Decapsulation

Decap of PALOMA returns the key k when passing the secret key sk and the ciphertext c = (r̂, ŝ)

as inputs. The process is as follows. (Algorithm 12)

Step 1. Obtain the error vector ê by entering ŝ into the Decrypt function set to the secret key

sk.

Step 2. Generate the permutation matrix P,P−1 ∈ Pn from r̂ which is part of the ciphertext c.

Step 3. Compute e∗ = P−1ê.

Step 4. Query e∗ to the ROG and obtain a 256-bit string r̂′ ∈ {0, 1}256.

Step 5. Generate the error vector ẽ using GenRandErrVec with the secret key r.

Step 6. If r̂′ = r̂, then query (e∗‖r̂‖ŝ) to the random oracle ROH , and if not, query (ẽ‖r̂‖ŝ) to

ROH . Return the received bit string from ROH as a key k.

Figure 3.2b outlines Decap.
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Algorithm 12 PALOMA: Decapsulation

Input: A secret key sk = (L, g(X),S−1, r) and a ciphertext c = (r̂, ŝ) ∈ {0, 1}256 × {0, 1}n−k

Output: A key k ∈ {0, 1}256

1: procedure Decap(sk = (L, g(X),S−1, r); c = (r̂, ŝ))

2: ê← Decrypt(sk; ŝ) . Algorithm 6

3: P,P−1 ← GenRandPermMat(r̂) . Algorithm 5

4: e∗ ← P−1ê . ê ∈ {0, 1}n

5: r̂′ ← ROG(e∗)

6: ẽ← GenRandErrVec(r)

7: if r̂′ 6= r̂ then . k ∈ {0, 1}256

8: return k ← ROH(ẽ‖r̂‖ŝ)
9: end if

10: k ← ROH(e∗‖r̂‖ŝ) . k ∈ {0, 1}256

11: return k

12: end procedure

r∗ × ê(= Pe∗)

GenRandErrVec e∗ ROG r̂ GenRandPermMat P,P−1 Encrypt pk

ROH

k ŝ

(a) k, (r̂, ŝ)← Encap(pk)

ŝ r̂

sk = (L, g(X),S−1, r) Decrypt GenRandPermMat r̂ = r̂′ ROH k

ê P,P−1 ROH k

× r̂′ ẽ

e∗(= P−1ê) ROG GenRandErrVec r

YES

NO

(b) k ← Decap(sk, (r̂, ŝ))

Figure 3.2: PALOMA: Encapsulation and Decapsulation
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Algorithm 13 PALOMA: Generating a Random Error Vector

Input: A random 256-bit string r ∈ {0, 1}256

Output: An error vector e = (e0, e1, . . . , en−1) ∈ Fn
2

1: procedure GenRandErrVec(r)

2: e = (e0, e1, . . . , en−1)← (0, 0, . . . , 0)

3: (l0, l1, . . . , ln−1)← Shuffle([n], r)

4: for j = 0 to t− 1 do

5: elj ← 1

6: end for

7: return e

8: end procedure
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Chapter 4

Performance Analysis

In this chapter, we provide the performance analysis result of PALOMA.

4.1 Description of Benchmark

4.1.1 Platforms

PALOMA is implemented in ANSI C. Speed benchmark is performed in the following two platforms.

Platform 1. macOS Monterey ver.12.5, Apple M1, 8GB RAM

Platform 2. macOS Monterey ver.12.4, Intel core i5, 8GB RAM

We use the GCC compiler (ver.13.1.6.) with speed option -O2.

4.1.2 Data Structure for a Polynomial Ring F213 [X]

The elements of F213 = F2[z]/ 〈f(z)〉 are stored in the 2-byte data type unsigned short. The

data structure for a field element is defined as follows.

a(z) =

12∑
i=0

aiz
i ∈ F213 ⇔ 0‖0‖0‖a12‖a11‖ · · · ‖a0 ∈ {0, 1}16.

A polynomial a(X) ∈ F213 [X] with degree l is stored in 2(l + 1)-byte as follows.

a(X) =
∑
i=0

aiX
i ∈ F213 ⇔ a0‖a1‖ · · · ‖al ∈ {0, 1}2(l+1).

4.1.3 Arithmetics in F213 using Pre-computated Tables

PALOMA uses the pre-computed tables for multiplication, square, square root, and inverse in F213 .

(i) Multiplication in F213 : To store the multiplication of all pairs in F213 , the table of 128

MB(=2 × 226-byte) is required. To decrease the size of a table, PALOMA deals with the

multiplication of three small sizes of tables. a(z), b(z) ∈ F213 can be written as follows.

a = a1(z)z7 + a0(z), b = b1(z)z7 + b0(z), (deg(a0), deg(b0) ≤ 6, deg(a1), deg(b1) ≤ 5).
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So, the multiplication of a(z) and b(z) ∈ F213 can be computed as follows.

a(z)b(z) mod f(z)

= (a1(z)z7 + a0(z))(b1(z)z7 + b0(z)) mod f(z)

=
(
a1(z)b1(z)z14 mod f(z)

)
+
(
a1(z)b0(z)z7 mod f(z)

)
+
(
a0(z)b1(z)z7 mod f(z)

)
+ (a0b0(z)) .

Thus, the multiplication in F213 can be calculated by the following three tables for all possible

pairs.

Table 1. MUL00 : {0, 1}7×{0, 1}7 → {0, 1}16 defined by MUL00[a0, b0] = a0(z)b(z) mod f(z)

Table 2. MUL10 : {0, 1}6 × {0, 1}7 → {0, 1}16 defined by MUL10[a1, b0] = a1(z)b0(z)z7 mod

f(z)

Table 3. MUL11 : {0, 1}6 × {0, 1}6 → {0, 1}16 defined by MUL11[a1, b1] = a1(z)b1(z)z14 mod

f(z)

Note that (a1(z)b0(z))z7 mod f(z) is computed using the table MUL10.

(ii) Squaring, square root, inversion in F213 : Tables SQU, SQRT and INV store the results of a

square, square root, and inverse for all elements in F213 , respectively. Note that we define

the inverse of 0 as 0.

Table 4.1 shows the size of pre-computed tables for arithmetics in F213 used in PALOMA.

Table 4.1: Precomputed Tables for Arithmetics in F213 used in PALOMA

Table Size (in bytes) Description

MUL00 32,768 a0(z)b0(z)

MUL10 16,384 a1(z)b0(z)z7 mod f(z)

MUL11 8,192 a1(z)b1(z)z14 mod f(z)

SQU 16,384 a(z)2 mod f(z)

SQRT 16,384
√
a(z) where a(z) =

(√
a(z)

)2
mod f(z)

INV 16,384 a(z)−1 where 1 = a(z)
−1
a(z) mod f(z)

Total 106,496

4.2 Performance of Reference Implementation

4.2.1 Data Size

We determine the size of a public key, a secret key, and a ciphertext in terms of byte strings. Each

size in bytes is computed by the following formula.

bytelen(pk) = bytelen(Ĥ[n−k:n]) =

⌈
(n− k)k

8

⌉
,
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bytelen(sk) = bytelen(L) + bytelen(g) + bytelen(S−1) + bytelen(r)

= n

⌈
13

8

⌉
+ t

⌈
13

8

⌉
+

⌈
(n− k)2

8

⌉
+ 32.

The size of data of PALOMA-128, PALOMA-192, and PALOMA-256 is shown in Table 4.2.

Table 4.2: Data Size Performance of PALOMA (in bytes)

PALOMA-128 PALOMA-192 PALOMA-256

Public key
pk = Ĥ[n−k:n]

Ĥ[n−k:n] ∈ F(n−k)×k
2 319,488 812,032 1,025,024

Secret key L ∈ Fn
213 7,808 11,136 13,184

sk = (L, g,S−1, r) g(X) ∈ F213 [X] 128 256 256

S−1 ∈ F(n−k)×(n−k)
2 86,528 346,112 346,112

r ∈ {0, 1}256 32 32 32

Total 94,496 357,536 359,584

Ciphertext r̂ ∈ {0, 1}256 32 32 32

c = (r̂, ŝ) ŝ ∈ F(n−k)
2 104 208 208

Total 136 240 240

Key k k ∈ {0, 1}256 32 32 32

As mentioned in Remark 3.3.1, the size of a secret key can be 512-bit. However, this degrades

the speed performance of Decrypt.

Table 4.3 shows the data size comparison among the NIST competition round 4 code-based

ciphers and PALOMA.

The data size of PALOMA is similar to Classic McEliecebecause of the usage of SDP-based

trapdoor. Compared to HQC and BIKE, the size of a public key and a secret key is relatively large.

However, the size of the ciphertext which is the actual transmitted value is smaller than HQC and

BIKE. Therefore, PALOMA is suitable for the situation of long-term key or reused key.

4.2.2 Speed

We measure the operation time for each function of PALOMA in two platforms. The results are

shown in Table 4.4.

Compare the time of PALOMA with Classic McEliece, which is the same SDP-based KEM. Time

is measured in the Apple M1 platform.

Compared to Classic McEliece, an SDP-based trapdoor, PALOMA operates faster except for the

parameter providing a 192-bit security. It is the reason that the number of correctable errors(= t)

among 192-bit security parameters is 128 in PALOMA compared to 96 Classic McEliece.
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Table 4.3: Data Size Comparison of Code-based KEMs (in bytes)

Algorithm Security Public key Secret key Ciphertext Key

hqc-128 128 2,249 40 4,481 64

BIKE 128 1,541 281 1,573 32

mceliece348864 128 261,120 6,452 128 32

PALOMA-128 128 319,488 94,496 136 32

hqc-192 192 4,522 40 9,026 64

BIKE 192 3,083 419 3,115 32

mceliece460896 192 524,160 13,568 188 32

PALOMA-192 192 812,032 355,400 240 32

hqc-256 256 7,245 40 14,469 64

BIKE 256 5,122 580 5,154 32

mceliece6688128 256 1,044,992 13,892 240 32

mceliece6960119 256 1,047,319 13,908 226 32

mceliece8192128 256 1,357,824 14,080 240 32

PALOMA-256 256 1,025,024 357,064 240 32

Table 4.4: Speed Performance of PALOMA (in milliseconds)

PALOMA-128 PALOMA-192 PALOMA-256

M1 Intel M1 Intel M1 Intel

GenKeyPair GenRandGoppaCode 15 26 74 144 93 168

GetScrambledCode 42 61 179 263 211 281

total 64 89 261 423 323 469

Encrypt 0.002 0.003 0.003 0.004 0.003 0.005

Decrypt ConstructKeyEqn 8 12 53 92 53 92

SolveKeyEqn 0.2 0.4 2 3 2 3

FindErrVec 1 2 3 4 4 5

total 10 14 59 100 59 101

Encap 0.03 0.05 0.04 0.07 0.04 0.08

Decap 9 15 59 101 60 101
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Table 4.5: Speed Performance Comparison between PALOMA and Classic McEliece (in milliseconds)

GenKeyPair Encap Decap

128-bit
PALOMA-128 64 0.03 9

mceliece348864 74 0.04 18

192-bit
PALOMA-192 258 0.04 58

mceliece460896 211 0.06 42

256-bit
PALOMA-256 323 0.04 58

mceliece6688128 517 0.10 82
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Chapter 5

Security

5.1 OW-CPA-secure PKE

When evaluating the security of PALOMA, even though there have been no known critical attacks

on binary separable Goppa codes, we need to assume that the scrambling code of a Goppa code is

indistinguishable from a random matrix. Therefore, the security of PALOMA is evaluated by the

number of bit operations of ISD, which is the most powerful generic attack of an NP-hard SDP.

From now on, let SDP(H, s, w) be the root set of SDP defined with a parity check matrix

H ∈ F(n−k)×n
2 , a syndrome s ∈ Fn−k

2 , and a Hamming weight w, and let Enw be the set of all n-bit

vectors with Hamming weight w. The zero matrix is denoted by 0. The parameters n, t, and k of

PALOMA assure that the base SDP has a unique root and are all even.

5.1.1 Exhaustive Search

The naive algorithm finding roots of SDP is an exhaustive search. It checks all candidate vectors

with a Hamming weight of w, that is, it checks if the sum of all possible w columns in a matrix

H equals the syndrome. Algorithm 14 shows the exhaustive search algorithm in detail.

To generate tl(l = 1, 2, . . . , w) in Algorithm 14, one column vector addition is required. Since

tl is defined from j1, . . . , jl,
(
n
l

)
column vector additions are required to generation tl. Therefore,

the total number of column vector additions T is as follows.

T =

(
n

1

)
+

(
n

2

)
+ · · ·+

(
n

w

)
.

If w < n
2 , T approximates

(
n
w

)
. Therefore, the amount of the exhaustive search is O

((
n
w

)
(n− k)

)
in terms of bit operations.

5.1.2 Birthday-type Decoding

For a random permutation matrix P ∈ Pn, SDP(H, s, w) and SDP(HP, s, w) have the following

necessary and sufficient conditions.

e ∈ SDP(H, s, w) ⇔ P−1e ∈ SDP(HP, s, w).

32



Algorithm 14 Exhaustive Search of SDP

Input: H = [h1 | h2 | · · · | hn] ∈ F(n−k)×n
2 , s ∈ Fn−k

2 , and w

Output: e ∈ Fn
2 such that He = s and wH(e) = w

1: for j1 = 1 to n− (w − 1) do

2: t1 ← s+ hj1

3: for j2 = j1 + 1 to n− (w − 2) do

4: t2 ← t1 + hj2

5: · · ·
6: for jw = jw−1 + 1 to n do

7: tw ← tw−1 + hjw

8: if tw = 0n−k then

9: set e with supp (e) = {j1, . . . , jw}
10: return e

11: end if

12: end for

13: end for

14: end for

Birthday-type decoding transforms SDP until finding the solution ê = (êI‖êJ) ∈ SDP(Ĥ(=

HP), s, w) that satisfies wH(êI) = wH(êJ) = w
2 for I = [n2 ] and J = [n] \ I, a random per-

mutation matrix P ∈ Pn. To find êI and êJ , check the intersection of the following two sets.

TI :=
{
s+ ĤI êI ∈ Fn−k

2 : êI ∈ En/2w/2

}
, TJ :=

{
ĤJ êJ ∈ Fn−k

2 : êJ ∈ En/2w/2

}
.

Two sets must satisfy |TI | = |TJ | ≥ 2
n−k

2 to have a intersection with 1/2 probability. However,

since the parameter of PALOMA is
(
n/2
w/2

)
� 2

n−k
2 , the probability that an intersection exists is

very low. For the root e ∈ SDP(H, s, w), since the probability that ê satisfies the hamming weight

condition is p =
(
n/2
w/2

)2
/
(
n
w

)
, the process of transforming SDP to a new permutation matrix P

must be repeated at least 1/p times. Algorithm 15 shows this attack in detail.

Since the number of bit computations for ĤI êI and ĤJ êJ are O(
(
n/2
w/2

)
(n−k)), the total amount

of computations is as follows.

2

(
n

w

)
(n− k)

/(n/2
w/2

)
. (5.1)

To bring the probability p close to 1 in birthday-type decoding, define the following two subsets

I and J of [n]

I = [n/2 + ε], J = [n/2− ε : n] for some ε > 0.

When we find e1, e2 ∈ En/2+ε
w/2 which satisfy s+ĤIe1 = ĤJe2, it does not assume that (e1‖0

n
2−ε)+

(0
n
2−ε‖e2) is a root. If wH((e1‖0

n
2−ε) + (0

n
2−ε‖e2) = w, then (e1‖0

n
2−ε) + (0

n
2−ε‖e2) is the root.

So this discriminant must be added. In this attack, ε is set to a value that makes the probability

p =
(
n/2+ε
w/2

)2
/
(
n
w

)
close to 1. The calculated amount of birthday-type decoding is counted as
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Algorithm 15 Birthday-type Decoding of SDP

Input: H ∈ F(n−k)×n
2 and s ∈ Fn−k

2 , w and I = [n
2

], J = [n] \ I
Output: e ∈ Fn

2 such that He = s and wH(e) = w

1: while true do

2: P
$←− Pn

3: Ĥ← HP

4: T [j]← null for all j ∈ {0, 1}n−k

5: for êI in En/2

w/2 do

6: u← s+ ĤI êI // #operations:
(
n/2
w/2

)
(n− k) (exhaustive search)

7: T [u]← êI

8: end for

9: for êJ in En/2

w/2 do

10: u← ĤJ êJ // #operations:
(
n/2
w/2

)
(n− k) (exhaustive search)

11: if T [u] 6= null then

12: ê← (T [u]‖êJ) . L[u] = êI

13: return Pê

14: end if

15: end for

16: end while

follows.

2(n− k)

(
n/2 + ε

w/2

)
≈ 2(n− k)

√(
n

w

)
. (5.2)

5.1.3 Improved Birthday-type Decoding

We can find the root of SDP from the roots of two small sizes of SDPs. Consider H ∈ F(n−k)×n
2

as a concatenation of two submatrices H1 and H2 for some r ≤ n− k as follows.

H =

(
H1

H2

)
, where H1 ∈ Fr×n

2 ,H2 ∈ F(n−k−r)×n
2 .

For the roots x, y ∈ Fn
2 of two SDPs for H1 below,

x ∈ SDP
(
H1, s[r], w/2 + ε

)
, y ∈ SDP (H1, 0

r, w/2 + ε) ,

if x and y satisfy the following, then x+ y is the root of SDP(H, s, w).

H2(x+ y) = s[r:n−k], wH(x+ y) = w,

Algorithm 16 shows this attack in detail.

The amount of bit operation in this algorithm is as follows.

4r

√(
n

w/2 + ε

)
+

(
n

w/2+ε

)
2r

(
(w + 2ε)(n− k − r) +

n
(

n
w/2+ε

)
2n−k

)
.
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Algorithm 16 Improved Birthday-type Decoding of SDP

Input: H ∈ F(n−k)×n
2 , s ∈ Fn−k

2 , w and r

Output: e ∈ Fn
2 such that He = s and wH(e) = w

1: T [j]← ∅ for all j ∈ {0, 1}n−k−r

2: for x in SDP
(
H1, s[r], w/2 + ε

)
do // birthday-type decoding, |SDP

(
H1, s[r], w/2 + ε

)
| ≈ ( n

w/2+ε)
2r

3: idx← s[r:n−k] + H2x // num. of bit operations =
( n
w/2+ε)

2r
(w/2 + ε)(n− k − r)

4: T [idx]← T [idx] ∪ {x}
5: end for

6: for y in SDP (H1, 0
r, w/2 + ε) do // birthday-type decoding, |SDP (H1, 0

r, w/2 + ε) | ≈ ( n
w/2+ε)

2r

7: idx← H2y // num. of bit operations =
( n
w/2+ε)

2r
(w/2 + ε)(n− k − r)

8: for x in T [idx] do // |T [idx]| ≈ ( n
w/2+ε)

2r
× 1

2n−k−r

9: e← x+ y // num. of bit operations =
( n
w/2+ε)

2r
×

n( n
w/2+ε)
2n−k

10: if wH(e) = w then

11: return e

12: end if

13: end for

14: end for

Choice of e. When two subsets A and B with the number of elements w/2 + ε are randomly

selected from the set [n] = {0, . . . , n − 1}, the expected value E[|A ∩ B|] is (w/2+ε)2

n . Therefore,

for the roots x and y of each SDP, E[wH(x+ y)] is as follows.

E[wH(x+ y)] = E[2(|supp (x) | − |supp (x) ∩ supp (y) |)]

= 2E[|supp (x) |]− 2E[|supp (x) ∩ supp (y) |)]

= 2 (w/2 + ε)− 2(w/2 + ε)2

n
.

Set ε to satisfy ε = (w/2+ε)2

n . (i.e. ε =
√
n2−2nw+(n−w)

2 .) Then E[wH(x+ y)] = w.

Choice of r. For e ∈ SDP(H, s, w), the number of (x, y) pairs satisfying e = x+ y as follows.

|{(x, y) ∈ (Enw/2+ε)
2 : e = x+ y}| =

(
w

w/2

)(
n− w
ε

)
.

Therefore, set r to satisfy 2r ≈
(

w
w/2

)(
n−w
ε

)
to count the number of roots of small SDP accurately.

5.1.4 Information Set Decoding

ISD(Information Set Decoding) is a generic decoding algorithm for random linear codes. The first

phase of ISD is to transform the parity check matrix H into a systematic type for finding an error-

free information set. Then, in the second phase, we find error vectors satisfying certain conditions,

partly using birthday attack type search and partial brute force attacks. First proposed by E.

Prange in 1962, ISD has improved computational complexity by changing the conditions of error

vectors and applying search techniques in terms of birthday attacks.
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5.1.4.1 Procedure.

ISD uses Proposition 5.1.1, the relationship between the code C and the scrambled code Ĉ of C in

terms of the root of SDP.

Proposition 5.1.1. Let e ∈ SDP(H, s, w). For an invertible matrix S ∈ F(n−k)×(n−k)
2 and a

permutation matrix P ∈ Pn, P
−1e ∈ SDP(SHP,Ss, w).

Proof. Since (SHP)(P−1e) = S(He) = Ss and w = wH(e) = wH(P−1e), P−1e ∈ SDP(SHP,Ss, w).

ISD is a probabilistic algorithm that modifies SDP until finding a root satisfying certain con-

ditions. ISD proceeds to the following two-phase.

(Phase 1) Redefining a problem: Find SDP(H, s, w) ⇒ Find SDP(Ĥ = SHP, ŝ = Ss, w)

SHP is a partial systematic matrix obtained by applying elementary row operations.

i.e.

H
random permutation P−−−−−−−−−−−−−−→ HP

Gaussian elimination−−−−−−−−−−−−−→ SHP =

(
Il M1

0 M2

)
.

(Phase 2) Find ê(= P−1e) ∈ SDP(Ĥ, ŝ, w) which satisfies the specific Hamming weight condition

and return e(= Pê). If no root satisfies the condition, go back to (Phase 1).

5.1.4.2 Computational Complexity.

Let p be the probability that the root ê satisfies a specific Hamming weight condition in the

modified problem. The computational complexity of ISD is as follows.

1

p
×
(

(Phase 1)’s computational amount + (Phase 2)’s computational amount
)
.

(Phase 1) is to modify the problem using the Gaussian elimination, so most ISD algorithms result

in O((n−k)2n) bit operations in this phase. ISD has developed while improving the computational

amount of (Phase 2) and the probability p. Table 5.1 shows the matrix form and hamming weight

conditions used in the significant ISD algorithms.

We thought that the BJMM-ISD was the most effective ISD because the proposed ISDs after

the BJMM-ISD in 2012 are minor improvements in specific situations. Therefore, the parameters

of PALOMA were selected based on the precise calculation of the number of bit operations that

happened in BJMM-ISD. BJMM-ISD transforms the SDP into a small SDP and finds a root of the

SDP applying to birthday-type attacks.

5.1.4.3 Becker-Joux-May-Meurer (2012).

BJMM-ISD is an ISD that applies improvided birth-type decoding to the partial Rref[1]. Trans-

form H into the following form Ĥ by applying a partial Rref for some l(≤ n− k).

Ĥ = SHP =

 In−k−l H1

0 H2

 where H1 ∈ F(n−k−l)×(k+l)
2 , H2 ∈ Fl×(k+l)

2 .
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Table 5.1: Hamming weight condition of ISD algorithms

ISD Ĥ(= SHP) Hamming weight condition of ê Prob.

Prange(1962) [In−k |M] w︸ ︷︷ ︸
n−k

0︸ ︷︷ ︸
k

(n−k
w )

(n
w)

LB(1988) [In−k |M] w − p︸ ︷︷ ︸
n−k

p︸ ︷︷ ︸
k

(n−k
w−p)(

k
p)

(n
w)

Leon(1988)

(
In−k−l 0 ML

0 Il MR

)
w − p︸ ︷︷ ︸
n−k−l

0︸ ︷︷ ︸
l

p︸ ︷︷ ︸
k

(n−k−l
w−p )(kp)

(n
w)

Stern(1989)

(
In−k−l 0 ML

0 Il MR

)
w − 2p︸ ︷︷ ︸
n−k−l

0
l

p︸ ︷︷ ︸
k/2

p︸ ︷︷ ︸
k/2

(n−k−l
w−2p )(k/2

p )
2

(n
w)

FS(2009)

(
In−k−l

0
H

)
w − 2p︸ ︷︷ ︸
n−k−l

2p︸ ︷︷ ︸
k+l

(n−k−l
w−2p )(k+l

2p )
(n
w)

BLP(2011)

(
In−k−l 0 M

0 Il N

)
w − 2p− 2q︸ ︷︷ ︸

n−k−l

q︸︷︷︸
l/2

q︸︷︷︸
l/2

p︸ ︷︷ ︸
k/2

p︸ ︷︷ ︸
k/2

( n−k−l
w−2p−2q)(

l/2
q )

2
(k/2

p )
2

(n
w)

MMT(2011)

(
In−k−l H1

0 H2

)
w − p︸ ︷︷ ︸
n−k−l

p︸ ︷︷ ︸
k+l

(n−k−l
w−p )(k+l

p )
(n
w)

BJMM(2012)

(
In−k−l H1

0 H2

)
w − p︸ ︷︷ ︸
n−k−l

p︸ ︷︷ ︸
k+l

(n−k−l
w−p )(k+l

p )
(n
w)
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Define the index sets I, J , and L as follows.

I := [n− k − l], J := [n] \ I, L := [n− k] \ I.

BJMM-ISD finds the root ê = (êI‖êJ) of SDP(Ĥ = SHP, ŝ = Ss, w) that satisfies the following

conditions.

wH(êI) = w − p, wH(êJ) = p, êJ ∈ SDP(H2, ŝL, p), êI + êJH1 = ŝI .

The process of BJMM-ISD is as follows.

(Phase 1) Randomly select a permutation matrix P ∈ Pn. Apply partial Rref to HP to obtain

a partial canonical matrix as follows.

Ĥ =

 In−k−l H1

0 H2

 .

In this process, the invertible matrix S satisfying Ĥ = SHP is obtained together. If

there is no invertible matrix S that makes it a partial systematic form, (Phase 1) is

performed again.

(Phase 2) Obtain SDP(H2, ŝL, p) using the improved birthday-type decoding. If the root does not

exist, go back to (Phase 1). If the Hamming weight of the vector x := ŝI + H1y for

y ∈ SDP(H2, ŝL, p) is w − p, return Pê because it is ê = (x‖y) ∈ SDP(Ĥ, ŝ, w). If not,

go back to (Phase 1).

Algorithm 17 shows BJMM-ISD process in detail.

The probability that ê = P−1e satisfies the Hamming Weight condition for e ∈ SDP(H, s, w)

in BJMM-ISD is as follows.

Pr[(wH(êI) = w − p) ∧ (wH(êJ) = p) | P $←− Pn] =

(
n−k−l
w−p

)(
k+l
p

)(
n
w

) . (5.3)

Therefore, the bit operation calculation amount of the BJMM-ISD is as follows.(
n
w

)(
n−k−l
w−p

)(
k+l
p

) ((n− k − l)(n− k)n+
p(n− k − l)

(
k+l
p

)
2l

+ num. of operations for SDP(H2, ŝL, p)

)
.

(5.4)

In this process, ε and r are set as follows when computing SDP(H2, ŝL, p).

ε =

√
(k + l)2 − 2(k + l)p+ (k + l − p)

2
, r = log2

((
p

p/2

)(
k + l − p

ε

))
.

Table 5.2 shows the number of bit operations that occur in the several attacks in PALOMA.
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Algorithm 17 BJMM-ISD(2012)

Input: H ∈ F(n−k)×n
2 , s ∈ Fn−k

2 and w

Output: e ∈ Fn
2 such that He = s and wH(e) = w

1: while true do

2: P
$←− Pn

3: Ĥ = SHP← partial Rref(HP) // #operations = (n− k − l)(n− k)n

4: if ĤI×I = In−k−l then

5: H1,H2 ← HJ×I ,HJ×L . Ĥ =

 In−k−l H1

0 H2


6: ŝ← Ss

7: for y in SDP(H2, ŝL, p) do // improved birthday-type decoding, |SDP(H2, ŝL, p)| ≈
(k+l

p )
2l

8: x← ŝI + H1y // #operations = p(n− k − l) (k+l
p )
2l

9: if wH(x) = w − p then

10: ê← (x‖y)

11: return Pê

12: end if

13: end for

14: end if

15: end while

Table 5.2: Computational Complexity of Several Attacks of PALOMA and Classic McEliece

BJMM-ISD

Improved
Birthday-
type
Decoding

Birthday-
type
Decoding

Exhaustive
Search

PALOMA-128 2166.21
(l = 67, p = 14) 2225.78 2244.11 2476.52

PALOMA-192 2267.77
(l = 105, p = 22) 2399.67 2448.91 2885.11

PALOMA-256 2289.66
(l = 126, p = 26) 2415.59 2464.66 2916.62

mceliece348864 2161.97
(l = 66, p = 14) 2220.26 2238.75 2465.91

mceliece460896 2215.59
(l = 86, p = 18) 2311.80 2345.58 2678.88

mceliece6688128 2291.56
(l = 126, p = 26) 2416.95 2466.01 2919.32

mceliece6960119 2289.92
(l = 136, p = 28) 2402.41 2443.58 2874.57

mceliece8192128 2318.34
(l = 157, p = 32) 2436.05 2484.90 2957.10
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5.1.5 Guessing Attacks

Since both the Goppa code and the error vector of PALOMA are generated from the 256-bit string,

the estimated attack amount is 2256, ensuring 256-bit security.

5.2 IND-CCA2-secure KEM

PALOMA is an IND-CCA2-secure KEM. According to the analysis results in Section 5.1, it is

assumed that the underlying PKE = (GenKeyPair,Encrypt,Decrypt) of PALOMA is OW-

CPA-secure. PKE has the following properties.

(i) (Injectivity) For all key pairs (pk, sk), if Encrypt(pk; ê1) = Encrypt(pk; ê2), then ê1 = ê2.

(ii) (Correctness) Pr[Decrypt(sk; ŝ) 6= ê | ŝ← Encrypt(pk; ê)]] = 0.

There are several variants of the Fujisaki-Okamoto transformation. PALOMA is designed as

IND-CCA2-secure using the above properties under the following assumptions.

Assumption 1. GenRandErrVec : {0, 1}256 → Ent is injective. It means if r1 6= r2, then

GenRandErrVec(r1) 6= GenRandErrVec(r1).

According to this assumption, the size of the message space for Encrypt used inside PALOMA-

Encap is 2256, not
(
n
t

)
.

PALOMA is designed based on the implicit rejection KEM 6⊥ = U 6⊥[PKE1 = T[PKE0, G], H]

among FO-like transformations proposed by Hofheinz et al. [8]. This is combined with two modules:

T: converting OW-CPA-secure PKE0 to OW-PCA-secured PKE1 and U 6⊥: converting it to IND-CCA2-

secure KEM as follows.

OW-CPA-secure PKE0 = (GenKeyPair,Encrypt0,Decrypt0)

T with a random oracle G−−−−−−−−−−−−−−−−−→ OW-PCA-secure PKE1 = (GenKeyPair,Encrypt1,Decrypt1)

U 6⊥ with a random oracle H−−−−−−−−−−−−−−−−−−→ IND-CCA2-secure KEM 6⊥ = (GenKeyPair,Encap,Decap).

5.2.1 PKE0 = (GenKeyPair,Encrypt0,Decrypt0)

PKE0 is defined with the PKE and GenRandPermMat of PALOMA, as shown in Algorithm 18.

Since PKE is assumed to be OW-CPA-secure, PKE0 is OW-CPA-secure as well.

Algorithm 18 PALOMA: PKE0

1: procedure Encrypt0(pk; r̂; e∗)

2: P,P−1 ← GenRandPermMat(r̂)

3: ê← Pe∗

4: ŝ← Encrypt(pk; ê)

5: return c = (r̂, ŝ)

6: end procedure

1: procedure Decrypt0(sk; c = (r̂, ŝ))

2: ê← Decrypt(sk; ŝ)

3: P,P−1 ← GenRandPermMat(r̂)

4: e∗ ← P−1ê

5: return e∗

6: end procedure
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5.2.2 PKE1 = (GenKeyPair,Encrypt1,Decrypt1)

The transform T for converting OW-PCA-secure PKE0 to OW-PCA-secure PKE1 is defined by

Encrypt1(pk; e∗) := Encrypt0(pk;G(e∗); e∗).

Algorithm 19 and Figure 5.1 show PKE1 of PALOMA constructed by this transformation T and a

random oracle ROG.

Algorithm 19 PALOMA: PKE1

1: procedure Encrypt1(pk; e∗)

2: r̂ ← ROG(e∗)

3: c = (r̂, ŝ)← Encrypt0(pk; r̂; e∗)

4: return c = (r̂, ŝ)

5: end procedure

1: procedure Decrypt1(sk; c = (r̂, ŝ))

2: e∗ ← Decrypt0(sk; ŝ)

3: r̂′ ← ROG(e∗)

4: if r̂′ 6= r̂ then

5: return ⊥
6: end if

7: return e∗

8: end procedure

For any OW-PCVA-attackers B on PKE1, there exists an OW-CPA-attackerA on PKE0 satisfying

the inequality below[8, Theorem 3.1].

AdvOW-PCVA
PKE1

(B) ≤ (qG + qP + 1)AdvOW-CPA
PKE0

(A),

where qG and qP are the number of queries to the random oracle ROG and plaintext-checking

oracle PCO. Therefore, if PKE0 is OW-CPA-secure, AdvOW−PCVA
PKE1

(B) is negligible, so PKE1 is OW-

PCVA-secure.

5.2.3 KEM6⊥ = (GenKeyPair,Encap,Decap)

The transform U6⊥ for converting OW-PCA-secure PKE1 to IND-CCA2-securePKE1 is as follows.

Encap(pk) := (c = Encrypt1(pk; e∗),ROH(e∗, c)).

Algorithm 20 shows KEM 6⊥ of PALOMA constructed by this transformation U6⊥ and a random

oracle ROH .

For any IND-CCA2-attackers B on KEM 6⊥, there exists an OW-PCA-attacker A on PKE1 satis-

fying the inequality below[8, Theorem 3.4].

AdvIND-CCA2
KEM6⊥ (B) ≤ qH

2256
AdvOW-PCA

PKE1
(A),

where qH is the number of queries to the plaintext-checking oracle PCO. Therefore, if PKE1 is

OW-PCA-secure, AdvOW−PCA
PKE1

(A) is negligible, so KEM 6⊥ is OW-PCVA-secure.
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× ê(= Pe∗)

e∗ ROG r̂ GenRandPermMat P,P−1 Encrypt pk

ŝ

c = (r̂, ŝ)

(a) c = (r̂, ŝ)← Encrypt1(pk; e∗)

ŝ r̂

sk Decrypt GenRandPermMat r̂ = r̂′ ⊥

ê P,P−1 e∗

× r̂′

e∗(= P−1ê) ROG

NO

YES

(b) ê or ⊥← Decrypt1(sk; c = (r̂, ŝ))

Figure 5.1: PALOMA: Encrypt1 and Decrypt1 of PKE1

Algorithm 20 PALOMA: KEM 6⊥

1: procedure Encap(pk)

2: r∗
$←− {0, 1}256

3: e∗ ← GenRandErrVec(r∗)

4: c = (r̂, ŝ)← Encrypt1(pk; e∗)

5: k ← ROH(e∗‖r̂‖ŝ)
6: return k and c = (r̂, ŝ)

7: end procedure

1: procedure Decap(sk = (L, g(X),S−1, r); c =

(r̂, ŝ))

2: e∗ ← Decrypt1(sk; c = (r̂, ŝ))

3: r̂′ ← ROG(e∗)

4: ẽ← GenRandErrVec(r)

5: if r̂′ 6= r̂ or e∗ =⊥ then

6: return k ← ROH(ẽ‖r̂‖ŝ)
7: end if

8: k ← ROH(e∗‖r̂‖ŝ)
9: return k

10: end procedure
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Chapter 6

Summary

In this paper, we introduce PALOMA, which is IND-CCA2-secure KEM based on a SDP with a

binary separable Goppa code. Even though the components and mechanisms used in PALOMA

have been studied for a long time, no critical attacks are found. Many cryptographic communities

believe the scheme constructed by these would be secure. Therefore, we believe PALOMA can be a

reliable alternative to current cryptosystems in quantum computers. Classic McEliece is the round

4 cipher in NIST PQC competition, which use a binary Goppa code[4]. Finally, we give the feature

comparison between PALOMA and Classic McEliece in Table 6.1.

Table 6.1: Comparison between PALOMA and Classic McEliece

PALOMA Classic McEliece

Scheme

Fujisaki-Okamoto-structure
KEM

SXY-structure KEM

(implicit rejection) (implicit rejection)

Problem SDP SDP

Trapdoor type Niederreiter Niederreiter

Linear code C Binary separable Goppa code Binary irreducible Goppa code

Goppa polynomial g(X) Separable (not irreducible) Irreducible

Time for generating g(X) Constant Non-constant

Field Fqm F213 F212 , F213

Parity-check matrix H of C ABC BC

Form of a parity-check matrix
Ĥ of Ĉ Systematic Systematic

Decoding algorithm Extended Patterson Berlekamp-Massey

Probability of decryption
failure (correctness)

0 0
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Appendix A

SAGE code for a Binary Separable

Goppa code used in PALOMA

1 '''
2

3 Copyright 2022 FDL(Future cryptograph Design Laboratory , Kookmin University

4

5 Permission is hereby granted , free of charge , to any person obtaining a copy of this software

and associated documentation files (the "Software "), to deal in the Software without

restriction , including without limitation the rights to use , copy , modify , merge , publish ,

distribute , sublicense , and/or sell copies of the Software , and to permit persons to whom

the Software is furnished to do so , subject to the following conditions:

6 The above copyright notice and this permission notice shall be included in all copies or

substantial portions of the Software.

7 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND , EXPRESS OR IMPLIED , INCLUDING

BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY , FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY

CLAIM , DAMAGES OR OTHER LIABILITY , WHETHER IN AN ACTION OF CONTRACT , TORT OR OTHERWISE ,

ARISING FROM , OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN

THE SOFTWARE.

8

9 '''
10 ###################################################

11 '''
12 Binary Separable Goppa Code used in PALOMA

13 developed by FDL/KMU

14 '''
15 ###################################################

16

17 '''
18 F2m = GF (2^13) (i.e., m = 13)

19 Separable Goppa Polymoial g(X) with degree t in F2m[X] (t-error collectable code)

20

21 n + t <= q^m = 2^13 = 8192

22 k >= n - mt = n - 13t

23

24 parameters:

25 PALOMA128: n = 3904(61) , k = 3072, n-k = 832(13) , m = 13, t = 64

26 PALOMA192: n = 5568(87) , k = 3904, n-k = 1664(26) , m = 13, t = 128

27 PALOMA256: n = 6592(103) , k = 4928, n-k = 1664(26) , m = 13, t = 128

28

29 Toy parameters:

30 n = 37, k = 19, n-k = 18, t = 3, m = 6, f = z^6 + z^4 + z^3 + z + 1

31 n = 100, k = 72, n-k = 28, t = 4, m = 7, f = z^7 + z + 1

32 n = 120, k = 64, n-k = 56, t = 8, m = 7, f = z^7 + z + 1

33 n = 241, k = 121, n-k = 120, t = 15, m = 8, f = z^8 + z^4 + z^3 + z^2 + 1
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34

35 n = 53, k = 27, n-k = 26, t = 2, m = 13, f = z^13 + z^7 + z^6 + z^5 + z^0

36 n = 79, k = 40, n-k = 39, t = 3, m = 13, f = z^13 + z^7 + z^6 + z^5 + z^0

37

38 '''
39 ###################################################

40

41 reset()

42 var('z')
43

44 ###################################################

45

46 def line():

47 print ("\n====================================================")

48

49 def newline ():

50 print (" ")

51

52 line()

53

54 ###################################################

55 # parameters: n, t, m, irr_poly

56 ###################################################

57 paloma_param = [

58 [37, 3, 6, z^6 + z^4 + z^3 + z + 1],

59 [100, 4, 7, z^7 + z + 1],

60 [120, 8, 7, z^7 + z + 1],

61 [241, 15, 8, z^8 + z^4 + z^3 + z^2 + 1],

62

63 [53, 2, 13, z^13 + z^7 + z^6 + z^5 + z^0],

64 [79, 3, 13, z^13 + z^7 + z^6 + z^5 + z^0],

65

66 [216, 8, 13, z^13 + z^7 + z^6 + z^5 + 1],

67 [424, 16, 13, z^13 + z^7 + z^6 + z^5 + 1],

68

69 [3904, 64, 13, z^13 + z^7 + z^6 + z^5 + 1],

70 [5568, 128, 13, z^13 + z^7 + z^6 + z^5 + 1],

71 [6592, 128, 13, z^13 + z^7 + z^6 + z^5 + 1],

72 ]

73

74 n, t, m, f = paloma_param [8]

75 k = n - m*t

76

77 ###################################################

78

79 R2.<z> = GF(2)[]

80 F2m.<z> = GF(2^m, modulus = R2(f))

81 R2m.<X> = PolynomialRing(F2m)

82

83 ###################################################

84 # function for hex representation

85 ###################################################

86

87 def str_f2m_hex(x):

88 return "0x{:04x}". format(ZZ(list(F2m(x).polynomial ()), base = 2))

89 # return hex(ZZ(list(F2m(x).polynomial ()), base = 2))

90

91 def show_mat_hex(m):

92 nrows , ncols = m.nrows (), m.ncols()

93 for r in range(0, nrows):

94 str = "[ "

95 for c in range(0, ncols):

96 str += str_f2m_hex(m[r][c]) + " "

97 print (str , "]")

98

99 def show_poly_hex(f):

100 show_mat_hex(matrix(list(f)))
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101

102 ###################################################

103 # Generate Random Binary Separable Goppa Code

104 ###################################################

105

106 print (" Random Binary Separable Goppa Code")

107 print ("n = {}({}) , n-k = {}({}) , t = {}, m = {}". format(n, n/64, n-k, (n-k)/64, t, m))

108 newline ()

109

110 ###################################################

111

112 listF2m = list(F2m)

113 mbitset = list(range (0,2^m,1))

114

115 ###################################################

116 # Generate Support Set L and Separable Goppa polynomial g(X)

117 ###################################################

118

119 # shuffle(mbitset)

120

121 '''
122 Support set L

123 '''
124 L = [listF2m[j] for j in mbitset [:n]]

125 print (" Support Set L")

126 print (L)

127 show_mat_hex(matrix(L))

128 line()

129

130 '''
131 Separable Goppa polynomial g(X)

132 '''
133 g = prod ([(X+listF2m[j]) for j in mbitset[n:n+t]])

134 print ("Goppa Poly. g(X)")

135 print (g)

136 show_poly_hex(g)

137 print(" roots = ", [listF2m[j] for j in mbitset[n:n+t]])

138 line()

139

140 ###################################################

141 # Compute Parity -check Matrix H = A*B*C

142 ###################################################

143

144 '''
145 Matrix A

146 '''
147 coeffg = list(g) + [0]*(t-1)

148 A = matrix ([ coeffg[i:i+t] for i in [1..t]])

149

150 print ("\nA")

151 #print (A)

152 show_mat_hex(A)

153 newline ()

154

155

156 '''
157 Matrix B*C

158 '''
159 time B = matrix(F2m , t, n, lambda r, c: (L[c]^r))

160 print ("Parity -check Matrix H = B")

161 #print (B)

162 show_mat_hex(B)

163 newline ()

164

165 #T1 = [g(L[c]) for c in range(0,n)]

166 #T2 = [g(L[c])^-1 for c in range(0,n)]

167 #print("T1: ", T1)
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168 #print("T2: ", T2)

169

170 time BC = matrix(F2m , t, n, lambda r, c: (L[c]^r) * (g(L[c])^-1) )

171

172 print ("\ nParity -check Matrix H = BC")

173 show_mat_hex(BC)

174 #print (BC)

175 newline ()

176

177 time H = A*BC

178 print ("\ nParity -check Matrix H = ABC")

179 #print (H)

180 show_mat_hex(H)

181 newline ()

182

183 '''
184 Parity -check matrix derived from (X-aj)^-1

185 '''
186 '''
187 H1 = []

188 for i in [0..n-1]:

189 inv = R2m((g - g(L[i]))/(X-L[i]))*g(L[i])^-1

190 H1 += [list(inv)]

191

192 H1 = Matrix(F2m , H1).transpose ()

193 print("H1 == H?", H1 == H)

194 '''
195

196 ###################################################

197 # Modified Patterson Decoding for Binary Separable Goppa Code

198 ###################################################

199

200 '''
201 Given f s.t gcd(f,g),

202 find f^-1 such that f^-1*f = 1 (mod g)

203 '''
204 def getInv(f, g):

205 t = g.degree ()

206 d0, d1 = R2m(f), R2m(g)

207 a0, a1 = R2m(1), R2m(0)

208

209 while d1 != 0:

210 r = d0%d1

211 q = R2m((d0 - r)/d1)

212 d0, d1 = d1, r

213 a2 = a0 - q*a1

214 a0, a1 = a1, a2

215

216 return a0*d0.leading_coefficient ()^-1

217

218 ###################################################

219

220 '''
221 Find a2, b1 such that b1*s_hat = a2 (mod g12) with deg condition

222 '''
223 def EEA_for_keyeqn(s_hat , g12 , dega , degb):

224 a0, a1 = R2m(s_hat), R2m(g12)

225 b0, b1 = R2m(1), R2m(0)

226

227 while a1 != 0:

228 q, r = a0.quo_rem(a1)

229 a0, a1 = a1, r

230 b2 = b0 - q*b1

231 b0, b1 = b1, b2

232 if a0.degree () <= dega and b0.degree () <= degb:

233 break

234 return a0, b0
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235

236 ###################################################

237

238 '''
239 Compute Square Root of f(X) mod g12(X)

240 '''
241

242 def get_sqrt(f, g):

243 sqrtx = power_mod(R2m(X), 2^(m*t-1), g)

244 print(" sqrtx ^2%g == X?", sqrtx ^2%g == X)

245 print("sqrt(X) mod g12 =", sqrtx)

246 degf = R2m(f).degree ()

247 listf = list(f)

248 fe = [sqrt(listf [2*j]) for j in [0.. floor(degf /2)]]

249 fo = [sqrt(listf [2*j+1]) for j in [0.. floor((degf -1)/2)]]

250

251 sqrtf = (R2m(fe) + R2m(fo)*sqrtx)%g

252 return sqrtf

253

254 ###################################################

255

256 '''
257 Given f, find a(X), b(X) such that f = a^2(X) + b^2(X)*X

258 '''
259 def get_a2b2x(f):

260 degf = R2m(f).degree ()

261 listf = list(f)

262 fe = [sqrt(listf [2*j]) for j in [0.. floor(degf /2)]]

263 fo = [sqrt(listf [2*j+1]) for j in [0.. floor((degf -1)/2)]]

264 a = R2m(fe)

265 b = R2m(fo)

266 return a, b

267

268 ###################################################

269

270 line()

271

272 ###################################################

273 # Step 0. Generate Random Error Vector with Hamming Weight t

274 ###################################################

275

276 nset = list(range(0,n))

277 shuffle(nset)

278

279 e = [0]*n

280 for i in nset [0:t]:

281 e[i] = 1

282 #print (" Error vector e\n", e)

283 print ("Error Polynomial e(X) =", R2m(e))

284 line()

285

286 '''
287 error locator polynomial sigma_t = a_t^2 + b_t^2*X for checking correctness

288 '''
289 sigma_t = R2m(1)

290 for i in range(0,n):

291 if e[i] == 1:

292 sigma_t = sigma_t * (X + L[i])

293

294 a_t , b_t = get_a2b2x(sigma_t)

295

296 print(" sigma_t(X) =", sigma_t)

297 print("a_t(X) =", a_t)

298 print("b_t(X) =", b_t)

299 print("R2m(a_t^2 + b_t ^2*X) == sigma_t?", R2m(a_t^2 + b_t ^2*X) == sigma_t)

300 newline ()

301
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302 ###################################################

303 # Step 1. Compute Syndrome s(X) of e(X)

304 ###################################################

305

306 He = H * vector(e)

307 s = R2m(list(He))

308

309 '''
310 H1e = H1 * vector(e)

311 print("He == H1e?", He == H1e)

312 '''
313

314 print("s(X) =", s)

315

316 '''
317 Checking Correctness

318 '''
319 syndrome = R2m(0)

320 for i in [0..n-1]:

321 syndrome += e[i]*R2m((g - g(L[i]))/(X-L[i]))*g(L[i])^-1

322 print(" syndrome =", syndrome)

323 print("s(X) == syndrome?", s == syndrome)

324

325 ###################################################

326 # Step 2. Find Error Locator Polynomial sigma(X)

327 ###################################################

328

329 '''
330 Checking Correctness

331 '''
332 print(" sigma_t*s%g == sigma_t.derivative ()?", sigma_t*s%g == sigma_t.derivative ())

333 newline ()

334

335 ###################################################

336

337 '''
338 Derive Key Equation

339 '''
340 s_ast = R2m(1) + X*s(X)

341 g1 = gcd(g, s)

342 g2 = gcd(g, s_ast)

343 g12 = R2m(g/g1/g2)

344 s2_ast = R2m(s_ast/g2)

345 s1 = R2m(s/g1)

346

347 u = (g1 * s2_ast * getInv(g2*s1 , g12))%g12

348 print("g2*s1*getInv(g2*s1, g12)%g12 == 1?", g2*s1*getInv(g2*s1, g12)%g12 == 1)

349

350 s_hat = get_sqrt(R2m(u), R2m(g12))

351

352 print(" s_hat ^2% g12 == u?", s_hat ^2% g12 == u)

353

354 '''
355 Solve Key Equation

356 '''
357

358 a2 , b1 = EEA_for_keyeqn(s_hat , g12 , floor(t/2)-g2.degree (), floor ((t-1)/2)-g1.degree ())

359 print ("b1*s_hat%g12 == a2?", b1*s_hat%g12 == a2)

360

361 '''
362 Compute a, b

363 '''
364

365 a = a2*g2

366 b = b1*g1

367 print("a(X) =", a)

368 print("b(X) =", b)
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369

370 '''
371 Checking Correctness

372 '''
373 print ("b^2* s_ast%g == a^2*s%g?", b^2* s_ast%g == a^2*s%g)

374 print ("b^2*(1+X*s)%g == a^2*s%g?", b^2*(1+X*s)%g == a^2*s%g)

375

376

377 sigma = (a^2 + b^2*X).monic()

378 print ("sigma == sigma_t?", sigma == sigma_t)

379

380 ###################################################

381 # Step 3. Find Roots of sigma(X)

382 ###################################################

383

384

385 err_support_set = []

386 for i in [0..n-1]:

387 if sigma(L[i]) == 0:

388 err_support_set += [i]

389 print(" recovered supp(e) =", err_support_set)

390 line()

391

392 ###################################################

393 '''
394 Result

395 '''
396

397 print ("\nDo we find the correct error?", err_support_set == R2m(e).exponents ())

398 line()
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