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Chapter 1

Introduction

1.1 Design Rationale
PALOMA is a code-based key encapsulation mechanism that has the following features.

(1) Trapdoor based on SDP(syndrome decoding problem)

(2) IND-CCA2-secure KEM(Key Encapsulation Mechanism) based on FO(Fujisaki-Okamoto) trans-

formation

(3) Parameters supporting 128/192/256-bit security strength

1.1.1 Trapdoor
1.1.1.1 Syndrome Decoding Problem

SDP is a problem finding the preimage vector with a specific Hamming weight for a given random
binary parity-check matrix and a syndrome. In 1978, SDP was proven to be NP-hard because it is
equivalent to the 3-dimensional matching problem[d, [3]. McEliece and Niederreiter cryptosystems
are designed with the trapdoor based on SDP[I5], [I7]. However, because the public key of a SDP-
based trapdoor is a random-looking matrix, the public key is larger than that of other ciphers.
Therefore, there have been attempts to reduce the size of a public key through cryptographic design
using SDP-variant, such as rank metric-based SDP and quasi-cyclic code-based SDP. However,
SDP-variants assume the problem’s difficulty because one cannot guarantee the NP-hard property
of SDP.

Post Quantum Cryptography is not a cryptographic scheme that provides additional function-
ality but an alternative to the current cryptosystem against quantum attacks. Therefore, we design
PALOMA based on SDP with a conservative perspective because SDP is NP-hard and it is judged

that the analysis method is sufficiently mature.

1.1.1.2 Niederreiter-type Code Scrambling.

In general, code-based cryptographic schemes use the information of a scrambled code CA, which is
an equivalent code of the base code C, as a public key, and the decoding information for C as a

private key. Similar to the Niederreiter cryptosystem, PALOMA uses the parity check matrix H of



a scrambled code C that is defined by SHP where H is the parity-check matrix of C, S and P are
an invertible matrix and a permutation matrix, respectively. P is randomly chosen. However, to
reduce the size of a public key, the invertible matrix S is obtained from the reduced row echelon
form procedure applying to HP, so that H is the form of systematic, i.e., H= [I | M]. PALOMA
uses the submatrix M of H as a public key like Classic McEliece[d]. Figure |1.1|shows the trapdoor
framework of PALOMA.

scrambling

C=[nk,>2t+1], »C = [n,k,> 2t + 1]

~

sl p!

H H = SHP = [I | M]
|~ |

# g [Drcnvrr | i & e [BCue] e ? (@) = 1)

Figure 1.1: PALOMA: Trapdoor Framework

The Niederreiter cryptosystem needs to convert messages into vectors with a specific Hamming
weight for decoding. This conversion performs a large amount of computation, which significantly
affects encryption/decryption performance. However, PALOMA is designed to work without this

conversion.

1.1.1.3 Binary Separable Goppa Code.

There are no critical attacks on cryptographic schemes based on an SDP defined with a binary sep-
arable Goppa code[7], for example, McEliece cryptosystem, which is the first code-based cipher[I5].
Many researchers have tried to design code-based ciphers using various codes such as GRS and
RM to increase efficiency in terms of public key size and decryption speed, but most of them
have been attacked due to their structural properties, and the rest still need more rigid security
proof[20}, [I6]. Therefore, PALOMA chooses a binary separable Goppa code that has no attack even
though it has been studied for a long time with a conservative perspective.

A binary separable Goppa code C = [n,k,> 2t + 1] is defined with a support set L and a
Goppa polynomial g(X) that is separable. Because every irreducible polynomial is separable, an
irreducible polynomial is chosen as a Goppa polynomial, in general. However, since the algorithms
generating irreducible polynomials are probabilistic, i.e., non-constant time. PALOMA defines a
support set and a Goppa polynomial with randomly chosen n + ¢ elements of Fo1s as follows:

n+t—1
[, a1, ..., om_1] <= SHUFFLE(Fam), L <+ [ag,01,...,an-1], g(X) + H (X — ).
j=n

After shuffling of all Fom elements, the set of the first n elements is defined as a support set and
the next ¢ elements are the root of a Goppa polynomial with degree ¢. Note that g(X) is separable
but not irreducible in Fo13[X]. Thus, PALOMA generates a binary separable Goppa code efficiently
within constant time.

Patterson and Berlekamp-Massey are decoding algorithms of a binary separable Goppa[18, 2, [12].

Patterson seem to be better than Berlekamp-Massey in terms of speed performance, however, it



operates when a Goppa polynomial g(X) is irreducible. So, PALOMA adapts the extended Patterson

decoding to deal with a non-irreducible Goppa polynomial[5].

1.1.2 KEM structure

In IND-CCA2 security game(INDistinguishability against Adaptive Chosen-Ciphertext Attack) for
KEM = (GENKEYPAIR, ENCAP, DECAP), the challenger sends a challenge (key, ciphertext) pair
to the attacker, and the attacker guesses if the pair is right or not. (“right” means the pair (key,
ciphertext) is an output of ENCAP) Here it is allowed for the attacker to query the DECAP oracle
except for the challenge. We say KEM is IND-CCA2-secure when the winning probability of any
polynomial time attackers in IND-CCA2 game is negligible. Figure [I.2] shows the IND-CCA2 game.

Challenger Adversary A

DECAP(sk;*) ] )
(pk, sk) + GENKEYPAIR(1™) o A queries OPAP(ski®)
(k, c) < Encap(pk)

b < {0,1}

It b = 0, then k < {0,1}! ()

A queries OPPA* R except ¢

If b= b, then A wins, else A loses. — If A thinks that k is right, then b’ < 1,
else b’ «+ 0

Figure 1.2: Security Game for IND-CCA2 KEM

In general, IND-CCA2-secure schemes are constructed with OW-CPA-secure trapdoors and hash
functions that are considered random oracles. FO transformation is a representative IND-CCA2-
secure scheme design method, which is also proven to be IND-CCA2-secure in QROM(Quantum
Random Oracle Model)[6l 8, 22]. PALOMA guarantees IND-CCA2-secure since it is designed by the

FO-variant transformation KEM#*, introduced in [§].

1.1.3 Parameter Sets

The security of PALOMA is evaluated by the number of bit computations of generic attacks
to SDP because there are no known attacks on binary separable Goppa codes. ISD(Information
Set Decoding) is the most powerful generic attack of an SDP. The complexity of ISD has been
improved by changing the specific conditions for the information set[19] 10, 11} 21}, [13] [, 14] and
birthday-type search algorithms. PALOMA evaluated the security strength level in computational
complexity for the most effective attack.

PALOMA provides three parameter sets: PALOMA-128, PALOMA-192 and PALOMA-256, which
are 128-bit, 192-bit, and 256-bit security strength level, respectively. Each parameter was selected

as a parameter satisfying the following conditions regarding implementation efficiency.

(i) Binary separable Goppa codes are defined in Faus

)
(11) n=k =t =0mod 64
(iii) n+t <213
(v) k/n>0.7



1.2 Advantages and Limitations

PALOMA is a KEM designed by combining an NP-hard SDP-based trapdoor using binary sepa-
rable Goppa codes and FO transformation that guarantees IND-CCA2-secure in ROM and QROM
both, which are strongly considered safe in cryptographic communities. Therefore, we believe that
PALOMA provides sufficiently reliable security in classical computers and quantum computers.
Since PALOMA is an SDP-based trapdoor, the public key size is essentially over 300 KB. In
addition, the generation of a public key that is the parity check matrix of the scrambled Goppa
code is relatively slow compared to other post-quantum ciphers. So, in the server-client protocol,
generating ephemeral keys can burden the server. Therefore, PALOMA is suitable for server-to-

client protocols that use static keys and client-to-client protocols, such as E2EE.



Chapter 2
Mathematical Background

In this chapter, we introduce the mathematical background needed to figure out the operating
principles of PALOMA.

2.1 Syndrome Decoding Problem

2.1.1 Binary Linear Codes

A k-dimensional binary linear code C of length n defined in a binary finite field Fs is a k-dimension
subspace of the n-dimensional vector space F%. It means that C is the solution space of the following

n — k linear equations.

hooXo + hoaX: + -+ + hop-1Xn-1 = 0,
hi1o0Xo + hiaXe + - + hipn1Xn-1 = 0,
hn—k-10X0 + hpp-11X1 + -+ + hp_p_1p-1Xn-1 = 0.

Therefore, a binary linear code C can be expressed as follows.
C={ceFy :He=0"""},
where 0"~* is a zero vector in F}~* and

ho,o ho,1 <o hon—1
H = [hi) = | : o € By T,
hn—k-10 Pn—k-11 - Pp—g—1n-1
Note that all vectors are considered as column vectors in this paper. The vector ¢ € C and the

matrix H are called a codeword and a parity check matrix of C, respectively.

2.1.2 Syndrome Decoding Problem

For a vector r € Fy, Hr € Fg_k is called the syndrome of r. If a syndrome is 0" %, the vector r is

the codeword of C. For any codeword ¢ € C and an arbitrary vector e € Fy, the vector r = c+e

10



satisfies the following.
Hr = H(c+e¢) = He+ He = He.

SDP is the problem of finding a preimage vector of a syndrome that has a specific Hamming
weight. The formal definition of SDP is as follows:

Definition 2.1.1 (Syndrome Decoding Problem, SDP). Given a parity check matrix H € IF(” k)xn

of a random binary linear code C = [n, k]2, a syndrome s € Fy~ ¥ and w e {1,2,...,n}, find the

vector e € Fg"_k)xn that satisfies the following two conditions.
He=s and wg(e) =w.

SDP is proven as an NP-hard problem because it is equivalent to the 3-dimensional matching
problem in 19789} [3].

2.1.2.1 Number of Roots of SDP.

Hamming weight wg (v) of a vector v = (vg, ..., vn—1) € F3 is defined as |{j : v; # 0}|. Hamming
distance dg(u, v) of the two vectors u,v € FJ is defined as wg(u + v). Assume that there are two
distinct vectors vy, vy € F§ with Hamming weight of L J having same syndrome where d is the

minimum Hamming distance of the linear code C, i.e., d(= g{{{n }wH( ¢)). Since H(vy + v2) =
cec\{on

0"~*, it becomes v; + vy € C. However, since the minimum distance of C is d, the following

contradiction occurs.
d—1
d < |supp (v +v2) | < [supp (v1) | + [supp (v2) | £ 2 | —— | = d — 1,

where supp (v) := {j : v; # 0}. Therefore, the preimage vector with Hamming weight less than

equal to | 41| is unique. Generally, in SDP-based schemes, the Hamming weight condition w of

SDP is set to [%J for the uniqueness of root and root candidates more that 2256,

2.2 Binary Separable Goppa Code

Binary separable Goppa codes are special cases of algebraic-geometric codes proposed by V. D.
Goppa in 1970[7]. Many code-based ciphers, such as McEliece and Classic McEliece, use it as the

base codes. The formal definition of a binary separable Goppa code over Fy is as follows.

Definition 2.2.1 (Binary Separable Goppa code). For a set of distinct n(< 2™) elements L =
[, 1, .., ap—1] of Fam and a separable polynomial g(X) € Fam [X] of degree ¢ that all elements
of L are not roots of g(X), i.e., g(a) # 0 for all & € L, a binary separable Goppa code of length
n over [y is the subspace Cr, 4 of F5 defined by

Crg:=1 (coy...,cno1) €Fy Z X —0a;)"'=0 (mod g(X))y,
3=0



where (X — a)~! is the polynomial of degree t — 1 satisfying the following.
(X —a) ' (X —a)=1 (mod g(X)).

L and ¢(X) are called a support set and a Goppa polynomial, respectively. Cy, , is called a
binary irreducible Goppa code when ¢g(X) is an irreducible polynomial in Fom [X]. The dimension

k and the minimum Hamming distance d of Cr, 4 satisfy the following inequalities.
k>n—mt, d>2t+1.

PALOMA set the dimension k of Cr, 4 to n —mt and the Hamming weight condition of the SDP to

t for uniqueness of root.

2.2.1 Parity-check Matrix

The parity check matrix H of Cy, , is defined with each coefficient of the polynomial (X — a;)~!
with degree t — 1, and H can be decomposed into the product of the following matrices A, B, and
C.

H = ABC € F{",

where

gl 92 gt ao al an_l
g2 g3 -+ 0
_ tXt _ tXn
A= ) ey, B:= o o o € Fyn',
Qg ay Qpa
gr O 0 affl a’fl af;ll
(2.1)
g(ag)™! 0 0
0 glag)™! 0
C:= . e Fyxm.
0 0 “ e g(an_l)_l

Since the matrix A is invertible (g, # 0), BC is another parity check matrix of Cy, 4. Classic

McEliece uses BC as a parity check matrix.

2.2.2 Extended Patterson Decoding for Binary Separable Goppa code

Patterson decoding is the algorithm for binary irreducible Goppa codes, not separable Goppa code.
However, it can be extended for binary separable Goppa codes[I8, [5]. Given a syndrome vector s,
the extended Patterson decoding procedure to find the preimage vector e of s with wy(e) =t is

as follows. (Note that preimage vector is called an error vector in coding theory)
Step 1. Convert the syndrome vector s € ngk into the syndrome polynomial s(X) € Fom [X].
Step 2. Derive the key equation for finding the error locator polynomial o(X) € Fom[X].

Step 3. Solve the key equation using the extended Euclidean algorithm.

12



Step 4. Calculate o(X) using a root of the key equation.

Step 5. Find all roots of o(X) and compute the preimage vector e € Fy. At this time, in order to

have resistance against timing attacks, we use exhaustive search.

In the above procedure, the error locator polynomial o(X) is

o(X) = [[ (X — ;) € Fam[X] where E = {i € [n] : e; # 0}.
jeE

o(X) satisfies the following identity.
o(X)s(X)=0'(X) (mod g(X)). (2.2)

Note that since the number of errors is ¢, o(X) that satisfies (2.2]) is unique. In Fam[X], all
polynomials f(X) has polynomials a(X) and b(X) such that

F(X) =a(X)? 4+ b(X)*X where deg(a) < BJ , deg(b) < V21J .
Thus, if 0(X) = a(X)? + (X)X, can be transformed as follows.
b(X)* (1 + Xs(X)) =a(X)?s(X) (mod g(X)). (2.3)

When g(X) is irreducible, s71(X) and /s~ 1(X) + X exist in modulo g(X). Patterson decoding
uses the extended Euclidean algorithm to find solutions a(X) and b(X) of the following key

equation to generate the error locator polynomial o(X).

b(X)y/(5 LX) + X) = a(X) (mod (X)), deg(a) < BJ . deg(h) < V—QlJ

However, if g(X) is separable, the existence of s~!(X) cannot be guaranteed because g(X) and

s(X) are unlikely to be relatively prime. We define
s7(X) =14 Xs(X),  61(X) = ged(g(X),s(X)),  g2(X) := ged(g(X), s7(X)).
Since ged(s(X), s*(X)) = ged(s(X), s*(X) mod s(X)) = ged(s(X),1) € Fam \ {0}, we know

g\b25*+a25 = gl|bzs*+a25 = g1|b2s* = gl|b2 = g1|b,

g|b*s* +a’s = go| b’ +a’s = glad’s = gl = g]a

Therefore, the following polynomial can be defined.

_n(X) _a(X) __ 9X)
bu(X) = 91(X)’ w(X) = g2(X)’ g12(X) = 91(X)g2(X)’
. _sM(X) _ s(X)
L WL

(2.3) can be expressed as follows.



= b%(X)Q%(X)SE(X)gz()Q = GS(X)QS(X)&(X)% (X) (mod g12(X)g1(X)g2(X))
= 01(X)g1(X)s3(X) = a5(X)ga(X)s1(X)  (mod gra(X)).

We know ged(gz2(X)s1(X),912(X)) € Fam because of ged(g2(X), g12(X)), ged(s1(X), g12(X)) €
Fom . Therefore, there exists the inverse of go(X)s1(X) modulo gi2(X), and we have the following
equation.

b3 X)u(X) = a3(X) (mod gi2(X)) where u(X) := g1(X)s3(X)(g2(X)s1 (X))~

Since u(X) has a square root modulo g;2(X) (Remark , (X)) = a2(X)g2(X) and b(X) =
b1(X)g1(X) are obtained by calculating as(X) and b;(X) that satisfy the following equations
using the extended Euclidean algorithm.

MOV = a(X) (mod gua(X)),  deg(on) < | 5| ~ dea(an), dog) < | 5 | = dexton)

Remark 2.2.1. Since all elements of Fy15 are roots of the equation X 2% X = 0, we know
g2(X) | X2 X = X2 =X (modgi2(X)) = vVX=X2 modgp(X).

A polynomial u(X) = Ei:o u; X" € Fo13[X] of degree [ can be written as follows.

4] e :
wX)= [ D VuX'| +| Y VuianX'| X
i=0 i=0

where | /a; = (aj)le for all j. Thus, the square root y/u(X) of u(X) modulo g12(X) is

[5) =]
u(X) = z:\/uingz + Z Vi1 X' VX mod g12(X).
i=0

=0

We give the sage code for a binary separable Goppa code used in PALOMA in Appendix [A]

14



Chapter 3

Specification

3.1 Definitions

The notations, symbols

Notation

[1]
[ll : 12]
{0, 1}

allb
an

Afizj)
Fq

mxn
Fq

s
]F(I

Ol
vy
supp (e)
w(e)
dH (uv U)
M_l
MT
I
M;

My s
[A | B]

Py
[n7kad]2

and functions used throughout this paper are listed below.

integer set {0,1,...,1—1}

integer set {l1,l1 +1,...,lo — 1}

set of all [-bit strings

concatenation of two bit strings a and b

first {-bit string agllai]| - - - ||ai—1 of a bit string a = agl|a1]| - - -

substring a;||ai+1]| - - - [Jaj—1 of a bit string a = agl|a1] - -

finite field with ¢ elements

set of all m x n matrices over a field I,

set of all [ x 1 matrices over a field Fy, i.e., Ffl = ]Ff]Xl (ve ]Fql is considered
as a column vector)

zero vector with length [

subvector (v;);er € IF!Z” of a vector v = (vg,v1,...,v-1) € IFfJ

function that returns the non-zero position set of a given vector e

function that returns Hamming weight of a given vector e

function that returns Hamming distance of given two vectors u, v

the inverse matrix of a matrix M

the transposed matrix of a matrix M

I x 1 identity matrix

submatrix [m, |cer of a matrix M = [m,..] where r and ¢ are row index
and column index, respectively

submatrix [m,.c|rer, ces of a matrix M = [m,..] where r and ¢ are row
index and column index, respectively

concatenated matrix of two matrices A and B

set of all [ x [ permutation matrices

linear code over Fy with length n, dimension k£ and minimum distance d

15



A mod B
div(A, B)
deg(f)
ged(f(X), 9(X))

ziX

Symbols

V2]
o~

= % o
) »)y )

9(X)
C’CL,g

o o @

Functions

GENKEYPAIR
ENCRYPT

DECRYPT
ENcaApP
DEcAP

LsH

RREF

function that returns the remainder after dividing A by B

function that returns the quotient and the remainder after dividing A by B
degree of a given polynomial f

function that returns the monic greatest common divisor polynomial of
F(X) and g(X)

x randomly chosen in a set X

public key

secret key

error vectors

syndrome vectors
random bit string
support set

Goppa polynomial
binary separable Goppa code generated by a support set L and a Goppa
polynomial g(X)
parity-check matrix of C
scrambled code of C

parity-check matrix of 9

function that returns a public key and a secret key pair

function that returns the syndrome vector of a given error vector with a
public key

function that returns the error vector of a given syndrome vector with a
secret key

function that returns a key and a ciphertext with a public key

function that returns a key of a given ciphertext with a secret key
512-bit hash function LSH-512, the national standard of South Korea (KS
X 3262), that returns an 512-bit hash value of a given bit string

function that returns the reduced row echelon form of a given matrix

3.2 Parameter Sets

The followings are the parameters of PALOMA.

16



degree of a binary field extension, i.e., m = [Fam : Fy]
number of correctable errors

length of a codeword (n < 2™ —t)

dimension of a code (k =n — mt)

> 3 «+ 3

PALOMA consists of PALOMA-128, PALOMA-192, PALOMA-256 with 128/192/256-bit security
strength, respectively. Table shows each parameter set.

Table 3.1: Parameter Sets of PALOMA

Parameter m t n' Kt
PALOMA-128 13 64 3904 3072
PALOMA-192 13 128 5568 3904
PALOMA-256 13 128 6592 4928

fn<o2m™ ¢t tmt=n—k

Finite field Fois used in PALOMA is Fs[z]/ (f(2)) where f(z) is an irreducible polynomial
f(z) =28 42T+ 20+ 25+ 1 € Folz].

3.3 Key Generation

The trapdoor of PALOMA is designed with SDP based on a scrambled code Cofa binary separable
Goppa code C. In PALOMA, the public key is the submatrix of the systematic parity-check matrix
of 5, and the private key is the information for decoding and scrambling of C. The key generation
of PALOMA is as follows. (Algorithm 1| shows the pseudo-code of the key generation)

Step 1. Generation of a random binary separable Goppa code C. (Algorithm

Generate a support set L C Foqi3, a Goppa polynomial g(X) € Fo13[X] for a Goppa code
Cr.g» and compute the parity check matrix H € F3***" of Cp, .

(1) Reorder elements of Fo1s with a random 256-bit string r using the SHUFFLE, defined
in Algorithm [4]

SHUFFLE with r

Fois = [0,1,2,2 +1,2%, ..., 22 + .- 4+ 1] [@g, ..., qgm_1].
(#4) Set a support set L = [ag, ..., ap_1].
(7i1) Set a separable Goppa polynomial g(X ) with degree ¢ whose roots are «,, . . ., pit—1,
ie.,
t n+t—1
9(X)=> ;X7 = [ (X —a;) € FaalX].
7=0 j=n

(iv) Compute the parity check matrix H = ABC where A, B, C are defined in (2.1)).
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(v) Parse H as a matrix in F4**™ because a Goppa code is the subfield subcode of the

code, i.e.
H-= [hr,c] S ]Fgﬁ” = H .= [hO ‘ h1 ‘ e I hnfl] c IE*%?)Ian7
where h. = [hé?(): |- hélf) | hgog || hglf) BN hiﬁ),c]T € F13t and 2Y) € T,

such that hyc = Y12 hi/029 € Foua for r € [t] and c € [n].
Step 2. Generation of a scrambled code C of C. (Algorithm

The parity check matrix H of C is scrambled below.

(i) Reorder elements of [n] with a random 256-bit string r using the SHUFFLE. (Algo-

rithm

SHUFFLE with 7

] =[0,1,2,...,n—1] oy Lna.

(#4) Compute HP where P € P, is the permutation matrix defined by
P = PO,Z()Pl,ll tee P’n—l,ln_lv

and P; ;. € Py is the permutation matrix for swapping j-th column and /;-th column.
(Algorithm Note that P71 is P11, P Poy,.
(7i7) Compute the reduced row echelon form H of HP. If ﬁ[n,k] # 1,1, back to (7).
(1v) There exists the invertible matrix S € Fén_k)x("_k) such that H = SHP, i.c.,
ST = (HP)p,_y-

Step 3. Since Hisa systematic form matrix, i.e., ﬁ[n,k] =1, _g, return ﬁ[n,km] as a public key
pk and (L, g(X),S™ %, 7) as a secret key sk.

pk = Hpy ) € FS7F sk = (L, g(X),S7 1, 7).

SHUFFLE parses a 256-bit random bit string 7 = ro||r1]| - - - ||r2s5 € {0, 1}?°¢ as a 16-bit sequence
(T[16w:16(w+1)] Jw=0,...,15 and uses each as a random integer required in the Fisher-Yates shuffle.
Algorithm [4] shows the process of SHUFFLE in detail.

Remark 3.3.1. Since S™' can be computed from L, g(X), and L, g(X) are generated from a
256-bit random string 7, the secret key can be defined as a 512-bit string r'||r € {0, 1}5'2.

3.4 Encryption and Decryption

Encryption

PALOMA encryption is as follows. (Algorithm [6)

Step 1. Retrieve the parity check matrix H = [T ] ﬁ[,L_k:n]] of the scrambled code C from the

public key pk = ﬁ[n_k:n] € Fé"ik)Xk.

Step 2. Return the (n—k)-bit syndrome 3(= He) of an n-bit input & € {0, 1}" for H as a ciphertext

of e.
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Algorithm 1 PALOMA: Generation of Key Pair

Input: Parameter set (¢,n)
Output: A public key pk and a secret key sk
procedure GENKEYPAIR(t, n)
L,g9(X),H < GENRANDGOPPACODE(t, n)

Sl H« GETSCRAMBLEDCODE(H) > H = SHP

sk + (L, g(X),87%,7)

1:

2

3

4: pk ITI[n, kin] > I/-\I[n,k:n] is the submatrix of H consisting of the last k columns
5

6 return pk and sk

7.

end procedure

Algorithm 2 PALOMA: Generation of a Random Goppa Code

Input: Parameter set (¢,n)
Output: A support set L, a Goppa polynomial g(X) and a parity-check matrix H of C

1: procedure GENRANDGOPPACODE(¢, n)

2 r & {0,1)%
3: [, ..., Q913 _1] < SHUFFLE(Fq13,7) > Algorithm
4: L+ [ao,...,Qn-1] > support set of C
n+t—1
5: 9g(X) + I (X —ay) > separable Goppa polynomial of C
j=n
H = [h, ] + ABC € F,} > A, B, C are defined in (2.1)
he <= [ |- | RS2 TR |- A2 - | i) JT € B for ¢ € [n] where h¥) € Fy such that

hpe = 2;2:0 hgfgz] € Faois

8: H < [ho | hi || hooi] € TP > parity-check matrix of C

9: return L,g(X), H
10: end procedure

Algorithm 3 PALOMA: Generation of a Scrambled Code

Input: A parity-check matrix H of C
Output: An invertible matrix S™!, a random bits 7 and a systematic parity-check matrix HofC

procedure GETSCRAMBLEDCODE(H)
r & {0,137

P,P~' < GENRANDPERMMAT(r) > Algorithm
[H | S] « RReF(HP | L, _4]) > HeFHxn g e FinRx (k)

Go back to line 2.
end if
871 — (HP)[n_k]

9: return S71, r, H

1:
2
3
4
5: if ITI[n,k] # 1,_, then > Ifl[n,k] is the submatrix of H consisting of the first n — k columns
6
7
8

10: end procedure
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Algorithm 4 PALOMA: Shuffling with an 256-bit seed

Input: An ordered set A = [Ag, A1,...,Ai—1] and a random 256-bit string r
Output: A shuffled set A
procedure SHUFFLE(A, )
rrrfr]---
w <+ 0
for i «+ 1 — 1 downto 1 do

j 4 B2L(rpsws(uwrny) mod i + 1 j <& [i + 1] > B2L(rol| -+ - [|r1s) = Y212 52

swap(A;, Aj)
w—w+1
end for
return A

end procedure

Jj=0

Algorithm 5 PALOMA: Generation of a Random Permutation Matrix

Input: A random 256-bit string r

Output: An n X n permutation matrix P, P~*
1: procedure GENRANDPERMMAT(r)
2 o, ...,ln—1] < SHUFFLE([n],r)

@

n—1
P« [I;Z0 Pji; =PougPuryy - Pnoy, , where Py :=

4: P« Po1i1, . P11, Poy,
5: return P,P~!

6: end procedure

> Algorithm
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Decryption
PALOMA decryption is as follows. (Algorithm @

Step 1. Convert the syndrome 5 € {0,1}"~* of the input C into the syndrome s(= S™'%) of C by
multiplying the secret key S71.

Step 2. Recover the error vector e corresponding to s with the secret key L, g(X), which are de-

coding information of C. At that time, we use the extended Patterson decoding introduced

by Section (Algorithm (7

Step 3. Return the error vector é(= P 'e) of C obtained from e and the permutation matrix P~

generated by the secret key r.

Figure [3.1] shows these operations.

Algorithm 6 PALOMA: Encryption and Decryption

Input: A public key pk = Hp,,_j.n) € anik)xn and an error vector € € F3 with wu (€) =1t
Output: A syndrome vector 5 € F;L_k

1: procedure ENCRYPT(pk = ﬁ[n,km];é\)

2: ﬁ — [In—k | I/:I[n,km]] S anik)xn

3. S« HeeFp "

4: return s

5: end procedure

Input: A secret key sk = (L,g(X),S™!,7) and a syndrome vector 5 € F§ "
Output: An error vector € € F3 with wg(€) =t
1: procedure DECRYPT(sk = (L, g(X),S™ %, 7);3)
2 s+ 8718
3: e + RECERRVEC(L, g(X); s) > Algorithm
4  P,P7! + GENRANDPERMMAT(r) > Algorithm
5 e+ P le
6 return e
7

end procedure

r4>\ GENRANDPERMMAT

| I I

| | |

| | |

| H H | 5 SHPE HEe =

| — |

 H= [Tk | Hyppon)) — [ x 555 X RECERRVEC

i ,,,,,,,,,,,,,,,, ENCRYPT | 3 3 ,,,,,,,,,,,,,,,,,,,,,,,,,,,, Decryer j ,,,,,,,,,,,,,
e e

Figure 3.1: PALOMA: Encryption and Decryption
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Algorithm 7 PALOMA: Recovering an Error Vector in C (Extended Patterson Decoding)

Input: A support set L, Goppa polynomial g(X) and a syndrome vector s € F;“k
Output: An error vector e € F3 with wg(e) =1t

1: procedure RECERRVEC(L, g(X); s)

2 s(X) + ToPoLy(s)
3 S(X), 91(X), g2(X), g12(X) < CONSTRUCTKEYEQN(s(X), g(X)) > Algorithm [§]
4 a2(X),b1(X) < SOLVEKEYEQN(5(X), g12(X), | £ | — deg(g2), | 15+ | — deg(g1)) > Algorithm [9]
5 a(X),b(X) = az(X)g2(X), b1 (X)g1(X)
6 o(X) < a*(X) + V(X)X > o is the error locator polynomial of e
7 e < FINDERRVEC(0(X))
8 return e
9:

end procedure

Input: A syndrome vector s = (so,1,...,513:—1) € F3*
Output: A syndrom polynomial s(X) € Fai3[X]

1: procedure ToPoLY(s)

2 for j=0tot—1do

3 wWj — Eiio 513]'+1'Zi € Fy1s
4: end for

5 S(X) — Z;;é ijj S FQIS[X}
6 return s(X)

7

end procedure

Output: An error locator polynomial o(X) and a support set L
Input: An error vector e € Fy

1: procedure FINDERRVEC(o, L)

2 e=(eo,...,en—1) < (0,0,...,0)
3 for j=0ton—1do

4 if o(a;) =0 then

5: ej +— 1

6 end if

7 end for

8 return e

9: end procedure

Algorithm 8 PALOMA: Key Equation for an Error Locator Polynomial

Output: A syndrome polynomial s(X) and a Goppa polynomial g(X)
Input: 5(X), 91(X), g2(X), g12(X) € Fa1s[X]
1: procedure CONSTRUCTKEYEQN(s(X), g(X))
s*(X) + 1+ Xs(X)
91(X), 92(X) = ged(g(X), (X)), ged(g(X), s* (X))

9(X)
912(X) X

s3(X), 51(X) « 280 =)

3

4

5 72(X) 31(X)

6: w(X) < g1(X)s5(X)(g2(X)s1(X)) " mod g12(X)
7

8

9

N

S(X) + mmod g12(X)
return 5(X), g1(X), g2(X), g12(X)

: end procedure
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Algorithm 9 PALOMA: Solving a Key Equation for an Error Locator Polynomial
Output: 5(X), g12(X), dega, degb
Input: a1(X),b2(X) such that b2(X)s(X) = a1(X) (mod g12(X)) and deg(a1) < dega, deg(b2) < degb

1: procedure SOLVEKEYEQN(S(X), g12(X), dega, degb)
2 GO(X) a1(X) « 3(X), g12(X)

3 bo(X),bi(X) 1,0

4: while a;(X) =0 do

5: q(X),r(X) + div(ao(X),a1(X))
6 ao(X),a1(X) + a1(X), r(X)
7 (X) = bo(X) — q(X)b1(X)
g bo(X),bu(X) < b1(X), ba(X)
9: if deg(ao) < dega and deg(bo) < degb then
10: break

11: end if

12: end while

13: return ao(X), bo(X)

14: end procedure

b2

3.5 Encapsulation and Decapsulation

Random Oracles

PALOMA is a KEM designed by random oracle model. PALOMA uses two random oracles, ROg¢
and ROy, defined as the Korean KS standard hash function LSH-512. Algorithm [10] shows the

definition.

Algorithm 10 PALOMA: Random Oracles

Input: An [-bit string = € {0,1}!
Output: An 256-bit string » € {0,1}%¢

1: procedure RO¢ ()

2: return LSH("PALUMAGG"Hl’)[:256] > ASCH("PALOMAGG") = 0x50414c4£4d414747
3: end procedure

1: procedure ROy (z)

2: return LSH("PALUMAHH"Hx)[:gg,g] > ASCH("PALOMAHH") = 0x50414c4£4d414848

3: end procedure

Encapsulation

PALOMA ENcCAP has a public key pk as an input and returns a key k and the ciphertext ¢ = (7,3)
of the k. The procedure is as follows. (Algorithm

Step 1. Reorder elements of [n] with a random 256-bit string 7* using the SHUFFLE. (Algorithm

4)

SHUFFLE with 7*

[n]:[0717277n_1] [lo,...,ln,ﬂ.
Step 2. Define n-bit error vector e* € {0,1}" such that supp (¢*) = {lo,...,ls—1}-
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Step 3. Query e* to the random oracle RO¢ and obtain a 256-bit string 7 € {0, 1}2°6.

Step 4. Compute the permutation matrix P,P~! € P, corresponding to 7 using Algorithm
Step 5. Compute € = Pe*.

Step 6. Obtain the syndrome 5 € {0,1}"~* of € using ENCRYPT equipped with the public key pk.
Step 7. Query (e*[|7]|3) to the random oracle ROy and obtain a 256-bit key k € {0,1}2.

Step 8. Return the key k and its ciphertext ¢ = (7, ).

Figure outlines ENCAP.

Algorithm 11 PALOMA: Encapsulation

Input: A public key pk € {0,1}("~F)*n
Output: A key k € {0,1}?°% and a ciphertext ¢ = (7,5) € {0,1}%%% x {0,1}"*

1: procedure ENCAP(pk)

2. & {0,136

3 e* < GENRANDERRVEC(r*) > Algorithm
4 7 < ROg(e*) > 7 € {0,1}%°
5. P,P7! + GENRANDPERMMAT(7) >
6 €+ Pe*

7 5 + ENCRYPT(pk; €) >35€{0,1}"F
8  k+ ROp(e||Fl5) > k€ {0,1}2
9: return k and ¢ = (7, 5)

10: end procedure

Decapsulation

DEcAP of PALOMA returns the key k when passing the secret key sk and the ciphertext ¢ = (7, 5)
as inputs. The process is as follows. (Algorithm

Step 1. Obtain the error vector € by entering s into the DECRYPT function set to the secret key
sk.

Step 2. Generate the permutation matrix P,P~! € P,, from 7 which is part of the ciphertext c.
Step 3. Compute e* = P~'e.

Step 4. Query e* to the ROg and obtain a 256-bit string 7’ € {0,1}2°°.

Step 5. Generate the error vector € using GENRANDERRVEC with the secret key 7.

Step 6. If 7 = 7, then query (e*||7]|S) to the random oracle ROy, and if not, query (€]|7||s) to
ROp. Return the received bit string from ROy as a key k.

Figure [3.2D] outlines DECAP.
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Algorithm 12 PALOMA: Decapsulation

Input: A secret key sk = (L, g(X),S™!,7) and a ciphertext ¢ = (7,3) € {0,1}?°¢ x {0,1}"*

Output: A key k € {0,1}?°
1: procedure DECAP(sk = (L,g(X),S™ !, r);c = (7,5))
2 € < DECRYPT(sk;5)

3 P, P! + GENRANDPERMMAT(7)

4 e —Ple

5: 7 RO¢(e")

6 € <— GENRANDERRVEC(r)

7 if 7 # 7 then

8 return k + ROy (€]|7][s)

9: end if

10: k < ROu(e*||7]|5)

11: return k

12: end procedure

> Algorithm @
> Algorithm
>ee{0,1}"

> k € {0,1}%°

>k € {0,1}%%

r* a(= Pe*)

l \

=

k

GENRANDERRVEC | —— ¢ —— —_— T — l GENRANDPERMMAT ‘ —— PP ! +—— pk
s

(a) k, (7, 3) < ENCAP(pk)

|

sk=(L,g(X),S™ ' r) —> l DECRYPT l l GENRANDPERMMAT ‘

B P

=

,ljl
|

[[0n] s

e (=P71e) ———— ‘ GENRANDERRVEC | ¢——— 7

(b) k « DECAP(sk, (7, 3))

Figure 3.2: PALOMA: Encapsulation and Decapsulation
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Algorithm 13 PALOMA: Generating a Random Error Vector

Input: A random 256-bit string r € {0,1}%%¢

Output: An error vector e = (e, €1,...,en-1) € Fy
1: procedure GENRANDERRVEC(r)
2 e = (eo,e1,...,en—1) < (0,0,...,0)
3 (lo,l1,...,ln—1) < SHUFFLE([n],T)
4 for j=0tot—1do
5: e 1
6 end for
7 return e
8: end procedure
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Chapter 4
Performance Analysis

In this chapter, we provide the performance analysis result of PALOMA.

4.1 Description of Benchmark

4.1.1 Platforms

PALOMA is implemented in ANSI C. Speed benchmark is performed in the following two platforms.
Platform 1. macOS Monterey ver.12.5, Apple M1, 8GB RAM
Platform 2. macOS Monterey ver.12.4, Intel core i5, 8GB RAM

We use the GCC compiler (ver.13.1.6.) with speed option -02.

4.1.2 Data Structure for a Polynomial Ring Fyis[X]

The elements of Fais = Fa[z]/ (f(2)) are stored in the 2-byte data type unsigned short. The

data structure for a field element is defined as follows.
12
a(z) = Z CL¢ZZ S F213 == OHOHOHalgHauH e ||CLO S {O, 1}16.
i=0

A polynomial a(X) € Fa1z[X] with degree [ is stored in 2(I 4 1)-byte as follows.

a(X)=> a; X' €Fps & agllar] [l € {0,120,
i=0

4.1.3 Arithmetics in Fyi: using Pre-computated Tables

PALOMA uses the pre-computed tables for multiplication, square, square root, and inverse in Fa1s.

(7) Multiplication in Faqiz: To store the multiplication of all pairs in Fois, the table of 128
MB(=2 x 2%6-byte) is required. To decrease the size of a table, PALOMA deals with the

multiplication of three small sizes of tables. a(z),b(z) € Fa1s can be written as follows.
a=a1(2)z" +ag(z), b="bi(2)z" +bo(2), (deg(ao),deg(bo) <6, deg(ar),deg(br) < 5).
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So, the multiplication of a(z) and b(z) € Fa13 can be computed as follows.

a(z)b(z) mod f(z)
— (@1(2)27 + ao(2)) (b1 ()27 + bo(2)) mod f(2)
= (a1(2)by (2)2"* mod f(2)) + (a1(2)bo(2)z" mod f(2)) + (ao(2)b1 (2)z" mod f(2)) + (aobo(2)) -

Thus, the multiplication in Fo13 can be calculated by the following three tables for all possible

pairs.

Table 1. MULgg : {0,1}7 x {0,1}7 — {0, 1}*¢ defined by MULgg[ao, bo] = ao(2)b(z) mod f(z)

Table 2. MULg : {0,1}5 x {0,1}7 — {0,1}!¢ defined by MUL1q[a1,bo] = a1(2)bo(2)2" mod
f(2)

Table 3. MULy; : {0,1}% x {0,1}5 — {0, 1}'¢ defined by MUL1y[a1,b1] = a1(2)b1(2)2** mod
f(2)

Note that (a;1(2)bo(z))2" mod f(2) is computed using the table MUL;j.

(#4) Squaring, square root, inversion in Fais: Tables SQU, SQRT and INV store the results of a

square, square root, and inverse for all elements in Fqi3, respectively. Note that we define

the inverse of 0 as 0.
Table shows the size of pre-computed tables for arithmetics in Fo13 used in PALOMA.

Table 4.1: Precomputed Tables for Arithmetics in Fqis used in PALOMA

Table  Size (in bytes) Description

MULgo 32,768 ag(z)bo(z)

MUL 1 16,384  a1(2)bo(2)2" mod f(z)

MUL4; 8,192 ay(2)b1(2)z'* mod f(2)

sQU 16,384  a(z)? mod f(z)

SQRT 16,384 +/a(z) where a(z) = ( a(z))2 mod £(z)
INV 16,384 a(z)~! where 1 = a(z) 'a(z) mod f(z)
Total 106,496

4.2 Performance of Reference Implementation

4.2.1 Data Size

We determine the size of a public key, a secret key, and a ciphertext in terms of byte strings. Each

size in bytes is computed by the following formula.

bytelen(pk) = bytelen(ﬁ[n_km]) = {(n—k)k" 7

8
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bytelen(sk) = bytelen(L) + bytelen(g) + bytelen(S™") + bytelen(r)

n[lﬂ +1 Fﬂ + [(n;kq +32.

The size of data of PALOMA-128, PALOMA-192, and PALOMA-256 is shown in Table [4.2]

Table 4.2: Data Size Performance of PALOMA (in bytes)

PALOMA-128 PALOMA-192 PALOMA-256

ka ibll:if[nk_ezn] Hp, pony € By H7F 319,488 812,032 1,025,024
Secret key L € F3is 7,808 11,136 13,184
sk=(L,g9,87" 1) 9(X) € Fa13[X] 128 256 256
S~ e R x(n=k) 86,528 346,112 346,112

r € {0,1}?°¢ 32 32 32

Total 94,496 357,536 359,584

Ciphertext 7€ {0,1}%° 32 32 32
c=(7,3) SeFyH 104 208 208
Total 136 240 240

Key k k€ {0,1}%° 32 32 32

As mentioned in Remark [3:3.1] the size of a secret key can be 512-bit. However, this degrades
the speed performance of DECRYPT.

Table shows the data size comparison among the NIST competition round 4 code-based
ciphers and PALOMA.

The data size of PALOMA is similar to Classic McEliecebecause of the usage of SDP-based
trapdoor. Compared to HQC and BIKE, the size of a public key and a secret key is relatively large.
However, the size of the ciphertext which is the actual transmitted value is smaller than HQC and
BIKE. Therefore, PALOMA is suitable for the situation of long-term key or reused key.

4.2.2 Speed

We measure the operation time for each function of PALOMA in two platforms. The results are
shown in Table [£.4

Compare the time of PALOMA with Classic McEliece, which is the same SDP-based KEM. Time
is measured in the Apple M1 platform.

Compared to Classic McEliece, an SDP-based trapdoor, PALOMA operates faster except for the
parameter providing a 192-bit security. It is the reason that the number of correctable errors(= t)
among 192-bit security parameters is 128 in PALOMA compared to 96 Classic McEliece.
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Table 4.3: Data Size Comparison of Code-based KEMs (in bytes)

Algorithm Security Public key Secret key Ciphertext Key
hqc-128 128 2,249 40 4,481 64
BIKE 128 1,541 281 1,573 32
mceliece348864 128 261,120 6,452 128 32
PALOMA-128 128 319,488 94,496 136 32
hqc-192 192 4,522 40 9,026 64
BIKE 192 3,083 419 3,115 32
mceliece460896 192 524,160 13,568 188 32
PALOMA-192 192 812,032 355,400 240 32
hqc-256 256 7,245 40 14,469 64
BIKE 256 5,122 580 5,154 32
mceliece6688128 256 1,044,992 13,892 240 32
mceliece6960119 256 1,047,319 13,908 226 32
mceliece8192128 256 1,357,824 14,080 240 32
PALOMA-256 256 1,025,024 357,064 240 32

Table 4.4: Speed Performance of PALOMA (in milliseconds)

PALOMA-128 PALOMA-192 PALOMA-256

M1 Intel M1 Intel M1 Intel

GENKEYPAIR  GENRANDGOPPACODE 15 26 74 144 93 168
GETSCRAMBLEDCODE 42 61 179 263 211 281

total 64 89 261 423 323 469

ENCRYPT 0.002 0.003 0.003 0.004 0.003 0.005

DECRYPT CONSTRUCTKEYEQN 8 12 53 92 53 92
SOLVEKEYEQN 0.2 0.4 2 3 2 3

FINDERRVEC 1 2 3 4 4 5

total 10 14 59 100 59 101

ENcap 0.03 0.05 0.04 0.07 0.04 0.08

DEcAP 9 15 59 101 60 101
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Table 4.5: Speed Performance Comparison between PALOMA and Classic McEliece (in milliseconds)

GENKEYPAIR ENcapr DEcAP

128-bit PALOMA-128 64 0.03 9
mceliece348864 74 0.04 18

192-bit PALOMA-192 258 0.04 58
mceliece460896 211 0.06 42

256-bit PALOMA-256 323 0.04 58
mceliece6688128 517 0.10 82
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Chapter 5

Security

5.1 OW-CPA-secure PKE

When evaluating the security of PALOMA, even though there have been no known critical attacks
on binary separable Goppa codes, we need to assume that the scrambling code of a Goppa code is
indistinguishable from a random matrix. Therefore, the security of PALOMA is evaluated by the
number of bit operations of ISD, which is the most powerful generic attack of an NP-hard SDP.

From now on, let SDP(H, s, w) be the root set of SDP defined with a parity check matrix
He 114‘5"*’“)*", a syndrome s € F3 " and a Hamming weight w, and let £ be the set of all n-bit
vectors with Hamming weight w. The zero matrix is denoted by 0. The parameters n, ¢, and k of
PALOMA assure that the base SDP has a unique root and are all even.

5.1.1 Exhaustive Search

The naive algorithm finding roots of SDP is an exhaustive search. It checks all candidate vectors
with a Hamming weight of w, that is, it checks if the sum of all possible w columns in a matrix
H equals the syndrome. Algorithm [14] shows the exhaustive search algorithm in detail.

To generate t;(I = 1,2,...,w) in Algorithm one column vector addition is required. Since
t; is defined from ji,..., 7, (7) column vector additions are required to generation ¢;. Therefore,

the total number of column vector additions 7' is as follows.

e () () ()

If w < §, T approximates (Z) Therefore, the amount of the exhaustive search is O ((g) (n— k))

in terms of bit operations.

5.1.2 Birthday-type Decoding

For a random permutation matrix P € P,, SDP(H, s,w) and SDP(HP, s,w) have the following

necessary and sufficient conditions.

e€SDP(H,s,w) < P 'ecSDP(HP,s,w).
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Algorithm 14 Exhaustive Search of SDP

Input: H=1[hy |ha |- | ha] € FS ™" s c F2~* and w
Output: e € F3 such that He = s and wg(e) = w

1: for jy=1ton—(w—1) do

2 t1 < s+ hy,

3 for jo = j1 +1ton— (w—2) do
4 to < t1+ hj,

5:

6 for j, = jw—1+1ton do

7 tw < tw—1+ hy,

8 if t, = 0"~ * then

9 set e with supp (e) = {j1,...,Jw}
10: return e
11: end if
12: end for
13: end for
14: end for

Birthday-type decoding transforms SDP until finding the solution e = (é;|ey) € SDP(ﬁ(:
HP),s,w) that satisfies wy(er) = wu(e;) = § for I = [§] and J = [n] \ I, a random per-
mutation matrix P € P,. To find €; and €, check the intersection of the following two sets.

Tr = {s+ﬁ1€1 Gng ey Ggw/2} Ty .= {ﬁJ€J€ngk g]é(fZ?g}

Two sets must satisfy [T;| = |Ty| > 2"2" to have a intersection with 1/2 probability. However,
since the parameter of PALOMA is (Z@
very low. For the root e € SDP(H, s, w), since the probablhty that € satisfies the hamming weight
Zﬁ)Q / (") the process of transforming SDP to a new permutation matrix P
must be repeated at least 1/p times. Algorlthm shows this attack in detail.

Since the number of bit computations for H;¢; and H ;¢ are o /2) (n—k)), the total amount

oo/

To bring the probability p close to 1 in birthday-type decoding, define the following two subsets
I and J of [n]

) < 2" , the probability that an intersection exists is

condition is p = (

of computations is as follows.

I=[n/2+¢], J=][n/2—c¢c:n]for some e > 0.

When we find e, e5 € 5 /2+6 which satisfy s—l—ﬁ;el = I/JIJeQ, it does not assume that (e;[|0% =)+
(0% ~%||es) is a root. If wH((el||0%_5) + (07 7¢||le2) = w, then (e1]|02 %) + (0% ~¢||ez) is the root.
So this discriminant must be added. In this attack, ¢ is set to a value that makes the probability

_ (n/2+e 2 n . . . .
p= (" o )" /(1) close to 1. The calculated amount of birthday-type decoding is counted as
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Algorithm 15 Birthday-type Decoding of SDP

Input: He FY "™ and s e F2 %, w and I = (3], J=[n]\I
Output: e € F3 such that He = s and wg(e) = w
1: while true do
2 P&P,
3 He« HP
4 T[j] ¢ null for all j € {0,1}"*
5: for e in Sgﬁ do
6 u< s+He /) #operations: (S//i) (n — k) (exhaustive search)
7 Tu] < er
8 end for
9

for €7 in Szg do

10: w+ Hye; /] #operations: (wé)(n — k) (exhaustive search)
11: if T'[u] # null then
12: e« (T[ul|[e) > Llu] =&
13: return Pe
14: end if
15: end for
16: end while
follows.
n/2+e n
2(n—k ~2(n—k . 5.2
(-2 5) ~ 2y (1) (5.2

5.1.3 Improved Birthday-type Decoding

We can find the root of SDP from the roots of two small sizes of SDPs. Consider H € F

as a concatenation of two submatrices H; and Hs for some r < n — k as follows.

H e
H= <H1> , where Hy € F,*" H, € F* 7%,

2

For the roots x,y € F4 of two SDPs for H; below,

x € SDP (Hy, s, w/2+¢), yeSDP(Hy,0",w/2+¢),

if z and y satisfy the following, then x + y is the root of SDP(H, s, w).
H2(-T + y) = s[r:nfk]7 wH(-/L‘ + y) =w,

Algorithm [16] shows this attack in detail.

The amount of bit operation in this algorithm is as follows.

2

4r < n )+(w/g+5) ((w+2€)(nkr)+n(w/g+a)

w/2+e
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Algorithm 16 Improved Birthday-type Decoding of SDP

Input: H ¢ Fg"fk)xn, s€FI* wandr
Output: e € F3 such that He = s and wg(e) = w
1: T[j] + 0 for all j € {0, 1}~~~
2: for x in SDP (H1 LS, w/2 + 6) do // birthday-type decoding, |SDP (H1 LS, w/2 + 5) | ~ %
3 idx < S[pip—k) + Hax // num. of bit operations = %(11,7/2 +e)(n—Fk—r)
4 Tlidz] < Tlidz] U {x}
5: end for .
6: for y in SDP (H1,0",w/2+¢) do // birthday-type decoding, |SDP (H,0",w/2 +¢) | =~ Cu/3re)
7
8

7
idz + Hoy // num. of bit operations = (“/Q#(wﬂ +e)(n—k—r)
for z in T[idz] do // |T|idx]| ~ (7"{2.+E) X =h

27 an—k—r
9: e < x+y // num. of bit operations = (“"/Q%“) X n(z“n/%fg)
10: if wy(e) = w then
11: return e
12: end if
13: end for
14: end for

Choice of e. When two subsets A and B with the number of elements w/2 + ¢ are randomly
2

selected from the set [n] = {0,...,n — 1}, the expected value E[|A N B|] is % Therefore,

for the roots x and y of each SDP, Elwg (x + y)] is as follows.

Elwg(x +y)] = E[2(|supp (z) | — [supp (z) Nsupp (y) |)]
= 2E[|supp () || — 2E[[supp (z) N supp () |)]

2(w/2 + 5)2.

=2(w/2+¢) - ==

(w/2n+g)2. ( \/n2_2n12u+(n—w).) Then E[

Set € to satisfy e = ie €= wr(z+y)] = w.

Choice of . For e € SDP(H, s, w), the number of (z,y) pairs satisfying e = x + y as follows.

) e e e=atatl= (1) (" 2")

Therefore, set r to satisfy 2" =~ (w“/’Q) (";“’) to count the number of roots of small SDP accurately.

5.1.4 Information Set Decoding

ISD (Information Set Decoding) is a generic decoding algorithm for random linear codes. The first
phase of ISD is to transform the parity check matrix H into a systematic type for finding an error-
free information set. Then, in the second phase, we find error vectors satisfying certain conditions,
partly using birthday attack type search and partial brute force attacks. First proposed by E.
Prange in 1962, ISD has improved computational complexity by changing the conditions of error

vectors and applying search techniques in terms of birthday attacks.
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5.1.4.1 Procedure.

ISD uses Proposition the relationship between the code C and the scrambled code Cof C in
terms of the root of SDP.

Proposition 5.1.1. Let e € SDP(H, s,w). For an invertible matriz S € Fé"_k)x("_k)

permutation matriz P € P, P~'e € SDP(SHP, Ss,w).

and a

Proof. Since (SHP)(P~'e) = S(He) = Ssand w = wy(e) = wy (P 'e), P 'e € SDP(SHP, Ss, w).
O

ISD is a probabilistic algorithm that modifies SDP until finding a root satisfying certain con-
ditions. ISD proceeds to the following two-phase.
(Phase 1) Redefining a problem: Find SDP(H, s, w) = Find SDP(fI = SHP,5 = Ss,w)

SHP is a partial systematic matrix obtained by applying elementary row operations.

i.e.

H random permutation P HP Gaussian elimination SHP = Il Ml )
0 M,

(Phase 2) Find é(= P~'e) € SDP(H, 5, w) which satisfies the specific Hiamming weight condition

and return e(= Pe). If no root satisfies the condition, go back to (Phase 1).

5.1.4.2 Computational Complexity.

Let p be the probability that the root € satisfies a specific Hamming weight condition in the

modified problem. The computational complexity of ISD is as follows.

% X ((Phase 1)’s computational amount + (Phase 2)’s computational amount).

(Phase 1) is to modify the problem using the Gaussian elimination, so most ISD algorithms result
in O((n—k)?n) bit operations in this phase. ISD has developed while improving the computational
amount of (Phase 2) and the probability p. Table [5.1| shows the matrix form and hamming weight
conditions used in the significant ISD algorithms.

We thought that the BJMM-ISD was the most effective ISD because the proposed ISDs after
the BJMM-ISD in 2012 are minor improvements in specific situations. Therefore, the parameters
of PALOMA were selected based on the precise calculation of the number of bit operations that
happened in BIMM-ISD. BJMM-ISD transforms the SDP into a small SDP and finds a root of the
SDP applying to birthday-type attacks.

5.1.4.3 Becker-Joux-May-Meurer (2012).
BJMM-ISD is an ISD that applies improvided birth-type decoding to the partial RREF[I]. Trans-

form H into the following form H by applying a partial RREF for some I(< n — k).

P I, | Hy ‘
H = SHP = oo | By where Hy € B F-0x 00 g, ¢ pbeGsd)

0 |H,
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Table 5.1: Hamming weight condition of ISD algorithms

ISD

H(= SHP)

Hamming weight condition of € Prob.
Prange(1962) [Los | M] l w | 0 ] (T(Lg)
n—k k
LB(1988) [Lo_i | M] l w—p I » ] (Z:é))(ﬁ)
n—k k
b | 0 | M = (2596
Leon(1958) ( SRTAE ) ST N —— a
Stern(1989) s | 0 | Ms o [o [ 7 [ » ] Clu)
o | n | ™Mz — e (%)
FS(2009) ( L > [ w-2p | 2p 1 (ZTE(;L))(’“;:)
0 n—k—1l k41 w
BLP(2011) M [w—2p—2q|aa] » | » | (qu";‘g’;:éq)gf)z(’“f)2
o |ulw A v
MIT(2011) (‘O—2> ] ; | e
2 n—k—l1 k+1 w
BJMM(2012) (—I"_O'“" 21 > [ w—p ] P ] ("Jﬂ(;;))(’“,f‘)
2 n—k—1 k+1 w
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Define the index sets I,.J, and L as follows.
I'=n—Fk-1, J:=[n]\I, L:=[n—-Fk\IL

BJMM-ISD finds the root e = (er||€s) of SDP(ﬁ = SHP, 5 = Ss,w) that satisfies the following

conditions.
wyg(er) =w—p, wg(es)=p, e;je€SDP(Hy,51,p), er+esHy =57,

The process of BIMM-ISD is as follows.

(Phase 1) Randomly select a permutation matrix P € P,. Apply partial RREF to HP to obtain

a partial canonical matrix as follows.

. | P ‘ H,
H=|—"—7-——"
0 |H,
In this process, the invertible matrix S satisfying H = SHP is obtained together. If
there is no invertible matrix S that makes it a partial systematic form, (Phase 1) is

performed again.

(Phase 2) Obtain SDP(Hs, 5, p) using the improved birthday-type decoding. If the root does not
exist, go back to (Phase 1). If the Hamming weight of the vector x := §; + Hyy for
y € SDP(Hgy, 51, p) is w — p, return Pe because it is € = (z||y) € SDP(ITI,§7 w). If not,
go back to (Phase 1).

Algorithm [T7] shows BJMM-ISD process in detail.
The probability that € = P~ 'e satisfies the Hamming Weight condition for e € SDP(H, s, w)
in BJMM-ISD is as follows.

) (n—k—l) (k—H)
PﬂWﬁMZw—MAWM%FWHPFPAZ—E%TL< (5.3)
Therefore, the bit operation calculation amount of the BJMM-ISD is as follows.
(i) p(n—k=1(%") . -
W m—k—-0Dmn—-kn+ 5 + num. of operations for SDP(Hs, 57, p) | .
w—p /\ p
(5.4)

In this process, € and r are set as follows when computing SDP(Hs, 57, p).

L \/(k+l)2—2(/€—;—l)p+(k+l—p)7 T:1°g2(<p]/)2>(k+i_p)>'

Table [5.2) shows the number of bit operations that occur in the several attacks in PALOMA.
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Algorithm 17 BIMM-ISD(2012)

Input: H e FY ™" s € Fi~* and w

Output: e € F§ such that He = s and wu(e) = w
1:
2:
3:
4:

9:
10:
11:
12:
13:
14:
15:

while true do
PP,
H = SHP «+ partial

H:,, H> < Hyxy,

5+ Ss

for y in SDP(Ho,
T+ 571+ H1y
if wp(z) =w

e (zlly)

RRErF(HP) // #operations = (n — k —1)(n — k)n
lf f‘i]xl = Infkfl then

Hyxz

st,p) do // improved birthday-type decoding, |SDP(Hz, 5z, p)| ~

// #operations = p(n —

— p then

return Pe

end if
end for
end if

end while

030

P
2l

>H =

Li k- ‘ H,

0 ‘Hg

)

2l

Table 5.2: Computational Complexity of Several Attacks of PALOMA and Classic McEliece

Improved .
BJMM-ISD iiﬁ?day_ gg:?déy g;iiESﬁve
Decoding Decoding
PALOMA-128 216621 (1 — 67, p = 14) 9225.78 9244.11 476,52
PALOMA-192 225777 (1 = 105, p = 22) 2399.67 9448 91 535511
PALOMA-256 289-66 (I =126,p = 26) 9415.59 464.66 916.62
mceliece348864 216197 (| _ 66, p — 14) 220.26 923875 516591
mceliece460896 221559 () _ 86, = 18) 9311.80 345.58 678,88
mceliece6688128 229156 (1 _ 196, p — 26) 416.95 5466.01 591932
mceliece6960119 228992 (1 _ 136, p = 28) 9402.41 443.58 987457
mceliece8192128 2318:34 (1 _ 157 — 39) 436.05 548490 595710

39




5.1.5 Guessing Attacks

Since both the Goppa code and the error vector of PALOMA are generated from the 256-bit string,

2256

the estimated attack amount is , ensuring 256-bit security.

5.2 IND-CCA2-secure KEM

PALOMA is an IND-CCA2-secure KEM. According to the analysis results in Section [5.1} it is
assumed that the underlying PKE = (GENKEYPAIR, ENCRYPT, DECRYPT) of PALOMA is OW-
CPA-secure. PKE has the following properties.

(7) (Injectivity) For all key pairs (pk, sk), if ENCRYPT(pk; €1) = ENCRYPT(pk;€2), then €1 = és.
(#4) (Correctness) Pr[DECRYPT(sk;§) # € | § + ENCRYPT(pk;€)]] = 0.

There are several variants of the Fujisaki-Okamoto transformation. PALOMA is designed as

IND-CCA2-secure using the above properties under the following assumptions.

Assumption 1. GENRANDERRVEC : {0,1}?%6 — & is injective. It means if r1 # o, then
GENRANDERRVEC(r1) # GENRANDERRVEC(rq).

According to this assumption, the size of the message space for ENCRYPT used inside PALOMA-
ENcAP is 2255, not (7).

PALOMA is designed based on the implicit rejection KEM# = U’K[PKEl = T[PKEy, G, H]
among FO-like transformations proposed by Hofheinz et al. [8]. This is combined with two modules:
T: converting OW-CPA-secure PKEy to OW-PCA-secured PKE; and Ut converting it to IND-CCA2-
secure KEM as follows.

OW-CPA-secure PKEy = (GENKEYPAIR, ENCRYPT(, DECRYPTy)

T with a random oracle G

OW-PCA-secure PKE; = (GENKEYPAIR, ENCRYPT;, DECRYPT; )

U# with a random oracle H

IND-CCA2-secure KEM# = (GENKEYPAIR, ENCAP, DECAP).

5.2.1 PKE, = (GenKeyPair, Encrypt,, Decrypt,)

PKE( is defined with the PKE and GENRANDPERMMAT of PALOMA, as shown in Algorithm
Since PKE is assumed to be OW-CPA-secure, PKEj is OW-CPA-secure as well.

Algorithm 18 PALOMA: PKE,

1: procedure ENCRYPTq(pk;7;e”) 1: procedure DECRYPT(sk;c = (7,3))
2 P,P~! + GENRANDPERMMAT(7) 2 € < DECRYPT(sk;3)

3 €+« Pe* 3 P,P~! + GENRANDPERMMAT(7)
4: 5+ ENCRYPT(pk;e) 4 e+« P7'e

5 return ¢ = (7,3) 5 return e*

6: end procedure 6: end procedure
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5.2.2 PKE; = (GenKeyPair, Encrypt,, Decrypt,)

The transform T for converting OW-PCA-secure PKEy to OW-PCA-secure PKE; is defined by
ENCRYPT; (pk; ) := ENCRYPTq(pk; G(e¥); e").

Algorithm [19 and Figure [6.1] show PKE; of PALOMA constructed by this transformation T and a
random oracle ROg.

Algorithm 19 PALOMA: PKE,

1: procedure ENCRYPT1 (pk;e”) 1: procedure DECRYPT;(sk;c = (7,5))
2: 7+ RO¢(e") 2 e* <~ DECRYPTo(sk; )
3: c = (7,3) < ENCRYPTo(pk; T;e") 3 7 < RO¢(e*)
4: return c = (7,3) 4 if 7 #7 then
5: end procedure 5: return |
6 end if
7 return e*
8: end procedure

For any OW-PCVA-attackers B on PKE1, there exists an OW-CPA-attacker A on PKE satisfying
the inequality below[8, Theorem 3.1].

Advike, “A(B) < (a6 + ap + 1)Advikes T (A),

where ¢ and gp are the number of queries to the random oracle ROg and plaintext-checking
oracle PCO. Therefore, if PKEg is OW-CPA-secure, AdvngE:PCVA(B) is negligible, so PKE; is OW-
PCVA-secure.

5.2.3 KEM* = (GenKeyPair, Encap, Decap)

The transform U* for converting OW-PCA-secure PKE; to IND-CCA2-securePKE; is as follows.
ENCAP(pk) := (¢ = ENCRYPTy (pk;e*), ROg(e*, c)).

Algorithm shows KEM* of PALOMA constructed by this transformation U% and a random
oracle ROg.

For any IND-CCA2-attackers B on KEM*, there exists an OW-PCA-attacker A on PKE; satis-
fying the inequality below[8, Theorem 3.4].

AdvRES N (B) < S5 AdvEREr A (A),

where qp is the number of queries to the plaintext-checking oracle PCO. Therefore, if PKE; is
OW-PCA-secure, AdeKVE_lPCA(A) is negligible, so KEM# is OW-PCVA-secure.
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( a(= Pe¥)

e* RO¢ 7 GENRANDPERMMAT [ — PPt — pk

]
!

c=(7,9)

(a) ¢ = (7,5) < ENCRYPT:(pk;e™)

sk —— | DECRYPT ‘ [ GENRANDPERMMAT [ - NO .

| Ny

PP et

!

\—>

o)

R

e ) ——— [fog]

(b) € or L« DECRYPT1(sk;c = (7,5))

Figure 5.1: PALOMA: ENCRYPT; and DECRYPT; of PKE;

Algorithm 20 PALOMA: KEM*

1: procedure ENCAP(pk) 1: procedure DECAP(sk = (L,g(X),S™!,7);c =
2 r* < {0,1}%% (7,9))
3 e* < GENRANDERRVEC(r™) 2 e < DECRYPT1(sk;c = (7,9))
4: ¢ = (7,5) + ENCRYPT; (pk; e*) 3 7« ROg(e")
5 k < ROm(e||F]]35) 4 € + GENRANDERRVEC(r)
6 return k and ¢ = (7,3) 5: if 7 #£7 or e* =1 then
7: end procedure 6 return k < ROg(e]|7][s)
7 end if
8 k < ROu(e"||7]|5)
9: return k

10: end procedure
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Chapter 6

Summary

In this paper, we introduce PALOMA, which is IND-CCA2-secure KEM based on a SDP with a
binary separable Goppa code. Even though the components and mechanisms used in PALOMA
have been studied for a long time, no critical attacks are found. Many cryptographic communities
believe the scheme constructed by these would be secure. Therefore, we believe PALOMA can be a
reliable alternative to current cryptosystems in quantum computers. Classic McEliece is the round
4 cipher in NIST PQC competition, which use a binary Goppa code[d]. Finally, we give the feature
comparison between PALOMA and Classic McEliece in Table [6.1]

Table 6.1: Comparison between PALOMA and Classic McEliece

PALOMA Classic McEliece

Fujisaki-Okamoto-structure
Scheme KEM
(implicit rejection)

SXY-structure KEM

(implicit rejection)

Problem SDP SDP

Trapdoor type Niederreiter Niederreiter

Linear code C Binary separable Goppa code Binary irreducible Goppa code

Goppa polynomial g(X) Separable (not irreducible) Irreducible

Time for generating g(X) Constant Non-constant
Field qu F213 F2127 F213
Parity-check matrix H of C ABC BC
Form of a parity-check matrix Systematic Systematic

H of C

Decoding algorithm

Extended Patterson

Berlekamp-Massey

Probability of decryption
failure (correctness)

0
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Appendix A

SAGE code for a Binary Separable
Goppa code used in PALOMA

Copyright 2022 FDL(Future cryptograph Design Laboratory, Kookmin University

Permission is hereby granted, free of charge, to any person obtaining a copy of this software
and associated documentation files (the "Software"), to deal in the Software without
restriction, including without limitation the rights to use, copy, modify, merge, publish,

distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

RABHHHBABARARRBBRAHBBR AR B BB BRAH BB R AR AR BB BRBHBRRRRS
K
Binary Separable Goppa Code used in PALOMA
developed by FDL/KMU

HERRHARBHARRRARAARBRAR BB R BB AR R R BB BHARRRR BB AR SRS

F2m = GF(2°13) (i.e., m = 13)
Separable Goppa Polymoial g(X) with degree t in F2m[X] (t-error collectable code)

n+t <= qg’m= 2713 = 8192
k > n - mt = n - 13t

parameters:

PALOMA128: n = 3904(61), k = 3072, n-k = 832(13), m = 13, t = 64
PALOMA192: n = 5568(87), k = 3904, n-k = 1664(26), m = 13, t = 128
PALOMA256: n = 6592(103), k = 4928, n-k = 1664(26), m = 13, t = 128

Toy parameters:

n =37, k =19, n-k = 18, t = 3, m = 6, f = z"6 + z°4 + z"3 + z + 1

n = 100, k = 72, n-k = 28, t =4, m =7, £f =277 + z + 1

n = 120, k = 64, n-k =656, t =8, m =7, f =277+ z + 1

n =241, k = 121, n-k = 120, t = 156, m = 8, f = z"8 + z74 + z"3 + z72 + 1




n =53, k =27, n-k = 26, t = 2, m

HARHHBAARBH BB AR B R BB ARARHHBRBRBH BB RARBH B R AR SRR BBERS

reset ()
var('z"')

HERBHARBHARRRARBAR B R R AR B R BB AR BB RRBARRRBR R R R RS RS

def line():
print ("\n============================s==========s==============")

def newline():
print (" ")

line ()

HABHHHA AR HHH AR AR BB B AR AR HH B R AR HH VBB AR HH B R R R BB SRS
# parameters: n, t, m, irr_poly
HAERHHH AR HHHH AR AR B H B AR HH B R HH B BB HH B R RHH BB SRS
paloma_param = [

[37, 3, 6, z°6 + z"4 + z~3 + z + 1],

[100, 4, 7, z°7 + z + 1],

[120, 8, 7, z°7 + z + 1],

[241, 15, 8, z"8 + z"4 + z"3 + z~2 + 1],

[563, 2, 13, z"13 + z°7 + z°6 + z°5 + z°0],
[79, 3, 13, z~13 + z°7 + z"6 + z°5 + z-0],

[216, 8, 13, 2z~13 + z°7 + z"6 + z°5 + 1],
[424, 16, 13, z"13 + 2z°7 + z"6 + z°5 + 1],

[3904, 64, 13, 2z"13 + z°7 + z°6 + z°5 + 1],
[5568, 128, 13, z"13 + z°7 + z"6 + z°5 + 1],
[65692, 128, 13, z"13 + z°7 + z°6 + z°5 + 1],

]
n, t, m, £ = paloma_param[8]
k = n - m*xt

HERHHARBHARBAARAAR R R R BB R AR B AR BB BR B AR R RSB AR R RS RS

R2.<z> = GF(2)[]
F2m.<z> = GF(2"m, modulus = R2(f))
R2m.<X> = PolynomialRing(F2m)

HARHRHRBRBRH AR AR R AR R AR R AR AR BB BB BB R R R RS RS RS R4S
# function for hex representation
HABHHBAARHHHH AR RH BB AR AR HHBR AR AR BB RARHH B R B AR HHHBERS

def str_f2m_hex(x):
return "O0x{:04x}".format (ZZ(list(F2m(x).polynomial()), base = 2))
# return hex(ZZ(list(F2m(x).polynomial()), base = 2))

def show_mat_hex(m):
nrows, ncols = m.nrows (), m.ncols ()
for r in range (0, nrows):
str = "[ "
for ¢ in range(0, ncols):
str += str_f2m_hex(m[r][c]) + " "
print (str, "1")

def show_poly_hex(f):
show_mat_hex (matrix(list(£f)))
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13, f = z713 + z°7 + z°6 + z"5 + 270
n =179, k =40, n-k =39, t =3, m =13, f = z713 + z°7 + z°6 + z°5 + z70




102 | #HHFHFHARARARBHHHBABRRAR AR BRBHBHBRAHR AR BB B HAHFRAHRH
103| # Generate Random Binary Separable Goppa Code

104 | #HHHFARARARAABHHHBAAARA R AR B BB HAHB AR AR AR BB B R AR BRSHRS
105
106| print ("Random Binary Separable Goppa Code")

107 print ("n = {}({}), n-k = {3{H), t = {}, m = {}".format(n, n/64, n-k, (n-k)/64, t, m))
108| newline ()

L1O | #H##ARHARHARBHARRARBAARARA BB R AR AR AR BHAR B AR BB R RS RS

12| 1istF2m list (F2m)
113| mbitset = list(range(0,2°m,1))

LLG | ##H#HBHBHBRBHBRAHAHBH R H R AR BB AR R BB BB RH R R R R BB HH

116| # Generate Support Set L and Separable Goppa polynomial g(X)
VL7 | ##HBHBABRBRBHBRBHBHBH R R AR AR AR BB AR BB BB BB BB R RSB S

119| # shuffle(mbitset)

122 Support set L

o3| v

%

L = [listF2m[j] for j in mbitset[:n]]
125| print ("Support Set L")

print (L)

127| show_mat_hex (matrix (L))

S

128| line ()

131 Separable Goppa polynomial g(X)

N

133 g = prod ([(X+1istF2m[j]) for j in mbitset[n:n+t]])

134| print ("Goppa Poly. g(X)")

135 print (g)

136| show_poly_hex(g)

137| print ("roots = ", [listF2m[j] for j in mbitset[n:n+t]])
138 line ()

LAO | #HAARHBRHARBHARRBRBRARBRARAARHBRB AR BRRRBRRBRR AR H RS
141| # Compute Parity-check Matrix H = A*BxC
LA | HAHHRARBHHBHR R R BRH BB BERRHR R R BRH BB BEH RSB RA R RS HRH

145 Matrix A

Vi

147| coeffg = list(g) + [01*(t-1)

148| A = matrix([coeffgl[i:i+t] for i in [1..t]])

150| print ("\nA")
151 | #print (A)
152| show_mat_hex (A)

153| newline ()

157 Matrix B*C

e

150 time B = matrix(F2m, t, n, lambda r, c: (L[c]l"r))
160 print ("Parity-check Matrix H = B")

161| #print (B)

162| show_mat_hex (B)

163| newline ()

164

165| #T1 = [g(L[c]) for ¢ in range(0,n)]
166| #T2 = [g(L[c])"-1 for c¢ in range(0,n)]
167| #print ("T1: ", T1)
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168| #print ("T2: ", T2)
170| time BC = matrix(F2m, t, n, lambda r, c: (L[c]l"r) * (g(L[cl)"~-1) )

172| print ("\nParity-check Matrix H = BC")
173| show_mat_hex (BC)

174| #print (BC)

175| newline ()

177 time H = Ax*BC

178| print ("\nParity-check Matrix H = ABC")
170| #print (H)

180| show_mat_hex (H)

121 | newline ()

182
183 '

184 Parity-check matrix derived from (X-aj)~ -1
185 0070

186 """

87| H1 = []

188 for i in [0..n-1]:

189 inv = R2m((g - g(L[i]))/(X-L[i]l))*g(L[il)"-1

190 H1 += [list(inv)]
191
192| H1 = Matrix (F2m, H1).transpose ()
193| print ("H1 == H?", H1 == H)

194 '

195
106 | ##HBHAHHHBHBRAHAHAHHH AR R AR R AR BHBARBRBRRBHRH R RHH

197| # Modified Patterson Decoding for Binary Separable Goppa Code
198 | #HHBABARABHBARHRHRHRHHHEHEHEHERA R AR AR AR BB BB BB R B HRHS

199

201 Given f s.t gcd(f,g),
202 find £°-1 such that f~-1xf = 1 (mod g)

204| def getInv(f, g):

205 t = g.degree()

206 d0, d1 = R2m(f), R2m(g)
207 a0, al = R2m (1), R2m(0)
208

209 while d1 != 0:

210 r = d0%d1l

211 q = R2m((d0 - r)/d41)
212 do, d1 = d1, r

213 a2 = a0 - g*al

214 a0, al = al, a2

215

216 return a0*d0.leading_coefficient () "-1

218 | HARHAARHABHARRARBRARRBARARARHARHRR R AR B RSB AR B RS RHS

221 Find a2, bl such that bl*s_hat = a2 (mod gl2) with deg condition

223| def EEA_for_keyeqn(s_hat, gl2, dega, degb):

224 a0, al = R2m(s_hat), R2m(gl2)
225 b0, bl = R2m (1), R2m(0)

226

227 while al != 0:

228 q, r = a0.quo_rem(al)

229 a0, al = al, r

230 b2 = b0 - q*bi

231 b0, bl = bl, b2

232 if a0.degree() <= dega and bO.degree() <= degb:
233 break

234 return a0, bo
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236 | HARHFHBARBHARBAARBARBAARARRRAARHBR B AR HARBHA R RS BHS

239 Compute Square Root of f(X) mod g12(X)

242| def get_sqrt(f, g):

243 sqrtx = power_mod (R2m(X), 2" (m*t-1), g)

244 print ("sqrtx~2%g == X?", sqrtx~2%g == X)

245 print ("sqrt (X) mod gl2 =", sqrtx)

246 degf = R2m(f).degree ()

247 listf = list(f)

248 fe = [sqrt(listf[2*j]) for j in [0..floor (degf/2)]]

249 fo = [sqrt(listf[2*j+1]) for j in [0..floor ((degf-1)/2)1]
250

251 sqrtf = (R2m(fe) + R2m(fo)*sqrtx)ig

return sqrtf

254 | HARHHHHHHHFARAARAHBRHHHH AR A AR AR BB HHH R A AR AR AR R R HHHHH

257 Given f, find a(X), b(X) such that f = a~2(X) + b~2(X)x*X

258 ' !

250| def get_a2b2x (f):

260 degf = R2m(f).degree ()

261 listf = list(f)

262 fe = [sqrt(listf[2*j]) for j in [0..floor (degf/2)]]

263 fo = [sqrt(listf[2*j+1]) for j in [0..floor ((degf-1)/2)1]
264 a = R2m(fe)

265 b = R2m(fo)

266 return a, b

Q68 | HAHHHARAHHHBHAAHHHH B AR HHBH AR HHH B AR R B R AR R R B BB RS HHH
270| line ()

272 | HHRBHHBHBBHHBHHBHRBHHBHR BB BHH BB BRB BB BB BB BEHBHH
273| # Step 0. Generate Random Error Vector with Hamming Weight t
O74 | HARHHHHHHHHARAARAHBRBHHR AR R R AR R R HHH R R AR AR AR R B R B HHH

276| nset = list(range(0,n))
277| shuffle (nset)

279l e = [0]*n

250 for i in nset[0:t]:

281 el[i] =1

2s2| #print ("Error vector e\n", e)

283| print ("Error Polynomial e(X) =", R2m(e))
284| line ()

287 error locator polynomial sigma_t = a_t"2 + b_t 2*X for checking correctness
Kl

280| sigma_t = R2m (1)

290| for i in range(0O,n):

291 if el[i] == 1:

292 sigma_t = sigma_t * (X + L[il)

204| a_t, b_t = get_a2b2x(sigma_t)

206| print ("sigma_t (X) =", sigma_t)

207| print ("a_t (X) =", a_t)

208| print ("b_t (X) =", b_t)

200| print ("R2m(a_t~2 + b_t"2*X) == sigma_t?", R2m(a_t"2 + b_t"2*X) == sigma_t)

300| newline ()

a0




346
347
348
349

350

HARHHHRFAARAR AR BRAHBRARRARBRBHAH AR A RRAR R BB HBHBRRHARS
# Step 1. Compute Syndrome s(X) of e(X)
HABHHHBHAAAA AR BB R AR B AR AR AR BB B R AR B R R AR BB B R B HBRHARS

He = H * vector(e)
s = R2m(list (He))

Hie = H1 * vector(e)
print ("He == Hle?", He == Hle)

print ("s(X) =", s)

Checking Correctness
syndrome = R2m(0)
for i in [0..n-1]:
syndrome += e[il*R2m((g - g(L[il))/(X-L[il))*g(L[il) -1
print ("syndrome =", syndrome)
print ("s(X) == syndrome?", s == syndrome)

HERHBHBBHRBHRBHRBHHBHR B R BH R BB BR R BB BB BB BE B RS RY
# Step 2. Find Error Locator Polynomial sigma(X)
HARHHHAARHHHH AR BB HRAR AR B HBRBABH BB RARBH B R AR R R R HBERS

Checking Correctness

print ("sigma_t*s)%g == sigma_t.derivative()?", sigma_t*s’%g == sigma_t.derivative())

newline ()

HARBHARBAARRRRBAARBBRRABRRBRB AR R R BRBAAR BB R BRARRRA RS

Derive Key Equation
s_ast = R2m (1) + Xxs(X)
gl = gcd(g, s)
g2 = gcd(g, s_ast)
gl2 = R2m(g/gl/g2)
s2_ast = R2m(s_ast/g2)
s1 = R2m(s/gl)

u = (gl * s2_ast * getInv(g2*sl, gl12))%gl2

print ("g2*sl*getInv (g2*sl, gl2)%gl2 == 17", g2*sl*getInv(g2xsl, gl2)%gl2 == 1)

s_hat = get_sqrt(R2m(u), R2m(gl2))

print ("s_hat~2%gl2 == u?", s_hat"2)gl2 == u)

Solve Key Equation

a2, bl = EEA_for_keyeqn(s_hat, gl12, floor(t/2)-g2.degree(),
print ("blxs_hatgl2 == a2?", bl*s_hatlgl2 == a2)

Compute a, b

a = al2x*xg2
b = blxgl
print ("a(X) =", a)
print ("b(X) =", b)

ol

floor ((t-1)/2)-gl.degree())




Checking Correctness

print ("b"2xs_ast%g == a"2*s%g?", b 2*s_astlg == a~2*sig)
print ("b"2*(1+Xxs)%g == a"2*xs%g?", b 2*x(1+X*s)lg == a"2x*slg)
sigma = (a”2 + b~2*X).monic ()

print ("sigma == sigma_t?", sigma == sigma_t)

HHBHHAH BB HAHHEH AR B AR BB HAH B H AR RSB BB B H B HBH BB BB RS
# Step 3. Find Roots of sigma(X)
HARHHHA AR HHH AR R BB B AR AR HH B R AR BH BB AR HH B R AR H R BB SRS

err_support_set = []
for i in [0..n-1]:
if sigma(L[i]) == 0:
err_support_set += [i]
print ("recovered supp(e) =", err_support_set)
line ()

HERRHARBHARRRARBAR B R R AR B HBRE B AR BB RRBARRRRR BB R RS RS

Result

print ("\nDo we find the correct error?", err_support_set == R2m(e).exponents())
line ()
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