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Abstract

NTRU was the first practical public-key encryption scheme constructed on a lattice over a polynomial-
based ring, and has been still considered secure against significant cryptanalytic attacks in a few decades.
Despite such a long history, NTRU and its variants proposed to date suffer from several drawbacks, such
as the difficulty of achieving worst-case correctness error in a moderate modulus, inconvenient sampling
distributions for messages, and relatively slower algorithms than other lattice-based schemes.

In this work, we suggest a new NTRU-based key encapsulation mechanism (KEM), called NTRU+,
which overcomes almost all existing drawbacks. NTRU+ is constructed based on two new generic trans-
formations called ACWC2 and FO

⊥
. ACWC2 is used for easily achieving a worst-case correctness error,

and FO
⊥

(as a variant of the Fujisaki-Okamoto transform) is used for achieving chosen-ciphertext se-
curity without re-encryption. ACWC2 and FO

⊥
are all defined using a randomness-recovery algorithm

and an encoding method. Especially, our simple encoding method, called SOTP, allows us to sample a
message from a natural bit-sting space with an arbitrary distribution. We provide four parameter sets for
NTRU+ and give implementation results, using NTT-friendly rings over cyclotomic trinomials.

1 Introduction

The NTRU encryption scheme [13] was published by Hoffstein, Pipher, and Silverman in 1998 as the first
practical public-key encryption scheme using lattices over polynomial rings. The hardness of the NTRU is
crucially based on the NTRU problem [13], which has withstood significant cryptanalytic attacks over a
few decades. Such a longer history than other lattice-based problems (such as Ring/Module-LWE) has been
considered as being an important factor in selecting the NTRU as a finalist in the NIST PQC standardization
process. While the finalist NTRU [4], which was a merger of two submissions NTRU-HRSS [21] and NTRU-
HPS [23], has not been chosen by NIST as one of the first four quantum-resistant cryptographic algorithms,
the NTRU has several distinct advantages over other lattice-based competitive schemes like Kyber [22] and
Saber [6]. Indeed, the advantages of the NTRU include (1) compact structure of a ciphertext consisting of a
single polynomial, and (2) (possibly) faster encryption and decryption without need to sample coefficients
of a public key polynomial.

*This work is submitted to ‘Korean Post-Quantum Cryptography Competition’ (www.kpqc.or.kr).
†Korea University, Seoul, Korea. Email: yoswuk@korea.ac.kr.
‡Sangmyung University, Seoul, Korea. Email: jhpark@smu.ac.kr.
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The central design principle of the NTRU is described over a ring Rq = Zq[x]/⟨f(x)⟩, where q is a
positive integer and f(x) is a polynomial. The public key is generated as h = pg/(pf ′ + 1)1, where g and
f ′ are sampled according to a narrow distribution ψ and p is a positive integer smaller than q (e.g., 3), and
the corresponding private key is then f = pf ′ + 1. To encrypt a message m sampled from a message space
M′, one creates two polynomials r and m whose coefficients are also drawn from a narrow distribution ψ,
and computes a ciphertext c = hr +m in Rq. There could exist an (efficient) encoding method by which
m ∈ M′ is encoded into m and r ∈ Rq. Alternatively, it is also possible to directly sample m and r from
ψ, where m is considered as a message to be encrypted. To decrypt the ciphertext c, one computes cf in Rq,
recovers m by taking the value cf ′ modulo p, and (if necessary) decodes m to obtain the message m. The
decryption of the NTRU works correctly if all the coefficients of the polynomial p(gr+ f ′m) +m are less
than q/2. Otherwise, the decryption fails, in which case the probability that the decryption fails is called a
correctness (or decryption) error.

In the context of chosen-ciphertext attacks, the NTRU (as ordinary public-key encryption schemes) must
guarantee a very negligible worst-case correctness error, because otherwise information about the private
key may be leaked by adversarial decryption queries (like attacks [15, 5] against lattice-based encryption
schemes). Roughly speaking, a worst-case correctness error means the probability that a decryption fails
for any ciphertext that can be generated with all possible messages and randomnesses in their respective
spaces. Naturally, the worst-case correctness error considers that an adversary, A, is able to maliciously
choose messages and randomnesses, without sampling normally according to their original distributions
(if possible). In case of the NTRU, the failure to decrypt a specific ciphertext c = hr + m gives A the
information that one of the coefficients of p(gr+ f ′m) +m is larger than or equal to q/2. If A has control
over the choice of r and m, even one such decryption failure may open a path to associated decryption
queries to obtain more information about the secret polynomials g and f .

When designing the NTRU, there have been two approaches for achieving worst-case correctness error.
One is to draw m and r directly from ψ, while setting the modulus q to be relatively large. The larger q
guarantees with a high probability that all coefficients of p(gr+ f ′m) +m are less than q/2 for almost all
possible m and r in their spaces, but causes inefficiency in terms of public-key and ciphertext sizes. Indeed,
this approach has been taken by the third-round finalist NTRU [4], where all recommended parameters
provide perfect correctness error (i.e., the worst-case correctness error becomes zero for all possible m and
r). On the other hand, the other approach [9] is to use an encoding method by which a message m ∈ M′
is used as a randomness to sample m and r according to ψ. Under the Fujisaki-Okamoto (FO) transform
[11], decrypting a ciphertext c requires to re-encrypt m by following the same sampling process as in
encryption. Thus, an ill-formed ciphertext especially not following the sampling rule will always fail to be
successfully decrypted, resulting in the fact that m and r should be honestly sampled by A according to ψ.
Consequently, by disallowing A to have control over m and r, the NTRU with an encoding method has a
worst-case correctness error that is close to an average-case one.

Based on the above observation, [9] proposed generic (average-case to worst-case) transformations2

that make an average-case correctness error of an underlying scheme almost close to a worst-case one of
a transformed scheme. One of their transformations (denoted by ACWC) is based on an encoding method
called a generalized one-time pad (denoted by GOTP). Roughly speaking, GOTP works as follows: when
m is split into two polynomials m1||m2, a message m ∈ M′ is first used to sample r and m1 according

1There is another way of creating the public key as h = pg/f , but we focus on setting h = pg/(pf ′ + 1) for more efficient
decryption process.

2They proposed two transformations called ACWC0 and ACWC. In this paper, we focus on ACWC that does not expand the
size of a ciphertext.
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Scheme NTRU[4] NTRU-B [9] NTRU+
NTT-friendly No Yes Yes

Correctness error Perfect Worst-case Worst-case
(m, r)-encoding No Yes Yes

Message set m, r← {−1, 0, 1}n m← {−1, 0, 1}λ m← {0, 1}n
Message distribution Uniform/Fixed-weight Uniform Arbitrary

CCA transform DPKE + SXY variant ACWC + FO⊥ ACWC2 + FO
⊥

Assumptions NTRU, RLWE NTRU, RLWE NTRU, RLWE
Tight reduction Yes No Yes

n: polynomial degree of a ring. λ: length of a message. DPKE: deterministic public key encryption. SXY variant:
SXY transformation [20] described in the finalist NTRU.

Table 1: Comparison to previous NTRU Constructions

to ψ, and then m2 = GOTP(m,G(m1)) using a hash function G. If GOTP acts as a sampling function
whose output follows ψ, m and r are created from m following ψ, which can be verified in decryption
by using the FO transform. However, ACWC based on GOTP has two disadvantages in terms of security
reduction and message distribution. Firstly, [9] showed that ACWC converts a oneway (OW-CPA) secure
underlying scheme into a transformed scheme that is also OW-CPA secure, but their security reduction
is loose3 by causing a security loss factor of qG, the number of random oracle queries. Secondly, ACWC
requires m to be sampled from the message space M′ according to a special distribution ψ′. Indeed, the
NTRU instantiation from ACWC, called ‘NTRU-B’ [9], requires that m should be chosen uniformly at
random fromM′ = {−1, 0, 1}λ for some integer λ. It is still known that it is not easy to generate exactly
uniform numbers in constant time when a modulus is not a power-of-2, because of rejection sampling.

1.1 Our Results

We present a new practical NTRU construction, called ‘NTRU+’, which overcomes the two drawbacks
raised in the previous ACWC. To achieve our goal, we provide a new generic ACWC transformation (denoted
by ACWC2) that works with a simple encoding method. Using ACWC2, NTRU+ achieves a worst-case
correctness error that is almost close to an average-case one of an underlying NTRU. In addition, NTRU+
requires m to be drawn fromM′ = {0, 1}n (for a polynomial degree n) following an arbitrary distribution
(with high min-entropy), and is proven to be tightly secure under the same assumptions of NTRU and
RLWE. To achieve chosen-ciphertext security, NTRU+ relies on a novel FO-equivalent transform without
re-encryption, which makes decryption algorithm of NTRU+ faster than in the ordinary FO transform. In
terms of efficiency, we use the idea of [18] to apply NTT (Number Theoretic Transform) [17] to NTRU+, and
therefore instantiate NTRU+ over a ring Rq = Zq[x]/⟨f(x)⟩, where f(x) = xn − xn/2 + 1 is a cyclotomic
trinomial. By selecting appropriate (n, q) and ψ, we suggest four parameter sets for NTRU+, and give
implementation results for NTRU+ in each parameter set. Table 1 shows the main differences between the
previous NTRU constructions [4, 9] and NTRU+. In the following, we describe our technique focusing on
those differences.

ACWC2 Transformation with Tight Reduction. ACWC2 is a new generic transformation that allows for
the average-case to worst-case correctness error conversion mentioned above. However, to apply ACWC2,

3[9] introduced a new security notion, q-OW-CPA, which captures that an adversary output a set Q of size at most q and wins
if a correct message corresponding to a challenged ciphertext belongs to Q. We think that q-OW-CPA causes a security loss of q.
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Figure 1: Overview of security reductions

an underlying scheme is required to have so-called randomness- and message-recoverable properties, which
are typical of the NTRU.4 Additionally, ACWC2 involves an encoding method, called semi-generalized one-
time pad (denoted by SOTP). Unlike GOTP in [9], SOTP works as follows: a message m ∈ M′ is first
used to sample r according to ψ, and then m = SOTP(m,G(r)) whose coefficients follow ψ, using a hash
function G. In decrypting a ciphertext c = Enc(pk,m; r) under a public key pk, m is recovered by a normal
decryption algorithm and, using m, r is also recovered by a randomness-recovery algorithm, and then an
inverse of SOTP using G(r) and m gives m.

The message-recoverable property of an underlying scheme allows us to show that, without causing
security loss, ACWC2 transforms a OW-CPA secure scheme into a chosen-plaintext (IND-CPA) secure one.
The proof idea is simple: unless an IND-CPA adversary A queries r to a (classical) random oracle G, A
does not gain any information on mb (that A submits) for b ∈ {0, 1} because of the basic message-hiding
property of SOTP. However, importantly, whenever A queries ri to G for i = 1, · · · , qG, a reductionist can
check if each ri is the randomness used for its OW-CPA challenge ciphertext by using a message-recovery
algorithm. Therefore, the reductionist can find the exact ri among qG number of queries, as long asA queries
ri (with respect to its IND-CPA challenge ciphertext) to G. In this security analysis, it is sufficient for SOTP
to have the message-hiding property, which makes SOTP simpler than GOTP because GOTP must have
both message- and randomness-hiding properties.

FO-Equivalent Transform without Re-encryption. To achieve chosen-ciphertext (IND-CCA) security, we
apply the generic transform FO⊥ to the ACWC2-derived scheme that is IND-CPA-secure. As other FO-
transformed schemes, the resulting scheme from ACWC2 and FO⊥ is still required to perform re-encryption
in decryption process in order to check if (1) (m, r) are correctly generated fromm and also (2) a (decrypted)
ciphertext c is correctly encrypted from (m, r). However, by using the randomness-recoverable property of
an underlying scheme, we further proceed to remove the re-encryption process from FO⊥. Instead, the more
advanced transform (denoted by FO

⊥
) simply checks if r from the randomness-recovery algorithm is the

same as the (new) randomness r′ created fromm. We show that FO
⊥

works functionally identical to the FO⊥

by proving that the randomness-checking process in FO
⊥

is equivalent to the re-encryption process FO⊥.
The equivalence proof mainly relies on injectivity [14, 3] and rigidity [2] properties of underlying schemes.

4In the decryption of the NTRU with pk = h, given (pk, c,m), r is recovered as r = (c−m)h−1. Also, given (pk, c, r), m
is recovered as m = c− hr.
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Scheme sec(c) n q pk ct sk log2 δ Gen Encap Decap

NTRU+576 115 576 3457 864 864 1728 -487 17 14 12
NTRU+768 161 768 3457 1152 1152 2304 -379 16 18 16
NTRU+864 188 864 3457 1296 1296 2592 -340 14 19 18
NTRU+1152 264 1152 3457 1728 1728 3456 -260 43 26 24

Kyber512 117 512 3329 800 768 1632 -139 26 35 26
Kyber768 181 768 3329 1184 1088 2400 -164 43 54 42

Kyber1024 253 1024 3329 1568 1568 3168 -174 59 78 63
ntru_hps_2048509 106 509 2048 699 699 935 -∞ 191 80 33
ntru_hrss_701 136 701 8192 1138 1138 1450 -∞ 251 58 51

ntru_hps_2048677 145 677 2048 930 930 1234 -∞ 298 109 48
ntru_hps_4096821 179 821 4096 1230 1230 1590 -∞ 407 130 62
sec(c) : classical security. n: polynomial degree of a ring. q: modulus. (pk, ct, sk): bytes. δ: worst-case (or
perfect) correctness error. (Gen, Encap, Decap): K cycles with AVX2 optimization.

Table 2: Comparison between the finalist NTRU, Kyber and NTRU+

As a result, although the randomness-recoverable property seems to incur some additional decryption cost,
it ends up making the decryption algorithm faster than in the original FO transform. Figure 1 presents the
overview of security reductions from OW-CPA to IND-CCA.

Simple SOTP with More Convenient Sampling Distributions. As mentioned above, ACWC2 is cru-
cially based on an efficient construction of SOTP that takes m and G(r) as input and outputs m =
SOTP(m,G(r)). In particular, computing m = SOTP(m,G(r)) requires that each coefficient of m should
follow ψ, while preserving the message-hiding property. To do this, we set ψ to be the centered binomial
distribution ψ1 that is easily obtained by subtracting two uniformly-random bits from each other. For a
polynomial degree n and a hash function G : {0, 1}∗ → {0, 1}2n, m is chosen from the message space
M′ = {0, 1}n for arbitrary distribution (with high min-entropy) and G(r) = y1||y2 ∈ {0, 1}n × {0, 1}n.
SOTP then computes m̃ = (m ⊕ y1) − y2 by bitwise subtraction and assigns each subtraction value of m̃
to the coefficient of m. By the one-time pad property, it is easily shown that m ⊕ y1 becomes uniformly
random in {0, 1}n (and thus message-hiding) and each coefficient of m follows ψ1. Since r is also sampled
from a hash value of m according to ψ1, all sampling distributions in NTRU+ are very easy to implement.
We can also expect that, in a similar way to the case of ψ1, SOTP is expanded to sample a centered binomial
distribution module p (i.e., ψ2) by summing up and subtracting more number of uniformly-random bits.

NTT-Friendly Rings Over Cyclotomic Trinomials. NTRU+ is instantiated over a polynomial ring Rq =
Zq[x]/⟨f(x)⟩, where f(x) = xn − xn/2 + 1 is a cyclotomic trinomial of degree n = 2i3j . [18] showed
that, with appropriate parametrization of n and q, such a ring can also provide NTT operation essentially
as fast as that over a ring Rq = Zq[x]/⟨xn + 1⟩. Moreover, since the choice of a cyclotomic trinomial is
moderate, it gives more flexibility to meet a certain desired level of security. Following these results, we
choose four parameter sets for NTRU+, where the polynomial degree n of f(x) = xn − xn/2 + 1 is set to
be 576, 768, 864, and 1152, and the modulus q is 3457 for all cases. Table 2 presents comparison results
between the finalist NTRU [4], Kyber [22] and NTRU+ in terms of security and efficiency. The (classical)
security of NTRU+ is computed using the security analysis script of the Kyber[22], considering that all
coefficients of each polynomial f ′, g, r, and m are drawn according to the centered binomial distribution
ψ1, Implementation results in Table 2 are estimated with AVX2 optimizations. We can see that NTRU+

5



outperforms the NTRU and Kyber at a similar security level.

1.2 Related Works

The first round NTRUEncrypt [23] submission to the NIST PQC standardization process was an NTRU-
based encryption scheme combined with the so-called NAEP padding method [16]. Roughly speaking,
NAEP is very similar to our SOTP, but the difference is that it does not completely encode m to prevent an
adversaryA from choosing m maliciously. This follows from the fact that m := NAEP(m,G(hr)) is gener-
ated by subtracting two n-bit strings m and G(hr) from each other, that is, m−G(hr) by bitwise operation,
and then assigning them to coefficients of m. Since m can be maliciously chosen by A in NTRUEncrypt,
so can be the resulting m, regardless of the hash value G(hr).

The finalist NTRU [4], which is a merger of two submissions NTRU-HRSS [21] and NTRU-HPS [23],
was submitted as a key encapsulation mechanism (KEM) that provides four parameter sets for perfect cor-
rectness. To achieve chosen-ciphertext security, [4] relied on a variant of the SXY [20] conversion, which
also avoids re-encryption during decapsulation. The SXY variant requires the rigidity [2] of an underlying
scheme as in NTRU+, and uses the notion of deterministic public-key encryption (DPKE) where (m, r)
are all recovered as a message in decryption. In NTRU construction, recovering r is conceptually the same
as the existence of the randomness-recovery algorithm Recoverr. Instead of removing re-encryption, the
finalist NTRU needs to check whether (m, r) are selected correctly from predefined distributions.

In 2019, Lyubashevsky et al.[18] proposed an efficient NTRU-based KEM, called NTTRU, by applying
NTT to the ring defined by a cyclotomic trinomial Zq[x]/⟨xn − xn/2 + 1⟩. [18] showed that NTT can be
applied to the ring Zq[x]/⟨xn−xn/2+1⟩, using the fact that xn−xn/2+1 can be factored as (xn/2− ζ)×
(xn/2 − (1 − ζ)) where ζ is the primitive sixth root of unity modulo q. NTTRU was based on the Dent [7]
transformation without any encoding method, which resulted in about 2−13 worst-case correctness error even
with 2−1230 average-case one. In order to overcome this large difference, NTTRU was modified to reduce
the message space of an underlying scheme, while increasing the size of a ciphertext. This modification is
later generalized to the generic ACWC0 in [9].

In 2021, Duman et al. [9] proposed two generic transformations ACWC0 and ACWC by which an
average-case correctness error of an underlying scheme is almost equal to a worst-case one of a transformed
scheme. In particular, ACWC introduced GOTP as an encoding method that prevents A from choosing
m adversarially. ACWC0 is simple but requires about 32 bytes of ciphertext expansion, whereas ACWC
does not need to expand the ciphertext size. [9] analyzed security from ACWC0 and ACWC in the clas-
sical and quantum random oracle model. As mentioned above, however, their NTRU instantiation from
ACWC has a drawback that requires a message m to be chosen from a uniformly-random distribution over
M′ = {−1, 0, 1}λ. Indeed, it was an open problem [9] to construct a new transformation that permits a
different, more easily sampled distribution of a message, while relying on the same security assumptions.

Recently, Fouque et al. [10] suggested a new NTRU-based KEM, called BAT, which can reduce the size
of a ciphertext. In general, NTRU was considered hard to compress a ciphertext, because m is encoded in
the least significant bits of a ciphertext. Instead of generating a ciphertext as a Ring-LWE instance, BAT
encrypts a message m as (⌊hr⌉,G(r) ⊕ m) using a rounding operation ⌊·⌉. BAT decrypts the ciphertext,
using an NTRU trapdoor basis [19] as a secret key in a way that finds an NTRU-lattice point hr closest
to ⌊hr⌉. Even though BAT provides the compact size of a ciphertext, the proposed parameter sets for BAT
are very limited to meet a desired level of security, basically because of a ring over a polynomial xn + 1.
Also, the key generation algorithm of BAT is much slower than other lattice-based competitive KEMs such
as Kyber and NTRU+.
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2 Preliminaries

2.1 Public Key Encryption and Related Properties

Definition 2.1 (Public Key Encryption). A public key encryption scheme PKE = (Gen, Enc, Dec) with a
message spaceM and a randomness spaceR consists of following three algorithms:

• Gen(1λ): The key generation algorithm Gen is a randomized algorithm that takes as input a security
parameter 1λ, and outputs a pair of public/secret keys (pk, sk).

• Enc(pk,m): The encryption algorithm Enc is a randomized algorithm that takes as input a public key
pk and a messagem ∈M, and outputs a ciphertext c. If necessary, we make the encryption algorithm
explicit by writing Enc(pk,m; r) with the used randomness r ∈ R.

• Dec(sk, c): The decryption algorithm Dec is a deterministic algorithm that takes as input a secret key
sk and a ciphertext c, and outputs a message m ∈M.

Correctness. We say that PKE has (worst-case) correctness error δ [14] if

E
[
max
m∈M

Pr[Dec(sk,Enc(pk,m)) ̸= m]

]
≤ δ,

where the expectation is taken over (pk, sk) ← Gen(1λ) and the choice of the random oracles involved (if
any). We say that PKE has average-case correctness error δ relative to distribution ψM overM if

E [Pr [Dec(sk,Enc(pk,m)) ̸= m]] ≤ δ,

where the expectation is taken over (pk, sk)← Gen(1λ), the choice of the random oracles involved (if any),
and m← ψM.

Injectivity. [14, 3] We say that PKE has injectivity error µ if for all (pk, sk) ← Gen(1λ) and m,m′ ∈ M
and r, r′ ∈ R, we have that

Pr[c = c′ ∧ (m, r) ̸= (m′, r′)|c← Enc(pk,m; r) ∧ c′ ← Enc(pk,m′; r′)] ≤ µ,

where the probability is taken over c← Enc(pk,m; r) and c′ ← Enc(pk,m′; r′).

Spreadness. For (pk, sk)← Gen(1λ) and m ∈M, we define the min-entropy [12] of Enc(pk,m) by

γ(pk,m) := − logmax
c∈C

Pr
r←ψR

[c = Enc(pk,m; r)].

Then, we say that PKE is γ-spread [12] if for every key pair (pk, sk) ← Gen(1λ) and every message
m ∈M ,

γ(pk,m) ≥ γ.

In particular, this implies that for every possible ciphertext c ∈ C, Prr←ψR [c = Enc(pk,m; r)] ≤ 2−γ .

Randomness Recoverability. We say that PKE is randomness recoverable (RR) if there exists an algorithm
Recoverr such that for all (pk, sk)← Gen(1λ) and m ∈M and r ∈ R, we have that

Pr[∀m′ ∈ Prem(pk, c) : Recoverr(pk,m′, c) /∈ R
∨ Enc(pk,m′;Recoverr(pk,m′, c)) ̸= c|c← Enc(pk,m; r)] = 0,
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where the probability is taken over c← Enc(pk,m; r) and Prem(pk, c) := {m ∈M|∃r ∈ R : Enc(pk,m; r) =
c}. Additionally, it is required that Recoverr returns⊥ if Recoverr(pk,m′, c) /∈ R or Enc(pk,m′;Recoverr(pk,m′, c)) ̸=
c.

Message Recoverability. We say that PKE is message recoverable (MR) if there exists an algorithm Recoverm

such that for all (pk, sk)← Gen(1λ) and m ∈M and r ∈ R, we have that

Pr[∀r′ ∈ Prer(pk, c) : Recoverm(pk, r′, c) /∈M
∨ Enc(pk,Recoverm(pk, r′, c); r′) ̸= c|c← Enc(pk,m; r)] = 0,

where the probability is taken over c← Enc(pk,m; r) and Prer(pk, c) := {r ∈ R|∃m ∈M : Enc(pk,m; r) =
c}. Additionally, it is required that Recoverm returns⊥ if Recoverm(pk, r′, c) /∈M or Enc(pk,Recoverm(pk, r′, c); r′) ̸=
c.

Rigidity. Under the assumption that PKE is randomness-recovarable, we say that PKE has rigidity error δ
if for all (pk, sk)← Gen(1λ) and m ∈M and r ∈ R, we have that

Pr[Enc
(
pk,Dec(sk, c);Recoverr(pk,Dec(sk, c), c)

)
̸= c|c← Enc(pk,m; r)] ≤ δ,

where the probability is taken over c← Enc(pk,m; r).

2.2 Security

Definition 2.2 (OW-CPA Security of PKE). Let PKE = (Gen, Enc, Dec) be a public key encryption scheme
with a message spaceM. Onewayness under chosen-plaintext attacks (OW-CPA) for a message distribution
ψM is defined via the game OW-CPA defined in Figure 2 and the advantage function of an adversary A is

AdvOW-CPA
PKE (A) := Pr

[
OW-CPAAPKE ⇒ 1

]
.

Definition 2.3 (IND-CPA Security of PKE). Let PKE = (Gen, Enc, Dec) be a public key encryption scheme
with a message spaceM. Indistinguishability under chosen-plaintext attacks (IND-CPA) is defined via the
game IND-CPA defined in Figure 2 and the advantage function of an adversary A is

AdvIND-CPA
PKE (A) :=

∣∣∣∣Pr [IND-CPAAPKE ⇒ 1
]
− 1

2

∣∣∣∣ .
Game OW-CPA

1: (pk, sk)← Gen(1λ)
2: m← ψM
3: c∗ ← Enc(pk,m)
4: m′ ← A(pk, c∗)
5: return Jm = m′K

Game IND-CPA
1: (pk, sk)← Gen(1λ)
2: (m0,m1)← A0(pk)
3: b← {0, 1}
4: c∗ ← Enc(pk,mb)
5: b′ ← A1(pk, c

∗)
6: return Jb = b′K

Figure 2: Game OW-CPA and Game IND-CPA for PKE
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2.3 Key Encapsulation Mechanism

Definition 2.4 (Key Encapsulation Mechanism). A key encapsulation mechanism KEM = (Gen, Encap,
Decap) with a key space K consists of following three algorithms:

• Gen(1λ): The key generation algorithm Gen is a randomized algorithm that takes as input a security
parameter λ, and outputs a pair of public key and secret key, (pk, sk).

• Encap(pk): The encapsulation algorithm Encap is a randomized algorithm that takes as input a public
key pk, and outputs a ciphertext c and a key K ∈ K.

• Decap(sk, c): The decryption algorithm Decap is a deterministic algorithm that takes as input a secret
key sk and a ciphertext c, and outputs a key K ∈ K.

Correctness. We say that KEM has correctness error δ if

Pr[Decap(sk, c) = K|(c,K)← Encap(pk)] ≤ δ,

where the probability is taken over the randomness in Encap and (pk, sk)← Gen(1λ).

Definition 2.5 (IND-CCA Security of KEM). Let KEM = (Gen, Encap, Decap) be a key encapsulation
mechanism with a key space K. Indistinguishability under chosen-ciphertext attacks (IND-CCA) is defined
via the game IND-CCA described in Figure 3 and the advantage function of an adversary A is as follows:

AdvIND-CCA
KEM (A) :=

∣∣∣∣Pr [IND-CCAAKEM ⇒ 1
]
− 1

2

∣∣∣∣ .
Game IND-CCA

1: (pk, sk)← Gen(1λ)
2: (K0, c

∗)← Encap(pk)
3: K1 ← K
4: b← {0, 1}
5: b′ ← ADecap(pk, c∗,Kb)
6: return Jb = b′K

Decap(c ̸= c∗)

1: return Decap(sk, c)

Figure 3: Game IND-CCA for KEM
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3 ACWC2 Transformation

Let PKE be an encryption scheme with small average-case correctness error, and let G be a hash function
modeled as a random oracle. We will now introduce our new ACWC transformation ACWC2 by describ-
ing ACWC2[PKE, SOTP,G] in Figure 4. Let PKE′ = ACWC2[PKE,SOTP,G] be a resultant encryption
scheme. By applying ACWC2 to an underlying PKE, we prove that (1) PKE′ has a worst-case correctness
error that is essentially close to an average-case one of PKE, and (2) PKE′ is tightly IND-CPA secure if PKE
is OW-CPA secure.

3.1 SOTP

First, we begin by defining a semi generalised one-time pad SOTP as follows:

Definition 3.1. Function SOTP : X ×U → Y is called semi generalized one-time pad (relative to distribu-
tions ψU , ψY ) if

1. Decoding: There exists an efficient inversion algorithm Inv such that for all x ∈ X , u ∈ U , Inv(SOTP(x, u), u) =
x.

2. Message-hiding: For all x ∈ X , the random variable SOTP(x, u), for u ← ψU , has the same distri-
bution as ψY .

3. Rigid: For all u ∈ U and all y ∈ Y encoded with respect to u, it holds that SOTP(Inv(y, u), u) = y.

Compared to the generalized one-time pad (GOTP) defined in [9], SOTP does not need to have an addi-
tional randomness-hiding property, which requires that an output y = SOTP(x, u) follows the distribution
ψY and simultaneously does not leak any information about the used randomness u. The absence of such
additional property allows us to design SOTP more flexibly and efficiently than GOTP. Instead, SOTP is
required to be rigid, which means that for all u ∈ U and all y ∈ Y encoded with respect to u, Inv(y, u) = x
implies SOTP(x, u) = y.

3.2 ACWC2

Let PKE = (Gen,Enc,Dec) be an underlying public-key encryption scheme with message space M and
randomness space R, where a message M ∈ M and a randomness r ∈ R are drawn from distributions
ψM and ψR, respectively. Similarly, let PKE′ = (Gen′,Enc′,Dec′) be a transformed encryption scheme
with message spaceM′ and randomness spaceR′, where ψM′ and ψR′ are the associated distributions. Let
SOTP :M′×U →M be a semi generalized one-time pad for distributions ψU , and ψM, and let G : R → U
be a hash function. Assuming that R = R′ and ψR = ψR′ , then PKE′ = ACWC2[PKE,SOTP,G] is
described in Figure 4.

Since Recoverr and Inv functions do not affect the correctness error of PKE′, the factor that determines
the success or failure of decryption is the result of Dec(sk, c) in Dec′. This means that, in the end, the
correctness error of PKE′ is determined by the selections of M ∈ M and r ∈ R. We see that r is drawn
according to the distribution ψR and M is an SOTP-encoded element in M following the distribution
ψM. We can here view SOTP as a sampling function using an internal randomness G(r), while hiding m.
Eventually, bothM and r are chosen according to their respective distributions initially intended. This is the
same idea as in ACWC, and overall the proof strategy of Theorem 3.2 is essentially the same as that of [9]
(Lemma 3.6 therein), except for slight modifications to message distribution.
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Gen′(1λ)

1: (pk, sk) := Gen(1λ)
2: return (pk, sk)

Enc′(pk,m ∈M′; r ← ψR)

1: M := SOTP(m,G(r))
2: c := Enc(pk,M ; r)
3: return c

Dec′(sk, c)

1: M := Dec(sk, c)
2: r := Recoverr(pk,M, c)
3: m := Inv(M,G(r))
4: return m

Figure 4: ACWC2[PKE, SOTP,G]

Theorem 3.2 (Average-Case to Worst-Case Correctness Error). Let PKE be message recoverable and have
randomness spaceR relative to the distribution ψR. Let SOTP :M′×U →M be a semi generalized one-
time pad (for distributions ψU , ψM) and G : R → ψU be a random oracle. If PKE is δ-average-case-correct,
then PKE′ := ACWC2[PKE, SOTP,G] is δ′-worst-case-correct for

δ′ = δ + ∥ψR∥ ·
(
1 +

√
(ln |M′| − ln∥ψR∥)/2

)
,

where ∥ψR∥ :=
√∑

r ψR(r)
2.

Proof. With the expectation over choice of G and (pk, sk)← Gen(1λ), the worst-case correctness of PKE′

is

δ′ = E
[
max
m∈M′

Pr[Dec′(sk,Enc′(pk,m)) ̸= m]

]
= E[δ′(pk, sk)]

where δ′(pk, sk) := E[maxm∈M′ Pr[Dec′(sk,Enc′(pk,m)) ̸= m] is the expectation taken over choice of
G, for a fixed key pair (pk, sk). For any fixed key pair and for any non-negative real t, we have that

δ′(pk, sk) = E[ max
m∈M′

Pr
[
Dec′(sk,Enc′(pk,m)) ̸= m]

]
≤ t+ Pr

G

[
max
m∈M′

Pr[Dec′(sk,Enc′(pk,m)) ̸= m]

]
≤ t+ Pr

G

[
max
m∈M′

Pr
r
[Dec′(sk,Enc′(pk,SOTP(m,G(r))); r) ̸= m] ≥ t

]
. (1)

For any fixed key pair and any real c, let t(pk, sk) := µ(pk, sk) + ∥ψR∥ ·
√
(c+ ln |M′|)/2, where

µ(pk, sk) := PrM,r[Dec(sk,Enc(pk,M ; r)) ̸=M ]. We can now use helper Lemma 3.3 below to argue that

Pr
G

[
max
m∈M′

Pr
r
[Dec′(sk,Enc(pk, SOTP(m,G(r)); r)) ̸= m] > t(pk, sk)

]
≤ e−c. (2)

To this end, we identify g(m, r, u) in Lemma 3.3 as g(m, r, u) = (SOTP(m,u), r) and B as {(M, r) ∈
|Dec(sk,Enc(pk,M ; r) ̸= m}. Note that Prr←ψR,u←ψU [g(m, r, u) ∈ B] = µ(pk, sk) holds for all m ∈
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M′ by the message hiding property of the SOTP.

∀m ∈M, Pr
r←ψR,u←ψU

[g(m, r, u) ∈ B]

= Pr
r←ψR,u←ψU

[(SOTP(m,u), r) ∈ B]

= Pr
r←ψR,M←ψM

[(M, r) ∈ B]

= Pr
r←ψR,M←ψM

[Dec(sk,Enc(pk,M ; r) ̸= m] = µ(pk, sk).

Plugging Eq. (2) into Eq. (1) and taking the expectation yields

δ′ ≤ E
[
µ(pk, sk) + ∥ψR∥ ·

√
(c+ ln |M′|)/2 + e−c

]
= δ + ∥ψR∥ ·

√
(c+ ln |M′|)/2 + e−c,

and setting c := − ln∥ψR∥ gives the claim in the lemma.

Lemma 3.3 (Variant of Lemma 3.7 from [9]). Let g be some function and B be some set such that

∀m ∈M′, Pr
r←ψR,u←ψU

[g(m, r, u) ∈ B] = µ. (3)

Let G be a random function mapping onto U . Define ∥ψR∥ =
√∑

r ψR(r)
2. Then for all but e−c fraction

of random functions G, we have that ∀m ∈M′,

Pr
r←ψ

[g(m, r,G(r)) ∈ B] ≤ µ+ ∥ψ∥ ·
√
(c+ ln |M′|)/2 (4)

Proof. Let us fix a specific m ∈ M′, and for each r ∈ R, define pr := Pru←ψU [g(m, r, u) ∈ B]. By the
assumption of g in Eq. (3), we know that

∑
r ψR(r)pr = µ. For each r, define a random variable Xr whose

value is determined as follows: G chooses a random u = G(r) then checks whether g(m, r,G(r)) ∈ B; if
it is, then we set Xr = 1, and otherwise we set it to 0. Because G is a random function, the probability that
Xr = 1 is exactly pr.

The probability of Eq. (4) for our particular m is now exactly the sum
∑

r ψR(r)Xr and we will use
the Hoeffding bound to show that this value is not much larger than µ. Define the random variable Yr =
ψR(r)Xr. Notice that Yr ∈ [0, ψR(r)], and that E[

∑
Yr] = E[

∑
r ψR(r)Xr] =

∑
r ψR(r)pr = µ. By the

Hoeffding bound, we have for all positive t,

Pr[
∑
r

Yr > µ+ t] ≤ exp
(
−2t2∑
ψR(r)

2

)
= exp

(
−2t2

∥ψR∥2

)
. (5)

Setting t ≥ ∥ψ∥ ·
√

(c+ ln |M′|)/2, we obtain that for a fixed m, Eq. (4) holds for all but a e−c · |M′|−1

fraction of random functions G. Applying the union bound gives us the claim in the lemma.

Theorem 3.4 (OW-CPA of PKE ROM
=⇒ IND-CPA of ACWC2[PKE,SOTP,G]). Let PKE be a public-key

encryption scheme with injectivity error µ and {randomness, message}-recoverable properties. For any
adversary A against the IND-CPA security of ACWC2[PKE,SOTP,G], making at most qG random oracle
queries, there exists an adversary B against the OW-CPA security of PKE with

AdvIND-CPA
ACWC2[PKE,SOTP,G](A) ≤ AdvOW-CPA

PKE (B) + µ,

where the running time of B is about Time(A) +O(qG).
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B(pk, c∗)
1: LG,Lr := ∅
2: b← {0, 1}
3: (m0,m1)← AG

0 (pk)
4: b′ ← AG

1 (pk, c
∗)

5: return M ← ψM

G(r) // As simulated byB
1: if ∃(r, u) ∈ LG
2: return u
3: else
4: u← ψU
5: LG := LG ∩ {(r, u)}
6: return u

B(pk, r, c∗) // Find (r∗,M∗)

1: if M := Recoverm(pk, r, c∗) ∈M
2: return M
3: abort

Figure 6: Adversary B for the proof of Theorem 3.4

Game G0

1: G← (R → {0, 1}λ)
2: (pk, sk)← Gen(1λ)
3: (m0,m1)← AG

0 (pk)
4: b← {0, 1}
5: r∗ ← ψR
6: M∗ = SOTP(mb,G(r

∗))
7: c∗ ← Enc(pk,M∗; r∗)
8: b′ ← AG

1 (pk, c
∗)

9: return Jb = b′K

Figure 5: Game G0 of Theorem 3.4

Proof. We show that there exists an algorithm B which breaks the OW-CPA security of PKE, using an
algorithm A = (A0,A1) that breaks the IND-CPA security of ACWC2[PKE,SOTP,G].

GAME G0. G0 (see Figure 5) is the the original IND-CPA game with ACWC2[PKE,SOTP,G]. In game
G0, B is given the challenge ciphertext c∗ := Enc(pk,M∗; r∗) for some message M∗ and randomness r∗

unknown to B. By definition, we have∣∣∣∣Pr[GA0 ⇒ 1]− 1

2

∣∣∣∣ = AdvIND-CPA
ACWC2[PKE,SOTP,G](A).

GAME G1. G1 is the same as G0, except that B aborts whenA queries two distinct r∗1 and r∗2 to G such that
Recoverm(pk, r∗1, c

∗), Recoverm(pk, r∗2, c
∗) ∈M. This case leads to breaking the injectivity of PKE. Thus,

we have ∣∣Pr[GA1 ⇒ 1]− Pr[GA0 ⇒ 1]
∣∣ ≤ µ.

GAME G2. Let QUERY be the event that A queries G on r∗. G2 is the same as G1, except that B aborts in
the QUERY event. In this case, we have∣∣Pr[GA2 ⇒ 1]− Pr[GA1 ⇒ 1]

∣∣ ≤ Pr[QUERY].
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Unless QUERY occurs, G(r∗) is a uniformly random value independent of A’s view. In this case M∗ :=
SOTP(mb,G(r

∗)) does not leak any information about mb by the message-hiding property of SOTP,
meaning that Pr[GA2 ⇒ 1] = 1/2. On the other hand, i.e., if QUERY occurs, B can find r∗ ∈ Lr such
that c∗ := Enc(pk,M∗; r∗), using the algorithm Recoverm. Indeed, for each query r to G, B checks if
Recoverm(pk, r, c∗) ∈M. In the QUERY event, there exists M∗ := Recoverm(pk, r∗, c∗) ∈M which can
be the solution to its challenge ciphertext c∗. It follows that

Pr[QUERY] ≤ AdvOW-CPA
PKE (B),

which concludes the proof.

Theorem 3.5 (Classical O2H, Theorem 3 from the eprint version of [1]). Let S ⊂ R be random. Let G, F
be random functions satisfying ∀r /∈ S : G(r) = F(r). Let z be a random classical value. (S, G, F, z may
have arbitrary joint distribution.) Let C be a quantum oracle algorithm with query depth qG, expecting input
z. Let D be the algorithm which on input z samples a uniform i from {1, ..., qG}, runs C right before its i-th
query to F, measures all query input registers and outputs the set T of measurement outcomes. Then∣∣∣Pr[CG(z)⇒ 1]− Pr[CF(z)⇒ 1]

∣∣∣ ≤ 2qG

√
Pr[S ∩ T ̸= ∅ : T ← DF(z)].

Theorem 3.6 (OW-CPA of PKE QROM
=⇒ IND-CPA of ACWC2[PKE,SOTP,G]). Let PKE be a public-key

encryption scheme with injectivity error µ and {randomness, message}-recoverable properties. For any
quantum adversary A against the IND-CPA security of ACWC2[PKE, SOTP,G] with query depth at most
qG, there exists a quantum adversary B against the OW-CPA security of PKE with

AdvIND-CPA
ACWC2[PKE,SOTP,G](A) ≤ 2qG

√
AdvOW-CPA

PKE (B) + µ,

and the running time of B is about that of A.

Proof. To prove the theorem, we use games G0 to G7 defined in Figure 7 to 9, and Theorem 3.5. Before we
apply the Theorem 3.5, we change the game G0 to G2. After that, we apply Theorem 3.5 to games G2 and
G3. The detailed explanation of the security proof is given in the followings.

Game G0

1: G← (R → {0, 1}λ)
2: (pk, sk)← Gen(1λ)
3: (m0,m1)← AG

0 (pk)
4: b← {0, 1}
5: r ← ψR
6: M = SOTP(mb,G(r))
7: c∗ ← Enc(pk,M ; r)
8: b′ ← AG

1 (pk, c
∗)

9: return Jb = b′K

Figure 7: Game G0 for the proof of Theorem 3.6
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Games G1-G5

1: G← (R → {0, 1}λ) // G1

2: r ← ψR
3: u := G(r) // G1

4: F← (R → {0, 1}λ) // G2-G5

5: u← ψU // G2-G5

6: G := F(r := u) // G2-G5

7: w ← CG(r, u) // G1-G2

8: w ← CF(r, u) // G3

9: T ← DF(r, u) // G4-G5

10: return w // G1-G3

11: return r ∈ T // G4-G5

CG(r, u)
1: (pk, sk)← Gen(1λ)
2: (m0,m1)← AG

0 (pk)
3: b← {0, 1} // G1-G4

4: M = SOTP(mb, u) // G1-G4

5: M ← ψM // G5

6: c∗ ← Enc(pk,M ; r)
7: b′ ← AG

1 (pk, c
∗)

8: return Jb = b′K
DF(r, u)

1: i← {1, · · · , qG}
2: Run CF(r, u) till i-th query
3: T ← measure F-query
4: return T

Figure 8: Games G1-G5 for the proof of Theorem 3.6

GAME G0. Game G0 (see Figure 7) is the original IND-CPA game with ACWC2[PKE,SOTP,G]. By defi-
nition, we have ∣∣∣∣Pr[GA0 ⇒ 1]− 1

2

∣∣∣∣ = AdvIND-CPA
ACWC2[PKE,SOTP,G](A).

GAME G1. We define game G1 by moving part of the game G0 inside an algorithm CG. Also, we query
u := G(r) before algorithm CG runs adversary A. Since the changes are only conceptual,

Pr[GA0 ⇒ 1] = Pr[GA1 ⇒ 1].

GAME G2. We change how G is defined in Game G2. Instead of choosing G uniformly, We choose F and u
uniformly, then set G := F(r := u). Here, G = F(r := u) is same function as F, except that it returns u on
input r. Since the distribution of G and u are unchanged,

Pr[GA1 ⇒ 1] = Pr[GA2 ⇒ 1].

GAME G3. We define game G3 by providing function F to algorithm C, instead of G. By applying Theorem
3.5 with C, S := {r}, and z := (r, u), we get:∣∣Pr[GA2 ⇒ 1]− Pr[GA3 ⇒ 1]

∣∣ ≤ 2qG
√

Pr[G4 ⇒ 1].

Also, since the uniformly random value u is only used in SOTP(mb, u), by the message-hiding property of
SOTP, M is independent of mb. Thus b = b′ with probability 1/2. Therefore,

Pr[GA3 ⇒ 1] =
1

2
.

GAMEG4 andG5. We define gameG4 according to Theorem 3.5. Also, we define gameG5 by changing the
way M is calculated. Instead of computing M = SOTP(mb, u), we sample M ← ψM. On the other hand,
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Game G6-G7

1: (pk, sk)← Gen(1λ)
2: r ← ψR
3: M ← ψM
4: c∗ ← Enc(pk,M ; r)
5: T ← E(pk, c∗) // G6

6: M ′ ← B(pk, c∗) // G7

7: return r ∈ T // G6

8: return JM =M ′K // G7

E(pk, c∗)
1: i← {1, · · · , qG}
2: Run until i-th F-query:
3: AF

1(pk)
4: AF

2(pk, c
∗)

5: T ←measure F-query
6: return T

B(pk, c∗)
1: T ← E(pk, c∗)
2: for r ∈ T do
3: if M = Recoverm(pk, r, c∗) ∈M
4: return M
5: return M ← ψM

Figure 9: Games G6-G7 for the proof of Theorem 3.6

in game G4, since u is sampled from ψU and used only for computing SOTP(mb, u), the message-hiding
property of SOTP shows that M = SOTP(mb, u) follows distribution ψM. Therefore,

Pr[GA4 ⇒ 1] = Pr[GA5 ⇒ 1].

GAME G6. We define game G6 by rearranging the game G5 defined in Figure 9. Since the changes are only
conceptual,

Pr[GA5 ⇒ 1] = Pr[GA6 ⇒ 1].

GAME G7. Game G7 is defined by algorithm B shown in Figure 9, moving from game G6. G7 is the
same as G6, except for the case when there are two distinct r, r′ ∈ T such that Recoverm(pk, r, c∗),
Recoverm(pk, r′, c∗) ∈M. If this case happens, the injectivity of PKE is broken. Thus, we have∣∣Pr[GA6 ⇒ 1]− Pr[GA7 ⇒ 1]

∣∣ ≤ µ.
We now see that, in G7, B wins if there exists r ∈ T such that m∗ := Recoverm(pk, r, c∗) ∈ M, as the

solution of its challenge ciphertext c∗. Therefore, we have

AdvOW-CPA
PKE (B) = Pr[GA7 ⇒ 1].

Putting all (in)equalities and bounds together, we have

AdvIND-CPA
ACWC2[PKE,SOTP,G](A) ≤ 2qG

√
AdvOW-CPA

PKE (B) + µ,

which concludes our proof.

Lemma 3.7. If PKE is γ-spread, then so is PKE′ = ACWC2[PKE, SOTP,G].

Proof. For a fixed key pair (pk, sk) and a fixed m (with respect to PKE′), we consider the probabil-
ity that Prr←ψR [c = Enc′(pk,m; r)] for every possible ciphertext c. Whenever r ← ψR, the equation
c = Enc′(pk,m; r) is equivalently transformed into c = Enc(pk,M ; r), where M = SOTP(m,G(r))
is a message and c is also a possible ciphertext with respect to PKE. Since PKE is γ-spread, we see that
Prr←ψR [c = Enc(pk,M ; r)] ≤ 2−γ , which gives Prr←ψR [c = Enc′(pk,m; r)] ≤ 2−γ . By averaging over
(pk, sk) and m ∈M′, the proof of Lemma 3.7 is completed.
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4 Chosen-Ciphertext Secure KEM from ACWC2

4.1 FO Transform With Re-encryption

One can apply the Fujisaki-Okamoto transformation FO⊥ to the IND-CPA secure PKE′ in Figure 4 in
order to obtain an IND-CCA secure KEM. Figure 10 shows the resultant KEM := FO⊥[PKE′,H] =
(Gen,Encap,Decap), where H is a hash function (modeled as a random oracle). Regarding the correct-
ness error of KEM, KEM preserves the worst-case correctness error of PKE′, since Decap works correctly
as long as Dec′ is performed correctly. Regarding the IND-CCA security of KEM, we can make use of the
previous results [14] and [8], which are stated in Theorem 4.1 and 4.2 below. By combining these results
with Theorem 3.4 and 3.6, we can achieve the IND-CCA security of KEM in classical/quantum random
oracle model, respectively. In case of quantum random oracle model (QROM), we need to further use the
fact that IND-CPA implies OW-CPA generically.

Gen(1λ)

1: (pk, sk) := Gen′(1λ)
2: return (pk, sk)

Encap(pk)

1: m←M
2: (r,K) := H(m)
3: c := Enc′(pk,m; r)

- M := SOTP(m,G(r))
- c := Enc(pk,M ; r)

4: return (K, c)

Decap(sk, c)

1: m′ := Dec′(sk, c)
- M ′ = Dec(sk, c)
- r′ = Recoverr(pk,M ′, c)
- m′ = Inv(M ′,G(r′))

2: (r′′,K ′) := H(m′)

3: if m′ =⊥ or c ̸= Enc′(pk,m′; r′′)

4: return ⊥
5: else
6: return K ′

Figure 10: KEM = FO⊥[PKE′,H]

Theorem 4.1 (IND-CPA of PKE′
ROM
=⇒ IND-CCA of KEM [14]). Let PKE′ be a public key encryption

scheme with message spaceM. Let PKE′ have (worst-case) correctness error δ and be (weakly) γ-spread.
For any adversary A, making at most qD decapsulation, qH hash queries, against the IND-CCA security of
KEM, there exists an adversary B against the IND-CPA security of PKE′ with

AdvIND-CCA
KEM (A) ≤ 2(AdvIND-CPA

PKE′ (B) + qH/|M|) + qD2
−γ + qHδ,

where the running time of B is about that of A.

Theorem 4.2 (OW-CPA of PKE′ QROM
=⇒ IND-CCA of KEM [8]). Let PKE′ have (worst-case) correctness

error δ and be (weakly) γ-spread. For any quantum adversary A, making at most qD decapsulation, qH
(quantum) hash queries, against the IND-CCA security of KEM, there exists a quantum adversary B against
the OW-CPA security of PKE′ with

AdvIND-CCA
KEM (A) ≤ 2q

√
AdvOW-CPA

PKE′ (B) + 24q2
√
δ + 24q

√
qqD · 2−γ/4,

where q := 2(qH + qD) and Time(B) ≈ Time(A) +O(qH · qD · Time(Enc) + q2).

17



4.2 FO-Equivalent Transform Without Re-encryption

The aforementioned FO⊥ requires Decap algorithm to perform re-encryption to check if a ciphertext c
is well-formed. Using m′ as a result of Dec′(sk, c), a new randomness r′′ is obtained from H(m′), and
Enc′(pk,m′; r′′) is computed and compared with the (decrypted) ciphertext c. In this process, even if
(m′, r′′) are the same as (m, r) used in Encap, this does not guarantee that Enc′(pk,m′; r′′) = c. In other
words, there could exist so many other ciphertexts {ci} (including c as one of them), all of which are de-
crypted into the samem′ and thus the same randomness r′′ in Decap. In FO⊥ (and other FO transformations),
there is still no way to find the same c (honestly) generated in Encap, other than comparing Enc′(pk,m′; r′′)
and c. In the context of chosen-ciphertext attacks, it is well known that decapsulation queries using {ci} can
leak the information on sk, especially in lattice-based encryption schemes.

However, we demonstrate that FO⊥ based on ACWC2 can eliminate such ciphertext comparison c =
Enc′(pk,m′; r′′) from Decap, and instead replace it with a simpler and much more efficient comparison
r′ = r′′. We denote the new FO⊥ based on ACWC2 as FO

⊥
, which is shown in Figure 11. In FO

⊥
, r′

and r′′ are values generated while performing Decap, where r′ is the output of Recoverr(pk,M ′, c) and
r′′ is computed from H(m′). Compared to FO⊥ in Figure 10, the only change is the boxed area from c ̸=
Enc′(pk,m′; r′′) to r′ ̸= r′′ and the remaining parts are all the same. Thus, by proving that the equality
c = Enc′(pk,m′; r′′) is equivalent to the equality r′ = r′′, we can show that both FO⊥ and FO

⊥
work

identically and thus achieve the same level of IND-CCA security.

Gen(1λ)

1: (pk, sk) := Gen′(1λ)
2: return (pk, sk)

Encap(pk)

1: m←M
2: (r,K) := H(m)
3: c := Enc′(pk,m; r)

- M := SOTP(m,G(r))
- c := Enc(pk,M ; r)

4: return (K, c)

Decap(sk, c)

1: m′ := Dec′(sk, c)
- M ′ = Dec(sk, c)
- r′ = Recoverr(pk,M ′, c)
- m′ = Inv(M ′,G(r′))

2: (r′′,K ′) := H(m′)

3: if m′ =⊥ or r′ ̸= r′′

4: return ⊥
5: else
6: return K ′

Figure 11: KEM = FO
⊥
[PKE′,H]

Lemma 4.3. Let PKE′ and PKE be injective, and let PKE and SOTP be rigid (except for negligible rigidity
errors). Then, c = Enc′(pk,m′; r′′) in FO⊥ if and only if r′ = r′′ in FO

⊥
.

Proof. Assume that c = Enc′(pk,m′; r′′) holds in Decap of FO⊥. Because PKE′ is injective, the pair of
(m, r) used in Encap are the same as (m′, r′′). This is, the injectivity of PKE′ guarantees that m = m′ and
r = r′′. In this case, the ciphertext c generated by Encap is expressed as c = Enc(pk,SOTP(m′,G(r′′)); r′′).

Also, since PKE is rigid, for a ciphertext c given to Decap, the two equations M ′ = Dec(sk, c) and
r′ = Recoverr(pk,M ′, c) lead to Enc(pk,Dec(sk, c); r′) = c. In addition, because of the rigidity of SOTP,
the equation m′ = Inv(M ′,G(r′)) implies M ′ = SOTP(m′,G(r′)). Thus, using Dec(sk, c) = M ′ =
SOTP(m′,G(r′)), we can express the ciphertext c in Decap as Enc(pk,SOTP(m′,G(r′)); r′) = c.

Now we have two equations with respect to c generated by Enc. Since PKE is also injective, we see that
SOTP(m′,G(r′)) = SOTP(m′,G(r′′)) and r′ = r′′, as required.
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Conversely, assume that r′ = r′′ holds in Decap of FO
⊥

. The rigidity of SOTP means that m′ =
Inv(M ′,G(r′)) implies M ′ = SOTP(m′,G(r′)) and thus M ′ = SOTP(m′,G(r′′)). Also, the rigidity
of PKE means that for a ciphertext c given to Decap, the two equations M ′ = Dec(sk, c) and r′ =
Recoverr(pk,M ′, c) lead to Enc(pk,Dec(sk, c); r′) = c and thus Enc(pk,Dec(sk, c); r′′) = c. Since
Dec(sk, c) = M ′ = SOTP(m′,G(r′′)), we see that Enc(pk, SOTP(m′,G(r′′)); r′′) = c. Then, the left-
hand side Enc(pk,SOTP(m′,G(r′′)); r′′) can be expressed as Enc′(pk,m′; r′′), which in turn shows Enc′(pk,m′; r′′) =
c.
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5 GenNTRU[ψn1 ] (=PKE)

5.1 Notations

5.1.1 Centered Binomial Distribution ψk

The Centered Binomial Distribution (CBD) ψk is a distribution over Z defined as follows:

• b1, · · · , bk ← {0, 1}, b′1, · · · , b′k ← {0, 1}.

• Return
∑k

i=1 (bi − b′i).

In our NTRU construction hereafter, we use ψ1 over the set {−1, 0, 1}. For a positive integer n, the distri-
bution ψn1 is defined over the set {−1, 0, 1}n, where each element is chosen according to ψ1.

5.1.2 NTT-Friendly Rings over Cyclotomic Trinomials

We use the polynomial ring Rq := Zq[x]/⟨xn − xn/2 + 1⟩, where q is a modulus and n = 2i3j for some
positive integers i and j. For a polynomial f ∈ Rq, we use the notation ‘f ← ψn1 ’ to represent that each
coefficient of f is drawn according to the distribution ψ1. Also, we use the notation ‘h ← Rq’ to show that
a polynomial h is chosen uniformly at random from Rq. Later, to perform NTT over Rq, we will provide
several parameter sets with respect to (n, q).

5.1.3 Other Notations

For a set {0, 1}ℓ, we denote U ℓ by the uniformly random distribution over the set {0, 1}ℓ. Let a ∈ Z and
q ∈ Z be a positive integer. We denote x = a mod q the unique integer x ∈ {0, · · · , q − 1} which satisfies
q|x−a. For an odd integer q, we denote y = a mod ±q the unique integer y ∈ {−(q−1)/2, · · · , (q−1)/2}
which satisfies q|x− a.

5.2 Description of GenNTRU[ψn1 ]

We define GenNTRU[ψn1 ] relative to the distribution ψn1 over Rq. Since PKE = (Gen,Enc,Dec) should
be message and randomness recoverable for our ACWC2, Figure 12 includes two additional algorithms
Recoverr and Recoverm.

Gen(1λ)

1: f ′,g← ψn1
2: f = 3f ′ + 1
3: if f , g is not invertible in Rq
4: restart
5: h = 3gf−1

6: return (pk, sk) = (h, f)

Enc(h,m← ψn1 ; r← ψn1 )

1: return c = hr+m

Dec(f , c)

1: return m = (cf mod ±q) mod ±3

Recoverr(h,m, c)

1: return r = (c−m)h−1

Recoverm(h, r, c)

1: return m = c− hr

Figure 12: GenNTRU[ψn1 ] with average-case correctness error

20



5.3 Cryptographic Assumptions

5.3.1 Security of GenNTRU

Definition 5.1 (The NTRU problem). Let ψ be a distribution over Rq. The NTRU problem NTRUn,q,ψ is
to distinguish h = g(pf ′ + 1)−1 ∈ Rq from u ∈ Rq where f ′,g ← ψ and u ← Rq. The advantage of an
adversary A in solving NTRUn,q,ψ is defined as follows:

AdvNTRUn,q,ψ (A) = Pr[A(h) = 1]− Pr[A(u) = 1].

Definition 5.2 (The RLWE problem). Let ψ be a distribution over Rq. The RLWE problem RLWEn,q,ψ is
to find s from (a,b = as + e) ∈ Rq ×Rq where a ← Rq, s, e ← ψ. The advantage of an adversary A in
solving RLWEn,q,ψ is defined as follows:

AdvRLWE
n,q,ψ (A) = Pr[A(a,b) = s].

5.4 Security and Other Properties

Theorem 5.3 (OW-CPA security of GenNTRU[ψn1 ]). For any adversary A, there exist adversaries B and C
such that

AdvOW-CPA
GenNTRU[ψn

1 ]
(A) ≤ AdvNTRUn,q,ψn

1
(B) + AdvRLWE

n,q,ψn
1
(C).

Proof. We complete our proof through a sequence of games G0, G1. Let A be the adversary against the
OW-CPA security experiment.
GAME G0. In game G0, we have the original OW-CPA game with GenNTRU[ψn1 ]. By definition, we have
that

AdvOW-CPA
GenNTRU[ψn

1 ]
(A) = Pr[GA0 ⇒ 1].

GAME G1. In game G1, the public key h in the Gen is replaced by h ← Rq. To distinguish G1 from G0

is equivalent to solving an NTRUn,q,ψn
1

problem. More precisely, there exist an adversary B with the same
running time as that of A such that∣∣Pr[GA0 ⇒ 1]− Pr[GA1 ⇒ 1]

∣∣ ≤ AdvNTRUn,q,ψn
1
(B).

Since h← Rq is now changed to uniformly random polynomial from Rq, game G1 is equivalent to solving
an RLWEn,q,ψn

1
problem. Therefore,

Pr[GA1 ⇒ 1] = AdvRLWE
n,q,ψn

1
(C).

Combining all the probabilities finishes the proof.

Lemma 5.4 (Spreadness). GenNTRU[ψn1 ] is n-spread.

Proof. For fixed message m and c, there exist at most one r such that c = Enc(h,m; r). Suppose there
exist r1 and r2 such that c = Enc(h,m; r1) = Enc(h,m; r2). By the assumption, hr1 + m = hr2 + m
holds. By subtracting m and multiplying h−1 to the both side of the equation, we can get r = r′. Therefore,
there exist at most one r such that c = Enc(h,m; r).

For fixed m, to maximize Pr[Enc(h,m; r) = c], we need to choose c such that c = Enc(h,m; r) for
r = 0. Since there exist only one r such that c = Enc(h,m; r), Pr[Enc(h,m; r) = c] = 2−n. Since it
holds for any (pk, sk)← Gen(1λ) and m ∈M, GenNTRU[ψn1 ] is n-spread.
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5.4.1 Average-Case Correctness Error

We analyze the average-case correctness error δ relative to the distribution ψM = ψR = ψn1 by following
the template given in [18]. We can expand cf in the decryption algorithm as follows:

cf = (hr+m)f = (3gf−1r+m)(3f ′ + 1) = 3(gr+mf ′) +m.

For a polynomial p in Rq, let pi be the i-th coefficient of p, and |pi| be the absolute value of pi. Then,
((cf)i mod ±q) mod ±3 = mi if the following inequality holds:∣∣3(gr+mf ′) +m

∣∣
i
≤ q − 1

2
,

where all the coefficients of each polynomial are distributed according to ψn1 . Let ϵi be

ϵi = Pr

[∣∣3(gr+mf ′) +m
∣∣
i
≤ q − 1

2

]
.

Then, assuming that each coefficients are independent from each other,

Pr [Dec(sk,Enc(pk,m)) ̸= m] = 1−
n−1∏
i=0

ϵi. (6)

Since the coefficients of m have size at most 1,

ϵi = Pr

[∣∣3(gr+mf ′) +m
∣∣
i
≤ q − 1

2

]
≥ Pr

[∣∣3(gr+mf ′)
∣∣
i
+ |m|i ≤

q − 1

2

]
≥ Pr

[∣∣3(gr+mf ′)
∣∣
i
+ 1 ≤ q − 1

2

]
= Pr

[∣∣gr+mf ′
∣∣
i
≤ q − 3

6

]
:= ϵ′i.

Therefore,

Pr [Dec(sk,Enc(pk,m)) ̸= m] = 1−
n∏
i=0

ϵi ≤ 1−
n∏
i=0

ϵ′i := δ.

Now, we analyze ϵ′i = Pr
[
|gr+mf ′|i ≤

q−3
6

]
. To do this, we need to analyze the distribution of

gr +mf ′. By following the analysis in [18], we can check that for i ∈ [n/2, n], the degree-i coefficient of
gr+mf ′ is the sum of n independent random variables

c = ba+ b′(a+ a′) ∈ {0,±1,±2,±3}, where a, b, a, b← ψ1. (7)

Also, for i ∈ [0, n/2− 1], the degree-i coefficient of gr+mf ′ is the sum of n− 2i random variables c (as
in Eq. 7) and 2i independent random variables c′ of the form

c′ = ba+ b′a′ ∈ {0,±1,±2} where a, b, a′, b′ ← ψ1. (8)
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Computing the probability distribution of this sum can be done via a convolution (i.e. polynomial multipli-
cation). Define the polynomial

ρi(X) =


∑3n

j=−3n ρi,jX
j =

(∑3
j=−3 θjX

j
)n

for i = [n/2, n− 1],∑3n−2i
j=−(3n−2i) ρi,jX

j =
(∑3

j=−3 θjX
j
)n−2i(∑2

j=−2 θ
′
jX

j
)2i

for i = [0, n/2− 1],
(9)

where θj = Pr [c = j] (whose distribution is shown in Table 3) and θ′j = Pr [c′ = j] (whose distribution is
shown in Table 4). Let ρi,j be the probability that the degree-i coefficient of gr+mf ′ is j. Then, ϵ′i can be
computed as

ϵ′i =

{
2 ·

∑3n
j=(q+3)/6 ρi,j for i ∈ [n/2, n− 1] ,

2 ·
∑3n−2i

j=(q+3)/6 ρi,j for i ∈ [0, n/2− 1] ,

where we used the symmetry ρi,j = ρi,−j . Putting ϵ′i into Eq. (6) together, we compute the average-case
correctness error δ of GenNTRU[ψn1 ].

±3 ±2 ±1 0

1/128 1/32 23/128 9/16

Table 3: Probability distribution of c = ab+ b′(a+ a′)

±2 ±1 0

1/64 3/16 19/32

Table 4: Probability distribution of c′ = ab+ a′b′

5.4.2 Rigidity and Injectivity

The rigidity of GenNTRU[ψn1 ] is trivial from the algorithms Dec and Recoverr shown in Figure 12. The
injectivity of GenNTRU[ψn1 ] can be easily shown as follows: if there exist two inputs (m1, r1) and (m2, r2)
such that Enc(h,m1; r1) = Enc(h,m2; r2), the equality indicates that (r1−r2)h+(m1−m2) = 0, where
r1 − r2 and m1 −m2 have still small coefficients. For a lattice set

L⊥0 := {(v,w) ∈ Rq ×Rq : hv +w = 0 (in Rq)},

the short polynomials r1 − r2 and m1 −m2 become an approximate shortest vector in L⊥0 . Thus, if the
injectivity is broken against GenNTRU[ψn1 ], we can solve the approximate shortest vector problem (SVP)
over L⊥0 . It is known [9] that the approximate SVP over L⊥0 is at least as hard as the NTRUn,q,ψn

1
problem

(defined above). Hence, if the NTRUn,q,ψn
1

assumption holds, then so is the injectivity of GenNTRU[ψn1 ].
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6 NTRU+

6.1 Instantiation of SOTP

We introduce SOTP :M′ × U →M, whereM′ = {0, 1}n, U = {0, 1}2n, andM = {−1, 0, 1}n relative
to distributions ψM′ = Un, ψU = U2n, and ψM = ψn1 . Figure 13 presents SOTP which is used for ACWC2.

SOTP(x ∈ {0, 1}n, u ∈ {0, 1}2n)
1: u = (u1, u2) ∈ {0, 1}n × {0, 1}n
2: y = (x⊕ u1)− u2 ∈ {−1, 0, 1}n
3: return y

Inv(y ∈ {−1, 0, 1}n, u ∈ {0, 1}2n)
1: u = (u1, u2) ∈ {0, 1}n × {0, 1}n
2: x = (y + u2)⊕ u1 ∈ {0, 1}n
3: return x

Figure 13: SOTP

Message-Hiding and Rigidity Properties of SOTP. It is easily shown that SOTP is message-hiding
because of the one-time pad property, especially for the part x⊕u1. That is, unless u1 is known, the message
x ∈M′ is unconditionally hidden from y ∈M. Similarly, x⊕u1 becomes uniformly random over {0, 1}n,
regardless of the message distribution ψX , and thus the resulting y follows ψn1 . In addition, the rigidity of
SOTP is trivial, because Inv(y, u) = x implies SOTP(x, u) = y.

6.2 CPA-NTRU+ (=PKE′)

We obtain CPA-NTRU+ := ACWC2[GenNTRU[ψ
n
1 ],SOTP,G] by applying ACWC2 from Section 3 to

GenNTRU[ψn1 ]. Because the underlying GenNTRU[ψn1 ] provides message and randomness recoverable
properties, Theorem 3.4 and 3.6 give us the IND-CPA security of the resulting CPA-NTRU+ in the clas-
sical and quantum random oracle model, respectively. Regarding the correctness error, Theorem 3.2 shows
that CPA-NTRU+ has the worst-case correctness error that is almost close to the average-case correctness
error of GenNTRU[ψn1 ]. For instance, in case where (n, q) = (768, 3457), the worst-case correctness error
becomes about 2−379, based on the equation of Theorem 3.2 and Eq. (6).
Spreadness and Injectivity Properties of CPA-NTRU+. To achieve the IND-CCA security of the trans-
formed KEM via FO

⊥
, we need to show the spreadness and injectivity of CPA-NTRU+. The spreadness

can be easily obtained by combining Lemma 3.7 with Lemma 5.4. Next, the injectivity of CPA-NTRU+
can also be proven under the assumption that the NTRUn,q,ψn

1
problem is infeasible, analogously to that of

GenNTRU[ψn1 ]. More precisely, if there exist two pairs (m1, r1) and (m2, r2) such that Enc′(pk,m1; r1) =
Enc′(pk,m2; r2), this results in the equation hr1 +m1 = hr2 +m2, where m1 = SOTP(m1,G(r1)) and
m2 = SOTP(m2,G(r2)). In that case, we still have two short polynomials r1 − r2 and m1 −m2 that can
be a solution of approximate SVP over L⊥0 .

6.3 CCA-NTRU+ (=KEM)

Finally, we can achieve the IND-CCA secure KEM by applying FO
⊥

to the CPA-NTRU+. We denote such
KEM by CCA-NTRU+ := FO

⊥
[CPA-NTRU+,H]. Figure 15 presents the resultant CCA-NTRU+, which

is the basis of our specification and implementation in the next section. Putting Theorem 4.1, Theorem 4.2
and Lemma 4.3 altogether, we can achieve the IND-CCA security of CCA-NTRU+. As for correctness error,
CCA-NTRU+ preserves the worst-case correctness error of the underlying CPA-NTRU+.
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Gen′(1λ)

1: (pk, sk) := GenNTRU[ψn1 ].Gen(1
λ)

- f ′,g← ψn1
- f = 3f ′ + 1
- if f , g are not invertible in Rq then restart
- (pk, sk) = (h = 3gf−1, f)

2: return (pk, sk)

Enc′(pk,m ∈ {0, 1}n; r← ψn1 )

1: m = SOTP(m,G(r))
2: c = GenNTRU[ψn1 ].Enc(pk,m; r)

- c = hr+m
3: return c

Dec′(sk, c)

1: m = GenNTRU[ψn1 ].Dec(sk, c)
- m = (cf mod ±q) mod ±3

2: r = Recoverr(pk, c,m)
- r = (c−m)h−1

3: m = Inv(m,G(r))
4: return m

Figure 14: CPA-NTRU+

Gen(1λ)

1: f ′,g← ψn1
2: f = 3f ′ + 1
3: if f , g are not invertible in Rq
4: restart
5: return (pk, sk) = (h = 3gf−1, f)

Encap(pk)

1: m← {0, 1}n
2: (r,K) = H(m)
3: m = SOTP(m,G(r))
4: c = hr+m
5: return (c,K)

Decap(sk, c)

1: m = (cf mod ±q) mod ±3
2: r = (c−m)h−1

3: m = Inv(m,G(r))
4: (r′,K) = H(m)
5: if r = r′

6: return K
7: else
8: return ⊥

Figure 15: CCA-NTRU+
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7 Algorithm Specification

7.1 Notation

Encoding and Decoding We define the function Encodeq in Algorithm 1, which compress the polynomial
to 3n/2 byte array. It assumes that each coefficient of polynomial are stored in 16-bit data type before it
is compressed. The design concept of Encodeq to make it efficient when it is implemented with AVX2
instruction set. We define the function Decodeq as the inverse of Encodeq.

Algorithm 1 Encodeq
Require: Polynomial f ∈ Rq
Ensure: Byte array B = (b0, · · · , b3n/2−1)

1: for i from 0 to ⌊n/64⌋ − 1 do
2: for j from 0 to 12 do
3: t0 = f64j+i
4: t1 = f64j+i+16

5: t2 = f64j+i+32

6: t3 = f64j+i+48

7: b96j+2i+0 = t0
8: b96j+2i+1 = (t0 >> 8) + (t1 << 4)
9: b96j+2i+32 = t1 >> 4

10: b96j+2i+33 = t2
11: b96j+2i+64 = (t2 >> 8) + (t3 << 4)
12: b96j+2i+65 = t3 >> 4
13: if n = 864
14: for i from 0 to 7 do
15: t0 = f832+i
16: t1 = f832+i+8

17: t2 = f832+i+16

18: t3 = f832+i+24

19: b1248+2i+0 = t0
20: b1248+2i+1 = (t0 >> 8) + (t1 << 4)
21: b1248+2i+16 = t1 >> 4
22: b1248+2i+17 = t2
23: b1248+2i+32 = t1 >> 4
24: b1248+2i+33 = t2
25: return (b0, · · · , b3n/2−1)

Sampling from a Binomial distribution NTRU+ uses centered binomial distribution with η = 1 to sample
the coefficients of polynomials which is defined in Algorithm 3. We also define BytesToBits in Algorithm
2 to decide the order of sampled coefficients. BytesToBits help us to implement the CBD1 and SOTP
efficiently with the AVX2 instructions. We define BitsToBytes as the inverse of BytesToBits function.
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Algorithm 2 BytesToBits

Require: Byte array B = (b0, b1, · · · , bn/4−1)
Ensure: Polynomial f ∈ Rq

1: x = ⌊n/256⌋
2: y = n− 256x
3: (y0, y1, y2, y4, y5, y6, y7, y8) := bit-decompose(b) // y = y02

0 + · · · y828
4: for i from 0 to x− 1 do
5: for j from 0 to 7 do
6: t1 = b32i+4j+3|b32i+4j+2|b32i+4j+1|b32i+4j

7: for k from 0 to 1 do
8: for l from 0 to 16 do
9: f256i+16l+2j+k = t1&1;

10: t1 >> 1;
11: c1 = 256x, c2 = 32x
12: if y8 = 1
13: for j from 0 to 3 do
14: t1 = bc2+4j+3|bc2+4j+2|bc2+4j+1|bc2+4j

15: for k from 0 to 1 do
16: for l from 0 to 16 do
17: fc1+8l+2j+k = t1&1;
18: t1 >> 1;
19: c1 = 256x+ 128y8, c2 = 32x+ 16y8
20: if y7 = 1
21: for j from 0 to 1 do
22: t1 = bc2+4j+3|bc2+4j+2|bc2+4j+1|bc2+4j

23: for k from 0 to 1 do
24: for l from 0 to 16 do
25: fc1+4l+2j+k = t1&1;
26: t1 >> 1;
27: c1 = 256x+ 128y8 + 64y7, c2 = 32x+ 16y8 + 8y7
28: if y6 = 1
29: t1 = bc2+3|bc2+2|bc2+1|bc2
30: for k from 0 to 1 do
31: for l from 0 to 16 do
32: fc1+2l+k = t1&1;
33: t1 >> 1;
34: return f0 + f1x+ f2x

2 + · · ·+ fn−1x
n−1
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Algorithm 3 CBD1 : Bn/4 → Rq

Require: Byte array B = (b0, b1, · · · , bn/4−1)
Ensure: Polynomial y ∈ Rq

1: (β0, · · · , β2n−1) := BytesToBits(B)
2: for i from 0 to n− 1 do
3: fi := βi − βi+n
4: return (f0, · · · , fn−1)

Semi-generalized one time pad The function SOTP is identical to CBD1 except that it computes exclu-
sive or to the first half of the random bytes with the message before sampling centered binomial distribu-
tion. Therefore, the function SOTP defined in Algorithm 4 also uses the function BytesToBits as like in
CBD1. We define the function Inv in Algorithm 5 as the inverse of the function SOTP. It uses the function
BitsToBytes to recover the bytes.

Algorithm 4 SOTP

Require: Message Byte array m = (m0,m1, · · · ,m31)
Require: Byte array B = (b0, b1, · · · , bn/4−1)
Ensure: Polynomial f ∈ Rq

1: (β0, · · · , β2n−1) := BytesToBits(B)
2: (m0, · · · ,mn−1) := BytesToBits(m)
3: for i from 0 to n− 1 do
4: fi := (mi ⊕ βi)− βi+n
5: return f0 + f1x+ f2x

2 + · · ·+ fn−1x
n−1

Algorithm 5 Inv

Require: Polynomial y ∈ Rq
Require: Byte array B = (b0, b1, · · · , bn/4−1)
Ensure: Message Byte array m = (m0,m1, · · · ,m31)

1: (β0, · · · , β2n−1) := BytesToBits(B)
2: for i from 0 to n− 1 do
3: mi := ((fi + βi+n)&1)⊕ βi
m = BitsToBytes((m0, · · · ,mn−1))

4: return m

Symmetric Primitives NTRU+ uses extendable output function XOF and two different hash functions H
and G as symmetric primitives. To instantiate XOF, we use AES256-CTR. To instantiate hash function G
and H, we use SHA256, SHA512 and XOF as follows.
Number Theoretic Transform NTRU+ uses number theoretic transform to compute polynomial multipli-
cations and polynomial inverses. We denote NTT the number theoretic transform function and NTT−1 the
inverse number theoretic transform function. The detailed composition of number theoretic transform used
in NTRU+ is described in section 9.1.
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Algorithm 6 H

Require: Message Byte array m = (m0,m1, · · · ,mn/8)
Ensure: Byte array B = (b0, b1, · · · , bn/8+31)

1: (b0, · · · , b31, b32, · · · b63) := SHA512(m,n/8);
2: (b32, · · · bn/8+31) = XOF((b32, · · · , b63), n/4)
3: return (b0, · · · bn/8+31)

Algorithm 7 G

Require: Message Byte array m = (m0,m1, · · · ,mn/8)
Ensure: Byte array B = (b0, b1, · · · , bn/8+31)

1: (b0, · · · , b31) := SHA256(m,n/8);
2: (b0, · · · bn/8−1) = XOF((b0, · · · , b31), n/4)
3: return (b0, · · · bn/8−1)

7.2 Specification of CCA-NTRU+

Algorithm 8 Gen(1λ): key generation

Ensure: Public key pk ∈ B⌈log2 q⌉·n/8
Ensure: Secret key sk ∈ B⌈log2 q⌉·n/4

1: d← B32
2: (f, g) := XOF(d, n/2)
3: f ′ := CBD1(f)
4: g′ := CBD1(g)
5: f = 3f ′ + 1
6: g = 3g′

7: f̂ = NTT(f)
8: ĝ = NTT(g)
9: if f̂ , ĝ are not invertible in Rq

10: restart
11: ĥ = ĝ ◦ f̂−1
12: pk := Encodeq(ĥ)

13: sk := Encodeq(f̂)||Encodeq(ĥ−1)
14: return (pk, sk)
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Algorithm 9 Encap(pk): encapsulation

Require: Public key pk ∈ B⌈log2 q⌉·n/8
Ensure: Ciphertext c ∈ B⌈log2 q⌉·n/8

1: m← Bn/8
2: (K, r) := H(m)
3: ĥ := Decodeq(pk)
4: r̂ = NTT(r)
5: m = SOTP(m,H(r̂))
6: m̂ = NTT(m)
7: ĉ = ĥ ◦ r̂+ m̂
8: c := Encodeq(ĉ)
9: return (c,K)

Algorithm 10 Decap(sk, c): decapsulation

Require: Secret key sk ∈ B⌈log2 q⌉·n/4
Require: Ciphertext c ∈ B⌈log2 q⌉·n/8
Ensure: Shared key m ∈ B32

1: f̂ = Decodeq(sk)
2: ĉ = Decodeq(c)

3: ĥ−1 = Decodeq(sk + ⌈log2 q⌉ · n/8)
4: m = NTT−1(ĉ ◦ f̂) mod ±3
5: m̂ = NTT(m)
6: r̂ = (ĉ− m̂) ◦ ĥ−1 // Recoverr

7: m := Inv(m,G(Encodeq(r̂)))
8: (K, r) := H(m)
9: if r = r′

10: return K
11: else
12: return ⊥
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8 Parameter Sets and Security Analysis

8.1 Parameter Sets for NTRU+

We define four parameter sets for NTRU+, which we call NTRU+{576, 768, 864, 1152}. The parameters
are listed in Table 5.

scheme n q pk ct sk sec(c) sec(q) log2 δ

NTRU+576 576 3,457 864 864 1,728 115 104 -487
NTRU+768 768 3,457 1,152 1,152 2,304 164 148 -379
NTRU+864 864 3,457 1,296 1,296 2,592 188 171 -340
NTRU+1152 1,152 3,457 1,728 1,728 3,456 264 240 -260
n: polynomial degree of a ring. q: modulus. (pk, ct, sk): bytes. δ: worst-case correctness error. {sec(c), sec(q)}:
classical and quantum security, respectively.

Table 5: Paramter sets for NTRU+

8.2 Concrete Security Strength

NTRU+ is constructed based on RLWE and NTRU problems. To analyze the concrete security strength of
RLWE problem for NTRU+, we use the script of Kyber[22]. It can be found at https://github.com/
pq-crystals/security-estimates. Table 6 shows classical and quantum core-SVP-hardness of
the four parameter sets for NTRU+. The analysis result can also be found at https://github.com/
ntruplus/ntruplus/tree/main/scripts/security. Since NTRU problem can be transformed
into a unique SVP instance in the relevant NTRU lattice, the concrete security strength of the NTRU problem
is expected to be similar to the case of RLWE problems.

NTRU+576 NTRU+768 NTRU+864 NTRU+1152
NIST Security level 1 1 3 5

Core-SVP methodology (primal attack)
Lattice attack dim. 1054 1397 1573 2045

BKZ-blocksize 399 560 655 922
core-SVP classical hardness 116 163 191 269
core-SVP quantum hardness 105 148 173 244

Core-SVP methodology (dual attack)
Lattice attack dim. 1045 1370 1577 2009

BKZ-blocksize 395 553 645 905
core-SVP classical hardness 115 161 188 264
core-SVP quantum hardness 104 146 171 240

Table 6: Security strength and claimed security level for each parameter set

31

https://github.com/pq-crystals/security-estimates
https://github.com/pq-crystals/security-estimates
https://github.com/ntruplus/ntruplus/tree/main/scripts/security
https://github.com/ntruplus/ntruplus/tree/main/scripts/security


9 Performance Analysis

9.1 Implementation Consideration

We use NTT to implement a polynomial multiplication in a ring. To concretely realize NTT over the polyno-
mial ring Zq[x]/⟨xn − xn/2 + 1⟩ with n = 2a3b, we use three different types of NTT layers: Radix-2 NTT,
Radix-2 NTT with cyclotomic trinomial, and Radix-3 NTT. Given a polynomial in a ring, we first factor the
polynomial by adapting Radix-2 NTT layer with cyclotomic trinomial, which was first used in [18]. This can
be viewed as an isomorphism between Zq[x]/⟨xn−xn/2+1⟩ and Zq[x]/⟨xn/2−ζ⟩×Zq[x]/⟨xn/2−(1−ζ)⟩,
where ζ is a primitive sixth root of unity modulus q. After that, we use Radix-3 NTT layers successively to
factor each partitioned polynomial to reach a desired degree of a polynomial. At last, we use Radix-2 NTT
layers until it reaches inertia degree 2 or 3 of polynomials. Note that we use Radix-3 NTT layers before
Radix-2 NTT layers to minimize the size of the predefined tables required to multiply polynomials in NTT
form.

n q
Radix-2

with trinomial
Radix-3 Radix-2 inertia degree

576 3457 1 2 4 2
768 3457 1 1 4 2
864 3457 1 2 4 3
1152 3457 1 2 5 2

Table 7: Combinations of NTT layers

For the completeness, we describe the Radix-3 NTT layer used in our implementation. Radix-3 NTT
layer is a ring isomorphism from Zq[x]/⟨x3n− ζ3⟩ to Zq[x]/⟨xn−α⟩ ×Zq[x]/⟨xn− β⟩ ×Zq[x]/⟨xn− γ⟩
where α = ζ, β = ζω, γ = ζω2 (ω is a primitive third root of unity modulus q). To transform a(x) =
a0(x) + a1(x)x

n + a2(x)x
2n ∈ Zq[x]⟨x3n − ζ3⟩(a0(x), a1(x), and a2(x) are polynomials with maximum

degree n− 1) to (â0(x), â1(x), â2(x)) ∈ Zq[x]/⟨xn − α⟩ × Zq[x]/⟨xn − β⟩ × Zq[x]/⟨xn − γ⟩, we need to
compute following equations.

â0(x) = a0(x) + a1(x)α+ a2(x)α
2

â1(x) = a0(x) + a1(x)β + a2(x)β
2

â2(x) = a0(x) + a1(x)γ + a2(x)γ
2

Naively, we can compute above equations with 6n multiplications, 6n additions with 6 predefined values,
α, α2, β, β2, γ, and γ2. We can reduce the amount of computation to 4n multiplications, 5n additions, n
subtractions with only 4 predefined values α, α2, ω, and ω2 as described in Algorithm 11. Note that ω, and
ω2 can be reused in the computation of other Radix-3 NTT layers.
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Algorithm 11 Radix-3 NTT layer
Require: a(x) = a0(x) + a1(x)x

n + a2(x)x
2n ∈ Zq[x]/⟨x3n − ζ3⟩

Ensure: (â0(x), â1(x), â2(x)) ∈ Zq[x]/⟨xn − α⟩ × Zq[x]/⟨xn − β⟩ × Zq[x]/⟨xn − γ⟩
1: t1(x) = a1(x)α
2: t2(x) = a2(x)α

2

3: t3(x) = t1(x)ω // a1(x)β
4: t4(x) = t2(x)ω

2 // a2(x)β2

5: t5(x) = t1(x) + t2(x) // a1(x)α+ a2(x)α
2

6: t6(x) = t3(x) + t4(x) // a1(x)β + a2(x)β
2

7: t7(x) = t5(x) + t6(x) // −a1(x)γ − a2(x)γ2
8: â0(x) = a0(x) + t5(x) // a0(x) + a1(x)α+ a2(x)α

2

9: â1(x) = a0(x) + t6(x) // a0(x) + a1(x)β + a2(x)β
2

10: â2(x) = a0(x)− t7(x) // a0(x) + a1(x)γ + a2(x)γ
2

11: return (â0(x), â1(x), â2(x))

Considering the Radix-3 NTT layer described above, we need to compute following equations to recover
a(x) ∈ Zq[x]/⟨x3n−ζ3⟩ from (â0(x), â1(x), â2(x)) ∈ Zq[x]/⟨xn−α⟩×Zq[x]/⟨xn−β⟩×Zq[x]/⟨xn−γ⟩.

3a0(x) = â0(x) + â1(x) + â2(x)

3a1(x) = â0(x)α
−1 + â1(x)β

−1 + â2(x)γ
−1

3a2(x) = â0(x)α
−2 + â1(x)β

−2 + â2(x)γ
−2

Naively, we can compute above equation with 6n multiplications, 6n additions with 6 predefined values,
α−1, α−2, β−1, β−2, γ−1, and γ−2. We can reduce the over all computations to 4n multiplications, 5n
additions, n subtractions with only 4 predefined values, α−1, α−2, ω, and ω2 as described in Algorithm
12. Note that ω, and ω2 can be reused in the computation of other Radix-3 NTT and Radix-3 Inverse NTT
layers.

Algorithm 12 Radix-3 Inverse NTT layer
Require: (â0(x), â1(x), â2(x)) ∈ Zq[x]/⟨xn − α⟩ × Zq[x]/⟨xn − β⟩ × Zq[x]/⟨xn − γ⟩
Ensure: 3a(x) = 3a0(x) + 3a1(x)x

n + 3a2(x)x
2n ∈ Zq[x]/⟨x3n − ζ3⟩

1: t1(x) = â1(x) + â2(x)
2: t2(x) = â1(x)ω

2 // â1(x)ω−1

3: t3(x) = â2(x)ω // â2(x)ω−2

4: t4(x) = t2(x) + t3(x) // â1(x)ω−1 + a2(x)ω
−2

5: t5(x) = t1(x) + t4(x) // −a1(x)ω−2 − â2(x)ω−4
6: t6(x) = â0(x) + t4(x) // â0(x) + â1(x)ω

−1 + a2(x)ω
−2

7: t7(x) = â0(x)− t5(x) // â0(x) + a1(x)ω
−2 + a2(x)ω

−4

8: 3a0(x) = â0(x) + t1(x) // â0(x) + â1(x) + â2(x)
9: 3a1(x) = t6(x)α

−1 // â0(x)α−1 + â1(x)β
−1 + â2(x)γ

−1

10: 3a2(x) = t7(x)α
−2 // a0(x)α−2 + a1(x)β

−2 + a2(x)γ
−2

11: return 3a(x) = 3a0(x) + 3a1(x)x
n + 3a2(x)x

2n
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9.2 Implementation Results

All benchmarks were obtained on single core of an Intel Core i7-8700K (Coffee Lake) processor clocked
at 3700 MHz. The benchmarking machine has 16 GB of RAM. Implementations were compiled with gcc
version 9.4.0. The cycles listed below are the average of the cycle counts of 100,000 executions of the
respective algorithms. Table 8 reports performance results of the reference and AVX2 implementation of
NTRU+, along with the sizes of secret keys, public keys, and ciphertexts. The source code of NTRU+ is
available for download on Github: https://github.com/ntruplus/ntruplus.

NTRU+576

Size (Bytes) Cycles (ref) Cycles (AVX2)
sk: 1,728 gen: 321,405 gen: 17,440
pk: 864 encap: 110,754 encap: 14,307
ct: 864 decap: 163,277 decap: 12,445

NTRU+768

Size (Bytes) Cycles (ref) Cycles (AVX2)
sk: 2,304 gen: 313,669 gen: 16,032
pk: 1,152 encap: 145,658 encap: 17,514
ct: 1,152 decap: 227,028 decap: 15,848

NTRU+864

Size (Bytes) Cycles (ref) Cycles (AVX2)
sk: 2,592 gen: 339,912 gen: 14,068
pk: 1,296 encap: 169,634 encap: 19,293
ct: 1,296 decap: 262,017 decap: 17,671

NTRU+1152

Size (Bytes) Cycles (ref) Cycles (AVX2)
sk: 3,456 gen: 905,131 gen: 42,993
pk: 1,728 encap: 230,448 encap: 25,592
ct: 1,728 decap: 348,076 decap: 24,063

Table 8: Implementation result of NTRU+
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