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Abstract. Majority of efficient lattice-based schemes are based on the
structured lattices which use power-of-2 cyclotomics by default. De-
spite advantages for choosing cyclotomic polynomials, there has been
some concerns on potential threats. In this document, we propose the
first lattice-based signature scheme using non-cyclotomic polynomials
to remove the structures available to the attackers. Our scheme fol-
lows the Fiat-Shamir paradigm and combines the Bai-Galbraith scheme
with several improvements from previous lattice-based schemes includ-
ing CRYSTALS-Dilithium. It provides stronger security guarantee than
cyclotomic counterparts and comparable key sizes and signature sizes to
CRYSTALS-Dilithium. We prove unforgeability of our scheme in QROM
under the hardness assumptions of RLWE, RSIS and SelfTargetRSIS
problems. We then select concrete and conservative parameters based on
the security proofs and cost analysis against the lattice attacks on known
cost models. At last, we provide its performance evaluations.

Keywords: Cyclotomic field · Non-cyclotomic polynomial · RLWE ·
RSIS · Inert Modulus.

1 Introduction

Majority of efficient lattice-based schemes including NIST Post-Quantum Cryp-
tography (PQC) Standardization Round 4 algorithms [2] are based on the struc-
tured lattices using power-of-2 cyclotomics by default. Explicitly, CRYSTALS-
Kyber, Saber, CRYSTALS-Dilithium, and Falcon use the 2n-th cyclotomic poly-
nomial φ(X) = Xn+1 for some n a power of 2, and NTRU KEM use a polynomial
φ(X) = Xp − 1, which is related to the p-th cyclotomic polynomial for some p
a prime number [11, 17, 18, 39, 22, 28, 29]. They achieve high speeds on several
architectures as well as reasonably small signatures and key sizes.

There are advantages for choosing cyclotomic polynomials, but there has been
potential threads on about on attacks exploited unnecessary algebraic structures
[8, 13]. The attacks exploited some additional structures use the fact that the
field Q[X]/φ(X) has many subfields for certain φ(X) [7, 3], some attacks use
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the fact that a number field Q[X]/φ(X) has small Galois group [14], and some
attacks using ring homomorphisms from Zq[X]/φ(X) to some smaller nonzero
rings [19, 20, 15]. There is sub-exponential time attack against NTRU assump-
tions (φ(X) = Xp − 1 for some prime p) with large moduli, which invalidated
security guarantees of some FHE schemes [3, 33, 12]. There are polynomial-time
quantum attacks broke Soiloquy, the cyclotomic case of Gentry’s original fully
homomorphic encryption (FHE) at STOC 2009 and the cyclotomic case of the
Garg-Gentry-Halevi scheme under plausible assumptions [9].

Although no attacks are known that perform significantly better on the
schemes using the structured lattices of cyclotomics, it is still possible that fur-
ther cryptanalysis will be able to exploit the additional structures. Thus, we
need to think of countermeasure of the potential threats. As an opponent of
these cyclotomics, there is a lattice-based KEM, NTRU Prime KEM, selected
as one of the alternative candidates of NIST PQC Round 3 [1], but there is no
such a digital signature counterpart. NTRU Prime KEM uses NTRU Prime field
[8] that aimed remove unnecessary structures that have been exploited in the
attacks. Suggestions for the NTRU Prime field as follows:

1. Choose φ(X) as a monic irreducible polynomial with degree p for some prime
p whose Galois group is isomorphic to Sp (the largest Galois group possible).

2. Choose a prime q so that φ(X) is still an irreducible polynomial in Zq[X],
i.e. Zq[X]/φ(X) becomes a field.

NTRU Prime field uses an irreducible polynomial φ(X) = Xp−X − 1 to satisfy
the first condition, and the second condition was satisfied with probability 1/p
for a random prime modulus q.

The schemes based on unstructured lattices guarantee stronger security than
those based on the structured lattices, but they suffer from much larger key
sizes. Our goal is to construct a lattice-based signature scheme that achieves
stronger security guarantee than cyclotomic counterparts and better efficiency
than unstructured lattice-based schemes.

1.1 Design Rationale, Advantages and Limitations

Our scheme based on non-cyclotomic polynomials can get advantages in terms
of security with relatively less structures than cylotomic cases. To the best of our
knowledge, our scheme is the first lattice-based signature scheme using a prime-
degree large Galois group inert modulus with φ(X) = Xp−X + 1, which allows
us to remove the structures that were the causes of the previous attacks. We fol-
low the design paradigm of CRYSTALS-Dilithium based on Bai and Galbraith
scheme with public key compression. However, some critical distinctions exist
between our scheme and CRYSTALS-Dilithium: our scheme is based on RLWE
using non-cylcotomic polynomials instead of MLWE using the power-of-2 cylco-
tomic polynomial. The use of the non-cylcotomic polynomials leads to different
selection of parameters and different implementation techniques. We also exploit
a new optimized hashing to a ball using two separate polynomials. Consequently,
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our scheme provides stronger security guarantee than CRYSTALS-Dilithium and
comparable key sizes and signature sizes.

Stronger Security Guarantee than Cylotomics. In the structured lattice-
based schemes using cyclotomics, there have been proposed the potential at-
tacks exploiting subfields, small Galois groups and ring homomorphisms, and
polynomial-time quantum attacks on some HFE schemes. NTRU Prime KEM
[8, 13] provide evidences that non-cyclotomic scheme has lower risks than the cy-
clotomics. We remove the additional structures that were the causes of the pre-
vious attacks to achieve stronger security guarantee by using the non-cyclotomic
polynomial.

Security Proofs in ROM and QROM. Existential unforgeability of our
scheme is proved in (quantum) random oracle model under the RLWE, RSIS
and SelfTargetRSIS assumptions in a similar way to CRYSTALS-Dilithium [18,
39].

Flexible Choice of Parameters. In the lattice-based schemes based on the
RLWE and MLWE problems using power-of-2 cyclotomics, the degree of poly-
nomials n that must junp in increasingly by doubling or 256 bytes, respectively,
due to the power of 2 restriction. Our scheme provides the flexibility for the
parameter selections without the jumps that appear in the schemes.

Concrete/Conservative Parameters. We provide concrete parameters at
NIST three security levels. We choose the parameters so that the rejection sam-
pling in signing and the repeated number of rejections are the same level as
CRYSTALS-Dilithium. Advanced attacks are still being proposed and predicted:
recent improved dual lattice attacks [26, 35] considerably reduces the security lev-
els of Kyber, Saber and CRYSTALS-Dilithium, the LWE/LWR-based schemes,
bringing them below the thresholds defined by NIST. We suggest conservative
parameters to allow security margins for future advances in cryptanalysis.

Protection against Side-Channel Attacks. The Fiat-Shamir with Aborts
type signatures opt to sample their error vectors from a Gaussian distribution
and used rejection sampling to hide the information about the secret-key in
the signature. Most of the side channel analysis targetted the data dependent
side-channel leakage from these Gaussian sampling, the rejection sampling com-
ponents and the computation of the Number Theoretic Transform (NTT). Our
scheme uses uniform distribution and does not use the NTT for polynomial
multiplications which eliminate the causes of the related side-channel attacks.
All other operations such as polynomial multiplication and rounding are imple-
mented in constant time.

Implementation. Compared to other lattice-based schemes which use either
cylotomic polynomials to enable the use of NTT and power-of-two moduli for
efficient coefficient-wise operations, it is a challenging task to implement our
scheme. We use Toom-Cook and Karatsuba polynomial multiplications since
NTT cannot be used to speed up polynomial multiplication in our case. We
propose a new optimized hashing to a ball using two separate polynomials which
offers speed-up ranging from 9% to 24%, depending on the parameter sets. Due
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to the lack of research on optimization for polynomial multiplication in non-
cylotomic case, our scheme is less efficient than CRYSTALS-Dilithium, but we
think that there still is room for optimization.

1.2 Related Works

The earlier lattice-based signatures, the GGH scheme [24] and NTRUSign [27],
were completely broken by Nguyen and Regev [37] from the leakage of some
secret information in lattice trapdoors. To prevent such leakage, Gentry, Peikert,
and Vaikuntanathan [23] proposed a hash-and-sign type scheme secure under
the hardness of worst-case lattice problems. At Eurocrypt 2012, Lyubashevsky
[34] constructed a Fiat-Shamir aborts type signatures based on the LWE and
SIS problems with a security reduction to the worst-case problems in general
lattices. Subsequently, Güneysu et al. [25] proposed a compression technique
without requiring Gaussian sampling based on the DCK and RSIS problem and
Bai and Galbraith (BG) [6] introduced an improved compression technique for
signature schemes based on the LWE problem.

Many lattice-based schemes base on the BG scheme have been proposed
qTESLA [5] based on RLWE and RSIS problems, CRYSTALS-Dilithium [18,
39] based on MLWE and MSIS problems, MLWRSign [32] based on MLWR
problem as particular instantiations of the BG framework. The Hash-and-Sign
type schemes are FALCON [22] based on NTRU problem, its variant MITAKA
[21] and ModFalcon [16] based on Module-NTRU problem. Recently, NIST rec-
ommended CRYSTALS-Dilithium and FALCON as digital signatures of NIST
PQC Standardization [2].
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2 Signature Scheme: NCC-Sign

2.1 Basic Operations

Throughout this document, we letR := Z[X]/(Xp−X−1) andRq := Zq[X]/(Xp−
X − 1) for some prime numbers p and q such that Rq is a field. Boldface lower-
case letters represent elements in R or Rq, and non-boldface lower-case letters
represent elements in Z and Zq.

Modular Reductions. For an integer α, we let r′ = r mod± α to be the
unique integer r′ ∈ (−α/2, α/2] such that r′ ≡ r mod α. Similarly, we let r′ =
r mod+ α to be the unique integer r′ ∈ [0, α). For an element r = r0 + r1X +
. . . rp−1X

p−1 ∈ R, we let r′ = r mod± α (resp. r′ = r mod+ α) to be the
unique element in R such that r′ = r′0+r′1X+. . . r′p−1X

p−1 and r′i = ri mod± α

(resp. r′i = ri mod+ α) for all i. When we do not require exact representation,
we write r mod α or r mod α.

Sizes of elements. For w ∈ Zq, let ‖w‖∞ :=
∣∣w mod± q

∣∣. We also define l∞
and l2 norm of w = w0 + w1X + · · ·+ wp−1X

p−1 ∈ R as

‖w‖∞ := max
i
‖wi‖∞, ‖w‖2 :=

√
‖w0‖2∞ + · · ·+ ‖wp−1‖2∞,

respectively. We write Sη to denote the set of elements w ∈ R that satisfy

‖w‖∞ ≤ η. We let S̃η :=
{
w mod± 2η : w ∈ R

}
. One can see that S̃η ⊂ Sη,

but S̃η does not include the elements with at least one −η coefficient.

Hashing to a Ball. We use multiple hashing algorithms that map strings in
{0, 1}∗ to random elements in desired domains such as Sη and Rq. We use
SampleInBall algorithm to map a random seed ρ ∈ {0, 1}256 to an element of
Bτ , the subset of S1 consists of elements that have total τ nonzero coefficients
in {−1, 0, 1}. The challenge polynomial can be chosen in the following two ways:

– choose a single polynomial c ∈ R having τ non-zero coefficients,
– choose two polynomials ci ∈ R having τi non-zero coefficients for i = 1, 2

and combine them such that c = c2+Xp2c1. Note that ci is a degree-(pi−1)
polynomial.

It is enough to specify the method of choosing polynomial having fixed number
of non-zero coefficients. Basically, we follow [18, 39]. High-level description is
described in Algorithm 1. More specifically, Step 3 and 4 in Algorithm 1 can be
done in the following way from the 256-bit hash seed ρ. We use SHAKE-256 to
obtain a stream of random bytes of variable length from the seed ρ. The first τ
bits in the first 8 bytes of this random stream are τ random sign bits si ∈ {0, 1},
i = 0, . . . , τ − 1, required in Step 4. The remaining 64 − τ bits are discarded.
For the random j required in Step 3, we use next 10 or 11 bits from the next
two bytes in the stream and interpret it as a single number less than 210 or 211

depending on p. When this number is less than or equal to i, we use it as j.
If not, we use next two bytes in the stream to choose j. Lastly, for the case of
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two polynomials, we use another SHAKE-256 to obtain 512-bits from the seed
ρ. Then the first 256-bits are used as a seed for c1 while the second 256-bits are
used as a seed for c2. From the seeds, the needed randomness can be extracted
as is described in Algorithm 1.

Algorithm 1: SampleInBallp,τ (ρ).
Create a random p-element array with τ ±1’s and p − τ 0’s.
Use the input seed ρ (and an XOF) to generate the randomness
needed in Step 3 and 4.

1 Initialize c = c0c1 . . . cp−1 = 00 . . . 0
2 for i := p− τ to p− 1 do
3 j ← {0, 1, . . . , i}
4 s← {0, 1}
5 ci := cj
6 cj := (−1)s

7 return c

Algorithm 2: Decomposeq(r, α)

1 r := r mod+ q

2 r0 := r mod± α
3 if r − r0 = q − 1 then
4 r1 := 0
5 r0 := r0 − 1

6 else
7 r1 := (r − r0)/α
8 return (r1, r0)

Algorithm 3: UseHintq(h, r, α)

1 m := (q − 1)/α
2 (r1, r0) := Decomposeq(r, α)

3 if h = 1 and r0 > 0 then
4 return

(r1 + 1) mod+m
5 if h = 1 and r0 ≤ 0 then
6 return

(r1 − 1) mod+m
7 return r1

Algorithm 4: Power2Roundq(r, d)

1 r := r mod+ q

2 r0 := r mod± 2d

3 return
(
(r − r0)/2d, r0

)
Algorithm 5: HighBitsq(r, α)

1 (r1, r0) := Decomposeq(r, α)

2 return r1

Algorithm 6: LowBitsq(r, α)

1 (r1, r0) := Decomposeq(r, α)

2 return r0

Algorithm 7: MakeHintq(z, r, α)

1 r1 := HighBitsq(r, α)

2 v1 := HighBitsq(r + z, α)

3 return Jr1 6= v1K

High/Low Order Bits and Hints. We use several algorithms, Algorithm 2-7,
that extract higher/lower bits of an input, and the other algorithms that help
to correctly produce higher bits of a summation r + z ∈ Zq when r ∈ Zq and
z ∈ Zq is small. The algorithms can be extended to use inputs in Rq (except for
d and α) by applying the algorithm to each coefficient.
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Other Functions. ExpandA, ExpandS and ExpandMask maps random seeds to
a ∈ Rq, (s1, s2) ∈ Sη × Sη and y ∈ S̃η, respectively. We instantiate function H
as the extendable-output function (XOF) SHAKE-256.

2.2 Specification of NCC-Sign

We give KeyGen, Sign and Verify, of NCC-Sign in Algorithm 8, 9, and 10, respec-
tively.

Algorithm 8: KeyGen

1 (ζ, ζ ′)← {0, 1}256 × {0, 1}256
2 (ξ1, ξ2,K) ∈ {0, 1}256 × {0, 1}256 × {0, 1}256 := H(ζ ′)
3 a ∈ Rq := ExpandA(ζ)
4 (s1, s2) ∈ Sη × Sη := ExpandS(ξ1, ξ2)
5 t := as1 + s2
6 (t1, t0) := Power2Roundq(t, d)
7 tr ∈ {0, 1}256 := H(ζ ‖ t1)
8 return (pk = (ζ, t1), sk = (ζ, tr,K, s1, s2, t0))

Algorithm 9: Sign(sk,M)

1 a ∈ Rq := ExpandA(ζ)
2 µ ∈ {0, 1}512 := H(tr ‖M)
3 κ := 0, (z,h) := ⊥
4 ρ ∈ {0, 1}512 := H(K ‖ µ) (or ρ← {0, 1}512 for randomized signing)
5 while (z,h) = ⊥ do

6 y ∈ S̃γ1 := ExpandMask(ρ, κ)
7 w := ay
8 w1 := HighBitsq(w, 2γ2)

9 c̃ ∈ {0, 1}256 := H(µ ‖ w1)
10 c ∈ Bτ := SampleInBallp,τ (c̃)

11 z := y + cs1
12 r0 := LowBitsq(w − cs2, 2γ2)
13 if ‖z‖∞ ≥ γ1 − β or ‖r0‖∞ ≥ γ2 − β then
14 (z,h) := ⊥
15 else
16 h := MakeHintq(−ct0,w − cs2 + ct0, 2γ2)
17 if ‖ct0‖∞ ≥ γ2 or the # of 1’s in h is greater than ω
18 then
19 (z,h) := ⊥
20 κ := κ+ 1

21 return σ = (c̃, z,h)
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Algorithm 10: Verify(pk,M, σ) = (c̃, z,h)

1 a ∈ Rq := ExpandA(ζ)
2 µ ∈ {0, 1}512 := H(H(ζ ‖ t1) ‖M)
3 c := SampleInBall(c̃)

4 w′1 := UseHintq(h,az− ct1 · 2d, 2γ2)
5 return J‖z‖∞ < γ1 − βK and Jc̃ = H(µ ‖ w′1)K and

J# of 1’s in h is ≤ ωK

We offer both deterministic and randomized versions of the algorithm Sign.
For randomized version, the procedure for generating ρ is replaced by random
sampling from {0, 1}512, whereas deterministic version uses collision-resistant
hash function to digest a message M into µ using tr, then uses a secret key K
and µ as an input of H to safely generate ρ. We use two separate seeds, ζ and
ζ ′, to generate a public key a and a secret key (s1, s2,K), respectively, not to
exclude the case of sharing the public key a.

3 Security and Parameter Selections

Now, we prove unforgeability of our scheme in QROM under the hardness as-
sumptions of RLWE, RSIS and SelfTargetRSIS problems. We then select con-
crete and conservative parameters at three NIST security levels based on the
security proofs and cost analysis against the lattice attacks on known cost mod-
els.

3.1 Existential Unforgeability

We adapt the security proof of CRYSTALS-Dilithium [18, 39] to our case: l =
k = 1 and R = Z[X]/(Xp −X − 1). We follow the proof in [18, 39] and slightly
change the bound due to our choice of ring R. The ring Rq is a ring R/qR where
q is an inert prime over R which means both R = Z[X]/(Xp − X − 1) and
Rq = Zq[X]/(Xp −X − 1) are fields. Note that χ is a noise distribution. We let
H to be a random oracle that maps its input to an element in Bτ We use the
following hardness assumptions and lemma.

Definition 2.1 (RLWEq,D Distribution). Let q be a positive ineteger. For a
probability distribution D : Rq → {0, 1}, choose a random a← Rq and a vector
s1, s2 ← D, and output (a,as1 + s2).

Definition 2.2 (Decision RLWE Problem.) Given a pair (a, t) decode with
non-negligible advantage, whether it came from the RLWE distribution or it was
generated uniformly at random from Rq × Rq. The advantage of the adversary
A in solving decisional RLWE problem over the ring Rq is

AdvRLWE
χ (A) := |Pr[b = 1 | a, t← Rq; b← A(a, t)

− Pr[b = 1 |a← Rq, s1, s2 ← χ; b← A(a,as1 + s2)]| .
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We say RLWE is hard when the above advantage is negligible for all (quantum)
probabilistic polynomial-time algorithm A.

Definition 2.3 (RSIS Problem.) The advantage of the adversary A to solve
RSIS problem over the ring Rq is

AdvRSIS
γ (A) := Pr[0 < ‖~y‖∞ ≤ γ ∧

[
1 a1 a2

]
· ~y = 0 |a1,a2 ← Rq; ~y← A(a1,a2)].

Definition 2.4. (SelfTargetRSIS Problem). For the cryptographic hash

function H, the advantage ofA to solve SelfTargetRSIS problem AdvSelfTargetRSIS
H,γ (A)

is defined as

Pr

 0 ≤ ‖~y‖∞ ≤ γ ∧

H(µ‖
[
1

a1 a2

]
· ~y) = c

∣∣∣∣∣∣a1,a2 ← Rq;

~y :=

r1
r2
c

 , µ
← A|H(·)〉(a1, a2)

 .
We note that there is a classical reduction from RSIS to SelfTargetRSIS [18, 39].

Lemma 1 ([18, 39]). Suppose that q and α are positive integers satisfying
q > 2α, q ≡ 1 (mod α) and α even. Let r and z be elements of Rq where
‖z‖∞ ≤ α/2, and let h, h′ be vectors of bits (polynomials in Rq where coefficients
are 0 or 1). Then the HighBitsq, MakeHintq, and UseHintq algorithms satisfy the
following properties:

1. UseHintq(MakeHintq(z, r, α), r, α) = HighBitsq(r + z, α).
2. Let v1 = UseHintq(h, r, α). Then ‖r− v1 · α‖∞ ≤ α+ 1. Furthermore, if the

number of 1’s in h is ω, then all except at most ω coefficients of r − v1 · α
will have magnitude of at most α/2 after centered reduction modulo q.

3. For any h, h′, if UseHintq(h, r, α) = UseHintq(h
′, r, α), then h = h′

Sketch of Security Proofs. We assume that a public key is given without the
compression. Proving security in this case also shows the security when com-
pression is used. In [31], the authors showed that, for existential unforgeability
against chosen-message attacks (UF-CMA), existential unforgeability against no-
message attacks (UF-NMA) is sufficient if a signature scheme is zero-knowledge
and deterministic. Since our scheme is deterministic, we show that our scheme
achieves zero-knowledge and UF-NMA in (Q)ROM.

UF-NMA security. In order to prove UF-NMA of our scheme based on RLWE
and SelfTargetRSIS assumptions, firstly using RLWE assumption, we replace
the public key by random elements of Rq, (a, t). Then, the adversary A receives
(a, t) and needs to output valid message/signature pair M and (z,h, c) such
that

‖z‖∞ < γ1 − β, H(µ‖UseHintq(h,az− ct1 · 2d, 2γ2)) = c,

and the number of 1’s in h is less than ω. Lemma 1 implies

2γ2 · UseHintq(h,az− ct1 · 2d, 2γ2) = az− ct1 · 2d + v,
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where ‖v‖∞ ≤ 2γ2 + 1. Let t = t1 · 2d + t0 where ‖t0‖∞ ≤ 2d−1. Then

az− ct1 · 2d + v = az− c(t− t0) + v = az− ct + (ct0 + v) = az− ct + v′,

where ‖v′‖∞ ≤ 2τ2d−1 + 2γ2 + 1. It follows that using adversary, we find
z, c,v′,M such that ‖z‖∞ < γ1 − β, ‖c‖∞ = 1, ‖v′‖∞ ≤ 2τ · 2d−1 + 2γ2 + 1,
M ∈ {0, 1}∗, such that

H(µ‖ 1

2γ2

[
a −t 1

]
·

 z
c
v′

) = c.

Let H(µ‖x) = H′(µ‖2γ2 ·x). Then H′(µ‖
[
a −t 1

]
·

 z
c
v′

) = c and this solves the

SelfTargetRSIS problem with γ = max{γ1 − β, 2τ · 2d−1 + 2γ2 + 1}.

Zero-knowledgeness. Now we prove that our scheme is zero-knowledge. Assume
that public key is t (rather than t1). We note that t0 is used in simulation. It is
clear that if our scheme is zero-knowledge with t then it is zero-knowledge with
t1. Let w = ay and z = y + cs1. Then w − cs2 = ay − cs2 = az− ct since

az− ct = a(y + cs1)− ct = ay + acs1 − ct = ay − c(t− as1) = w − cs2.

Now, Pr[z, c] = Pr[c] Pr[y = z−cs1 | c] where ‖z‖∞ ≤ γ1−β. If ‖csi‖∞ ≤ β, then
‖z−csi‖∞ ≤ γ1−1. Since y is chosen uniformly random from S̃γ1 , the probability
is the same for all (z, c). For the simulation, we pick uniformly random

(z, c) ∈ Sγ1−β−1 ×Bτ

and check ‖r0‖∞ = ‖LowBitsq(w − cs2, 2γ2)‖∞ = ‖LowBitsq(az− ct, 2γ2)‖∞ ≤
γ2 − β.

3.2 Security Estimates for RLWE and RSIS

We follow the core-SVP method: BKZ-b calls the SVP oracle of dimension b
which costs in time ≈ 20.292b. For quantum security, we assume that the SVP
oracle costs in time ≈ 20.265b. For a given basis (c1, ..., cn) as input, ck(i) is a
projection of ck orthogonally to the vectors (c1, ..., ci), let `i = log2 ‖ci(i− 1)‖.
BKZ preserves the determinant of the ci’s, and the sum of the `is remains
constant. After small number of SVP calls inside the BKZ algorithm, we expect
the local slope of the `is converges to

slope(b) =
1

b− 1
log2

(
b

2πe
(π · b)1/b

)
.

After the BKZ reduction, `is are of the following forms:
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– The first `is are constant equal to log2 q (possibly empty).
– Then they decrease linearly, with slope slope(b).
– The last `is are constant equal to 0 (possibly empty).

Throughout this section, we write vec(x) = [x0, x1, · · · , xp−1]T when x =
x0 +x1X+ . . . xp−1X

p−1 ∈ Rq, and rot(x) is a matrix whose k-th column vector
is vec(Xk−1 · x). Also, rot(x)[1:m] is a m× p matrix consisting of first m rows of
a matrix rot(x).

Solving RLWE. Any RLWE instance over R can be viewed as a LWE in-
stance. Let (a,b) ∈ R2

q be a RLWE instance over Rq, where b = a · s1 + s2.
Main lattice attack is a primal attack which finds short vectors in the follow-
ing lattice L of dimension d = p + m + 1 and determinant qm which has the

solution vector (vec(s2), vec(s1), 1): L =

qIm −rot(a)[1:m] b
Ip 0

1

. It is known that

one can expect to find the solution if 2`d−b is greater than the expected norm
of (vec(s2), vec(s1), 1) after projection orthogonally to the first d − b vectors,
which is ζ

√
b, where ζ is a standard deviation of coordinates of s1, s2. When it

is uniform on [−1, 0, 1], it is
√

2/3 ≈ 0.816. For [−2,−1, 0, 1, 2], it is about 1.414
and for [−4,−3,−2,−1, 0, 1, 2, 3, 4], it is about 2.582. We also assume that the
number of SVP calls inside BKZ is larger than d which equals to p+m+ 1.

Solving RSIS and SelfTargetRSIS. For the RSIS and SelfTargetRSIS prob-
lem, we consider those problems as a RSIS problem. For the RSIS problem,
given uniformly sampled polynomials ai ∈ Rq, i = 1, ..., k, it is required to find

small polynomials yi, i = 0, ..., k, s.t. y0 +
∑k
i=1 yiai = 0 and ‖yi‖∞ ≤ γ. Using

rotation matrix, the RSIS problem can be solved by lattice reduction algorithms
finding short vectors in the following lattice basis of determinant qp which has
the solution vector (−vec(y0), vec(y1), · · · , vec(yk)):

L =


qIp rot(a1) · · · rot(ak)

I
. . .

I

 .
To find the solution vector of the lattice, one uses the BKZ algorithm of

block size b after choosing w columns among rotated vectors to obtain a lattice
of dimension d = w + p. As is explained above, after the BKZ algorithm, one
can obtain `is. Let i be the smallest index such that `i is below log2 q and j
be the largest index such that `j is above 0. Then, from the BKZ algorithm,

one obtains
√

4/3
b

short vectors of length 2`i after projection to the first i − 1
vectors. Now we assume that our short vectors have coordinates that satisfy the
followings:

– the first i− 1 coordinates are uniform modulo q.
– the next j − i + 1 coordinates have similar magnitude and sampled from

Gaussian distribution of standard deviation σ where σ = 2`i/
√
j − i+ 1.
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– the last w − j coordinates are zeroes.

If those j coordinates are all have absolute values less than γ, then the vector is
considered as a solution vector. Time complexity of the algorithm finding a SIS
solution is the cost of BKZ-b multiplied by the inverse of the success probability

of finding such vectors within the
√

4/3
b

vectors. Similar to the analysis of
CRYSTALS-Dilithium, we also consider the forget q case. In this case, the lattice
basis is first multiplied by some random unimodular matrices to remove the first
q-vectors. Then the BKZ algorithm is applied and we assume that q-vectors are
not found. The above analysis is applied in the same way to i = 1. As in the
RLWE case, we assume that the cost of BKZ-b is the cost of SVPb multiplied
by the dimension d.

Other Attacks. There exist other attacks like algebraic attacks. However, we
do not consider algebraic attacks since they usually need many samples. Our sig-
nature scheme only offer one RLWE sample, which translates to p LWE samples.
Since hybrid attacks are especially suitable to sparse secret, we do not consider
these attacks.

3.3 Parameter Selection

Based on the security estimates for RLWE and RSIS, we choose secure parameter
sets for our scheme at the three security levels.

Selection of p and q. Our parameter choice is different from CRYSTALS-
Dilithium [18, 39] and NTRU Prime KEM [8, 13].

– In NTRU Prime KEM [8, 13], the smallest p is 653 with q = 4621, but our
smallest prime p is larger with the corresponding much larger q. The main
reason for this difference comes from the rejection sampling required in the
signature scheme, while it is not needed in KEM. We need the rejection
sampling in signing for security: it makes the distribution of a signature
independent from the secret key. For the efficient rejection sampling, the
larger q the better: it lowers the rejection probability. With larger q, we
need larger p to thwart the lattice attacks. As a result, our p and q are larger
than [8, 13], and it seems to be unavoidable.

– The size of q in our scheme is similar to CRYSTALS-Dilithium [18, 39]. While
CRYSTALS-Dilithium uses a single prime q for the modulus for all security
levels, our q is different at each security level. This is because we need inert
modulus q. For each security level, we need to choose different prime p: for
each prime p, different prime q inerts.

Actually, there exist enough candidate inert primes for each prime p. Now
we explain the method to choose p and q. The expected number of repetitions
in the rejection sampling is about epβ(1/γ1+1/γ2). Thus, we choose suitable p and
q such that the expected number of repetitions is not too large for efficiency.
Since we need inert modulus q, we find the candidate prime and modulus p and
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q and check whether they satisfy the required security levels. To find the inert
modulus prime q, we search q in the certain range. In our experiments in sage,
we could find enough list of candidate inert primes for each prime p, and find
suitable primes p and q in the list satisfying q ≡ 1 mod 2γ2. This condition is
needed for the correct verification and q− 1 needs to have small even divisor. In
this reason, we chose γ2 as a q − 1 divided by suitable even number like 90, 56,
42. The concrete choice depends on the exact value of q and it affects the cost
to the SIS problem. Larger γ2 is good for efficiency but bad for the security. In
Table 1, we list some of inert primes q for a given p.

p q
1021 8348477, 8339581, 8333113
1429 8380087, 8376649, 8333131, 8332559

1913 8361623, 8343469, 8334383

Table 1: Selection of p and q.

Concrete Parameters. According to our security proof, our scheme is secure
as long as the following problems are hard:

– RLWED where D is a uniform distribution over Sη
– SelfTargetRSIS with k = 2, ζ where ζ = max{γ1 − β, 2γ2 + 1 + 2d · τ}
– RSIS with k = 1, ζ ′ where ζ ′ = max{2(γ1 − β), 4γ2 + 2}

Classically, SelfTargetRSIS with ζ can be reduced from RSIS with 2ζ. Thus
for the concrete parameters, we consider RSIS with k = 2, 2ζ instead of the
SelfTargetRSIS problem for simplicity. Thus, we consider the following problems
for the concrete parameters:

– RLWED where D is a uniform distribution over Sη
– RSIS with k = 2, ζ = max{2(γ1 − β), 4γ2 + 2 + 2d+1 · τ}
– RSIS with k = 1, ζ ′ = max{2(γ1 − β), 4γ2 + 2}

Unlike CRYSTALS-Dilithium, we cannot choose single prime q since we re-
quire q to be inert which depends on p. Thus, we choose suitable q from the
prime p. We choose γ1 as a power of two and choose γ2 such that 2γ2 | q − 1
and 2γ2 ≈ γ1. We also use η = 2. Larger η makes the underlying LWE problem
harder, at the cost of less efficient rejection sampling since β = 2τη.

Concrete parameters are in Table 2. Costs are measured in cpu-cycles. LWE
cost is calculated by lattice estimator from https://github.com/malb/lattice-estimator.
For the quantum security, we use simple estimation method that use classical se-
curity estimate with BKZ block size b. For this, we assume that solving shortest
vector problem in a lattice of dimension b costs 20.292b and 20.265b for classi-
cal and quantum attacker, respectively. Additionally, we assume the square-root
quantum attacker for the rest attack cost. Namely, we estimate the quantum
cost from the classical cost: 2a+0.292b (classical) becomes 2a/2+0.265b (quantum).
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Parameter/Seurity Level I III V

p 1021 1429 1913
q 8339581 8376649 8343469

d [dropped bits from t] (2dτ < γ2) 11 12 12
τ [# of ±1’s in c] 25 29 32

challenge entropy [log
(
p
τ

)
+ τ ] 190 228 259

γ1 [y coefficient range] 217 218 219

γ2 [low-order rounding range] (q − 1)/90 (q − 1)/56 (q − 1)/42
(= 92662) (= 149583) (= 198654)

η [secret key range] 2 2 2
β 100 116 128

ω [max # of 1’s in hint] 80 80 80

Exp. reps. [≈ epβ(1/γ1+1/γ2)] 6.6 5.7 5.5

Public key size 1564 1997 2663
Secret key size 2266 3312 4402
Signature size 2458 3605 5055

Cost to SIS (BKZ β) 133.9 (411) 198.1 (629) 259.8 (839)
Quantum cost to SIS 115.9 173.9 229.7

Cost to LWE by estimator (BKZ β) 147.7 (413) 211.5 (641) 291.3 (924)
Quantum cost to LWE 123.0 182.0 255.6

Table 2: Concrete Parameters for NCC-Sign.

Parameter/Security Level Ic IIIc Vc

p 1201 1607 2039
q 17279291 17305741 17287423

d [dropped bits from t] (2dτ < γ2) 12 13 13
τ [# of ±1’s in c] 32 32 32

challenge entropy [log
(
p
τ

)
+ τ ] 241 254 265

γ1 [y coefficient range] 219 219 219

γ2 [low-order rounding range] (q − 1)/70 (q − 1)/60 (q − 1)/58
(= 246847) (= 288429) (= 298059)

η [secret key range] 2 2 2
β 128 128 128

ω [max # of 1’s in hint] 80 80 80

Exp. reps. [≈ epβ(1/γ1+1/γ2)] 2.5 3.02 3.95

Public key size 1984 2443 3091
Secret key size 2800 3914 4940
Signature size 3186 4251 5385

Cost to SIS (BKZ β) 155.5 (484) 218.1 (697) 289.7 (941)
Quantum cost to SIS 135.3 192.0 256.8

Cost to LWE (BKZ β) 167.3 (483) 229.3 (704) 298.1 (949)
Quantum cost to LWE 141.1 198.4 262.0

Table 3: Conservative Parameters for NCC-Sign.
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Conservative Parameters. Recently, researchers in MATZOV published a re-
port which improves the dual lattice attack [35]. The dual lattice attack is con-
sidered to be less efficient than the primal lattice attack, previously. In [35], they
improved the attack and showed that their attack was better than the primal
attack for some LWE parameters. Considering future cryptanalysis, we provide
more conservative parameter sets. For the cost of LWE, we use the lattice esti-
mator [4] which includes the corrected sieving cost of [35] and will be updated
with the dual attack model of [35] shortly. In the mean time, using the lattice
estimator with conservative parameter sets seems to be good enough. For refer-
ence, we list the estimated security of LWE for some p and q’s, where coefficients
of secret and error are sampled uniformly from the set {−2,−1, 0, 1, 2}, as is cho-
sen in our signature scheme. For the AES-like security, one needs 143, 207, 272
for AES-128/192/256. Now, we provide conservative parameter sets in Table 3
to thwart attacks in the foreseeable future with larger q to lower the rejection
probability.

3.4 Cost Analysis of Known Attacks

Relying on the ‘LWE estimator’ of Albrecht et al. [4], we provide cost analysis
of our scheme against the primal and dual lattice attackson all cost models for
lattice reductions.

Cost Models. We use the default option (MATZOV) in the lattice estimator for
the cost estimation, but there exist other cost models. Although we are convinced
to use the default option, we provide cost estimates of the RLWE problem on
other cost models for reference in Table 4.

– ‘bdd’ means that solving a bounded distance decoding problem in the lattice
is the best attack strategy. Bounded distance decoding problem can be easily
converted to a unique shortest vector problem by the embedding approach
and

– ‘usvp’ means that solving unique shortest vector problem is the best esti-
mated strategy.

– ‘bkw’ means that Blum-Kalai-Wasserman [10] which needs quite many sam-
ples for the attack to succeed. More details can be found in [4].

Some cost models are simple and can be described in the following for the
logarithmic cost of BKZ-β of dimension-d lattice:

– ABFKSW20: 0.125β log2 β − 0.547β + 10.4 + log2 64 + log2 8d,
– ABLR21: 0.125β log2 β − 0.654β + 25.84 + log2 64 + log2 8d,
– ADPS16: 0.292β,
– BDGL16: 0.292β + 16.4 + log2 8d,
– CheNgu12: 0.270β log β − 1.019β + 16.103 + log2 100 + log2 8d,
– LaaMosPol14: 0.265β + 16.4 + log2 8d.

Other cost models are more complex and can be found in the homepage of
the estimator1. Kyber cost model uses dimension for free technique and gate

1 https://github.com/malb/lattice-estimator/blob/main/estimator/reduction.py
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Cost model I (128) III (192) V (256) Ic (128) IIIc (192) Vc (256)
ABFKSW20 259.6 (usvp) 363.5 (bkw) 478.8 (bkw) 307.1 (bkw) 403.5 (bkw) 500.1 (bkw)

ABLR21 229.9 (usvp) 363.5 (bkw) 478.8 (bkw) 274.2 (usvp) 403.5 (bkw) 500.1 (bkw)
ADPS16 123.2 (usvp) 190.1 (usvp) 273.3 (usvp) 143.7 (usvp) 208.5 (usvp) 280.3 (usvp)
BDGL16 150.7 (bdd) 217.5 (bdd) 300.8 (bdd) 171.3 (bdd) 236.1 (bdd) 308.0 (bdd)

CheNgu12 270.8 (bkw) 363.5 (bkw) 478.8 (bkw) 307.1 (bkw) 403.5 (bkw) 500.1 (bkw)
Kyber 154.4 (bdd) 218.7 (bdd) 299.2 (bdd) 174.2 (bdd) 236.6 (bdd) 306.1 (bdd)

MATZOV 147.7 (bdd) 211.5 (bdd) 291.3 (bdd) 167.3 (bdd) 229.3 (bdd) 298.1 (bdd)
GJ21 154.4 (bdd) 218.7 (bdd) 299.2 (bdd) 174.2 (bdd) 236.6 (bdd) 306.1 (bdd)

LaaMosPol14 139.3 (bdd) 200.0 (bdd) 275.5 (bdd) 158.1 (bdd) 216.9 (bdd) 282.0 (bdd)

Table 4: RLWE Cost on Known Cost Models Estimated by Lattice Estimator

metric. GJ21 cost model follows [26] which runs a sieve on the first β0 vectors of
the basis after BKZ-β reduction to produce many short vectors. Note that β0 is
chosen such that BKZ-β reduction and the sieve run in approximately the same
time. MATZOV follows [35] and uses improved enumeration in list decoding.

Comparison with CRYSTALS-Dilithium. For comparison, we also provide
cost estimates against the MLWE problem of CRYSTALS-Dilithium parameters
[18, 39] in Table 5. At the security level I, our costs for the concrete parameter
are comparable to those of CRYSTALS-Dilithium, but at the other security
levels, our costs are higher than those of CRYSTALS-Dilithium. Obviously, in
the conservative parameters, our costs are higher than those of CRYSTALS-
Dilithium at all the security levels.

Cost model/Security Level 2 (I) 3(III) 5(V)
ABFKSW20 261.0 (usvp) 363.4 (bkw) 454.7 (bkw)

ABLR21 231.1 (usvp) 363.0 (usvp) 454.7 (bkw)
ADPS16 123.8 (usvp) 182.5 (usvp) 252.0 (usvp)
BDGL16 151.2 (bdd) 209.7 (bdd) 279.6 (bdd)

CheNgu12 270.9 (bkw) 363.4 (bkw) 454.7 (bkw)
Kyber 154.8 (bdd) 211.1 (bdd) 278.7 (bdd)

MATZOV 148.1 (bdd) 204.0 (bdd) 271.0 (bdd)
GJ21 154.8 (bdd) 211.1 (bdd) 278.7 (bdd)

LaaMosPol14 139.7 (bdd) 192.8 (bdd) 256.3 (bdd)

Table 5: MLWE Cost of on Known Cost Models Estimated by Lattice Estimator

3.5 Cyclotomic Trinomial Counterpart

Our scheme supports a cyclotomic trinomial for better performance. For it, we
use the cyclotomic trinomial, φ(X) = Xn−Xn/2 +1, and power-of-two modulus
q = 223 instead of Xp−X+1 and prime modulus, respectively. We use the degree
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of the polynomial of the form 2a3b for flexible choices of parameters. Possible
degrees of the polynomial of the form 2a3b between 512 and 2000 are 512, 576,
648, 729, 768, 864, 972, 1024, 1152, 1296, 1458, 1536, 1728, and 1944. We use
1024, 1458, and 1944. The concrete parameter sets based on security analysis
similar to the non-cyclotomic case are presented in Table 6.

Parameter/Security Level I III V
n 1024 1458 1944
q 223 223 223

d [dropped bits from t] (2dτ < γ2) 12 12 13
τ [# of ±1’s in c] 25 29 32

challenge entropy [log
(
p
τ

)
+ τ ] 190 230 263

γ1 [y coefficient range] 218 218 219

γ2 [low-order rounding range] 217 217 218

η [secret key range] 2 2 2
β 100 116 128

ω [max # of 1’s in hint] 80 80 80
Exp. reps. [≈ enβ(1/γ1+1/γ2)] 3.23 6.92 4.15

Public key size 1440 2037 2462
Secret key size 2400 3377 4713
signature size 2529 3678 5135

Cost to SIS (BKZ β) 130.9 (411) 203.6 (658) 260.9 (853)
Quantum cost to SIS 114.4 180.1 232.0

Cost to LWE by estimator (BKZ β) 148.1 (414) 216.1 (657) 296.4 (943)
Quantum cost to LWE 123.3 186.2 260.4

Table 6: Parameters for NCC-Sign using Cyclotomic Trinomials.

4 Implementation Details

We describe implementation details of our scheme. We first explain a new op-
timized hashing to a ball using two separate polynomials and investigate its
improvements. We also find modulus of special forms to improve modular re-
ductions. We then describe polynomial multiplications and modular reductions.
Our scheme follows the same bit packing method in [18, 39].

4.1 Optimizations of Hashing to a Ball

We chose the challenge polynomial c ∈ R having τ non-zero coefficients. For the
optimization, we could choose c ∈ R = Z[X]/(Xp −X − 1) differently, namely,
choose two (or more) separate polynomials.
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Let κ be a challenge entropy, p1 = (p − 1)/2, and p2 = (p + 1)/2 with
p1 + p2 = p. First, choose τ1, τ2 such that

log

(
p1
τ1

)
+ τ1 + log

(
p2
τ2

)
+ τ2 > κ.

Then choose c = c2 + Xp2c1, where ci is a degree-(pi − 1) polynomial of co-
efficients in {−1, 0, 1} and the sum of absolute value of the coefficient is τi for
i = 1, 2. Now, consider the product c · s ∈ R, where s has also small coefficients
whose absolute value is not greater than η.

Let t = s ·Xi and tj be the j-th coefficient of t. Then, for i = 0, it is clear
that |tj | ≤ η for all j. For i = 1, it can be seen that |tj | ≤ η for all j except that
|t1| ≤ 2η. For i = 2, it can also be seen that |tj | ≤ η for all j but j = 1, 2 where
|t1|, |t2| ≤ 2η. Similarly, for t = s ·Xi, it can be seen that |tj | ≤ η for all j except
j = 1, 2, ..., i. Thus, for i < p2, |tj | ≤ η for j ≥ p2 and |tj | ≤ 2η for j < p2.

Now let t = s · c2 ∈ R and tj be the coefficient of t. Since c2 has a degree
less than p2 and has only τ2 non-zero coefficients, we know that |tj | ≤ τ2η for
j ≥ p2, and |tj | ≤ 2τ2η for j < p2. Let u = s · c ∈ R and uj be the coefficient of
u. Then it can be seen that |uj | ≤ (2τ1 + τ2)η for j ≥ p2, and |uj | ≤ 2(τ1 + τ2)η
for j < p2.

Let β1 = 2(τ1 + τ2)η and β2 = (2τ1 + τ2)η. Let z be the signature and zj be
the coefficient of z. Then in the signature generation, we can check |zj | < β1 for
j < p2 and |zj | < β2 for j ≥ p2 instead of |zj | < β. Since β2 is smaller than β1 and
β1 is only slightly larger than β, the rejection probability could become smaller.
More concretely, the expected repetitions become e(p1β2+p2β1)(1/γ1+1/γ2) instead
of epβ(1/γ1+1/γ2). In Table 7, we can see that this optimization offers speed-up
ranging from 9% to 24%, depending on the parameter sets.

Parameter p τ κ p1, p2 τ1, τ2 Exp.reps. (new) Speed-up
I 1021 25 190 510,511 104,76 5.44 1.21

III 1429 29 228 714,715 120,88 4.76 1.19
V 1913 32 259 956,957 128,96 4.42 1.24
Ic 1201 32 241 600,601 132,98 2.27 1.09

IIIc 1607 32 254 803,804 132,98 2.7 1.11
Vc 2039 32 265 1019,1020 132,98 3.43 1.15

Table 7: Optimization effects for Our Parameter Sets.
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4.2 Polynomial Multiplications

Algorithm 11: Toom-Cook Algorithm [17], [30]

Require: Two polynomials A(x) and B(x) of degree N = 1023
Ensure : C(x) = A(x)B(x)

Splitting
// A3, · · · , A0, B3, · · · , B0 are degree 255 polynomials

1 A(y) = A3y
3 +A2y

2 +A1y +A0 // y = x256

2 B(y) = B3y
3 +B2y

2 +B1y +B0 // y = x256

Evaluation
// Evaluation of the polynomials at y = {0,±1,±0.5, 2,∞}.
// Using Karatsuba multiplication to get w1, · · · , w7.

3 w1 = A(∞)B(∞) = A3B3

4 w2 = A(2)B(2) = (A0 + 2A1 + 4A2 + 8A3)(B0 + 2B1 + 4B2 + 8B3)
5 w3 = A(1)B(1) = (A0 +A1 +A2 +A3)(B0 +B1 +B2 +B3)
6 w4 = A(−1)B(−1) = (A0 −A1 +A2 −A3)(B0 −B1 +B2 −B3)
7 w5 = A(0.5)B(0.5) = (8A0 + 4A1 + 2A2 +A3)(8B0 + 4B1 + 2B2 +B3)
8 w6 = A(−0.5)B(−0.5) = (8A0− 4A1 + 2A2−A3)(8B0− 4B1 + 2B2−B3)
9 w7 = A(0)B(0) = A0B0

Interpolation
10 w2 = w2 + w5

11 w6 = w6 − w5

12 w4 = (w4 − w3)/2
13 w2 = w5 − w1 − 64w7

14 w3 = w3 + w4

15 w5 = 2w5 − w6

16 w2 = w2 − 65w3

17 w3 = w3 − w7 − w1

18 w2 = w2 + 45w3

19 w5 = (w5 − 8w3)/24
20 w6 = w6 + w2

21 w2 = (w2 + 16w4)/18
22 w4 = −(w4 + w2)
23 w6 = (30w2 − w6)/60
24 w2 = w2 − w6

25 return C(y) = w1y
6 + w2y

5 + w3y
4 + w4y

3 + w5y
2 + w6y + w7

We cannot apply NTT to our scheme. The next best alternative is the 4-way
Toom-Cook multiplication and Karatsuba multiplication used in [17], [30]. At
first, 4-way Toom-Cook multiplication is performed in three steps : Splitting,
Evaluation, Interpolation. Next, Karatsuba multiplication is used in the Evalu-
ation step. To use these multiplication methods, the degree of polynomial must
be 16l − 1 for some integer l. Thus, for polynomial multiplication, we choose
N = 1023, 1439, 1919 which is closest to p = 1021, 1429, 1913 (coefficients of
degree k is 0 for p ≤ k ≤ N).
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– Splitting. We split polynomial into four small polynomials. For example, if
A(x), B(x) are a degree 1023 polynomials then A(y) = A3y

3 +A2y
2 +A1y+

A0, B(y) = B3y
3 +B2y

2 +B1y +B0, where y = x256.
– Evaluation. We evaluate 7 values of two polynomials at y = {0,±1,±0.5, 2,∞}.

After Evaluation, multiplication two polynomials for each values using Karat-
suba multiplication.

– Interpolation. We calculate C(y) = A(y)B(y) = w1y
6 + w2y

5 + w3y
4 +

w4y
3 +w5y

2 +w6y+w7 using Evaluation values at y = {0,±1,±0.5, 2,∞}.

Algorithm 11 is the details of Splitting, Evaluation and Interpolation for
N = 1023. Algorithm 12 is the details of Karatsuba multiplication.

Algorithm 12: Karatsuba Multiplication [17], [30]

Require: Two polynomials A(x) and B(x) of degree N = 255
Ensure : C(x) = A(x)B(x) of degree N = 510 polynomial
// Splitting two polynomials

1 A(y) = A3y
3 +A2y

2 +A1y +A0 // y = x64

2 B(y) = B3y
3 +B2y

2 +B1y +B0 // y = x64

// A(y)B(y) = (A3B3)y6 + (A3B2 +A2B3)y5 + (A3B1 +A2B2 +
A1B3)y4 + (A3B0 +A2B1 +A1B2 +A0B3)y3 + (A2B0 +A1B1 +
A0B2)y2 + (A1B0 +A0B1)y + (A0B0)

3 w1 = A3B3

4 w3 = A2B2

5 w5 = A1B1

6 w7 = A0B0

7 w2 = (A3 +A2)(B3 +B2)− w1 − w3

8 w6 = (A1 +A0)(B1 +B0)− w5 − w7

9 w8 = (A3 +A1)(B3 +B1)
10 w9 = (A2 +A0)(B2 +B0)
11 w4 = (A3 +A2 +A1 +A0)(B3 +B2 +B1 +B0)
12 w5 = w5 + w9 − w7 − w3

13 w3 = w3 + w8 − w1 − w5

14 w4 = w4 − w8 − w9 − w2 − w6

15 return C(y) = w1y
6 + w2y

5 + w3y
4 + w4y

3 + w5y
2 + w6y + w7

Algorithm 13: Signed Montgomery Reduction (β = 232) [38]

Require: 0 < q < β
2 odd, −β2 q ≤ a = a1β + a0 <

β
2 q where 0 ≤ a0 < β

Ensure : r
′ ≡ β−1a (mod q), −q < r′ < q

1 m← a0q
−1 mod ±β

2 t1 ← bmqβ c
3 r

′ ← a1 − t1
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4.3 Modular Reductions

Our scheme performs polynomial multiplications over the polynomial ring Rq =
Zq[X]/(Xp − X − 1). Using Montgomery reduction [36], our implementation
avoids divisions and provides fast modular reductions. After coefficients of each
polynomial are converted into Montgomery domain, the multiplication is con-
ducted with the corresponding reduction to have the coefficients in [0, q−1]. After
the multiplication is finished, the coefficients of each polynomial are converted
to the original domain with coefficients of [−q+1

2 , q−12 ] by using the Algorithm
13. This is because infinity norm of polynomials is checked after multiplication.
Original output of Algorithm 13 is in (−q, q), however, our input is in [0, q − 1]
so that the output is in [−q+1

2 , q−12 ].

A Special Form of q. We find several modulus q of special form which might
be beneficial for the performance: q has small weight, which would be good for
the modular reduction.

– Low-weight q. In CYSTALS-Dilithium [18, 39], the modulus q = 8380417(=
223 − 213 + 1) is used. When this modulus is used, the modular reduction
by q can be computed using only small number of shifts and additions. In
our case, due to the inert condition of p and q, it is hard to find such spe-
cial modulus. However, it was possible to find similar form modulus. For
example, we could find (p, q) = (1021, 8290297), where

q = 223 − 216 − 215 − 23 + 1.

Note that q − 1 = 23 ∗ 33 ∗ 7 ∗ 5483. We list some of similar modulus q in
Table 8.

p q q − 1

1021 8290297 (= 223 − 216 − 215 − 23 + 1) 23 ∗ 33 ∗ 7 ∗ 5483
1447 8126431 (= 223 − 218 − 25 − 21 + 1) 2 ∗ 3 ∗ 5 ∗ 13 ∗ 67 ∗ 311
1913 6287329 (= 223 − 221 − 212 − 25 + 1) 25 ∗ 33 ∗ 19 ∗ 383
1279 16736257 (= 224 − 215 − 213 + 1) 213 ∗ 32 ∗ 227
1621 16252861 (= 224 − 219 − 26 − 22 + 1) 22 ∗ 3 ∗ 5 ∗ 13 ∗ 67 ∗ 311
2099 16515073 (= 224 − 218 + 1) 218 ∗ 32 ∗ 7

Table 8: Type I Modulus.

4.4 Reference Implementation

Our implementation specifications are as follows:

– Target Platform. The computer we have used is equipped with an Intel(R)
Core(TM) i7-12700K CPU at the constant clock frequency of 3.60GHz run-
ning Ubuntu 18.04.
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– The results presented in Table 9 and Table 10 include the numbers of CPU
cycles required by the key generation, signing and verification.

– Each result is an average of 100,000 measurements for each function using
the C programming language with GNU GCC version 7.5.0 compiler.

– Signing performance of our conservative parameters is faster than that of
the concrete parameters. The conservative parameters use q’s with bigger
size, which lead the smaller number of expected repetitions in the rejection
sampling. Our concrete parameters and conservative parameters can be con-
sidered as optimized for key/signature sizes and performance (in signing),
respectively.

Our reference implementation uses SampleInBall algorithm in CRYSTALS-
Dilithium [18, 39]. The new optimized SampleInBall algorithm and special forms
of q will be used in our optimized implementation using AVX2.

Algorithm/Security Level I II III
KeyGen 1,257,562 2,386,408 4,202,722
Sign 16,174,808 28,184,328 49,062,056
Verify 2,444,616 4,765,774 8,342,102

Table 9: Performance for Concrete Parameters at Three Security Levels

Algorithm/Security Level Ic IIIc Vc

KeyGen 1,727,508 2,965,942 4,700,228
Sign 11,768,076 20,816,964 42,227,652
Verify 3,400,702 5,876,246 9,324,876

Table 10: Performance for Conservative Parameters at Three Security Levels

5 Conclusion

In order to remove the structures that were the causes of the previous attacks,
our scheme is the first lattice-based signature scheme using a prime-degree large
Galois group inert modulus with φ(X) = Xp − X + 1. We follow the design
paradigm of CRYSTALS-Dilithium based on Bai and Galbraith scheme with
public key compression. However, some critical distinctions exist between our
scheme and CRYSTALS-Dilithium: our scheme is based on RLWE using non-
cylcotomic polynomials instead of MLWE using the power-of-2 cylcotomic poly-
nomial. The use of the non-cylcotomic polynomials leads to different selection
of parameters and different implementation techniques. We also exploit a new
optimized hashing to a ball using two separate polynomials. Consequently, our
scheme provides stronger security guarantee than CRYSTALS-Dilithium and
comparable key sizes and signature sizes.
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