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Abstract. Multivariate quadratic equations (MQ)-based public-key cryp-
tographic algorithms are one of promising post-quantum replacements
for current used public-key cryptography. After selecting to NIST Post-
Quantum Cryptography Standardization Round 3 as one of digital signa-
ture finalists, Rainbow was cryptanalyzed by advanced algebraic attacks
due to its multiple layered structure. In this document, we propose a new
MQ-signature scheme based on UOV with a single layer that eliminates
the causes of potential threats due to the multiple-layered structure.
Our scheme uses sparse polynomials and the block inversion method us-
ing half-sized block matrices to reduce the secret key size and improve
signing performance, respectively. We then provide security analysis, sug-
gest secure parameters at three security categories and investigate their
performance.

Keywords: Block matrix inversion · Multivariate quadratic equation ·
Sparse polynomial · UOV.

1 Introduction

Multivariate quadratic equations(MQ)-based signature schemes are mainly based
on the hardness of solving large systems of multivariate quadratic equations,
called MQ-problem. In MQ-schemes, a trapdoor is hidden in secret affine layers
using the affine-substitute-affine (ASA) structure. Security of this ASA struc-
ture relies on the hardness of variants of Extended Isomorphism of Polynomials
(EIP) problem [20]. The MQ-based signature scheme with multiple layers such
as Rainbow additionally requires the hardness of the MinRank problem.

Since Imai and Matsumoto [18] introduced the first MQ-encryption scheme,
most of the MQ-schemes have been broken due to the structure related to the
EIP problem except Unbalanced Oil-and-Vinegar (UOV) variants [17]. Rainbow,
a variant of UOV, based on the multiple-layered structure to reduce the key size
and improve performance [12]. It was selected as one of digital signature finalists
in NIST PQC Standardization Round 3 [26]. Another MQ-signature scheme,
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GeMMS, is one of the alternative candidates of NIST PQC Round 3. GeMMS
is a special instance of HFEv- [24] which is a combination of the Minus and
the Vinegar modifications with HFE in [20]. Recently, several advanced attacks
on Rainbow [35, 1, 2, 30, 5, 6] including the MinRank attack and the RBS at-
tacks and key recovery attack on HFEv- [33] have been proposed. Most of these
advanced attacks on Rainbow are due to its multi-layered structure. The new
attacks on Rainbow recovered the secret key at the security level 1 parameter
of the NIST second-round submission in 53 hours on a laptop [6]. The author in
[6] claimed that there seems to be some room for improvement for the attacks.
Rainbow team proposed to NIST to replace the security level 1 (resp., 3) pa-
rameter with its security level 3 (resp., 5) parameter [10]. This change results
in increasing the sizes of signatures and public keys. These attacks on Rainbow
made UOV with a single layer a better choice both in terms of security and
efficiency.

Although NIST recommended two algorithms, CRYSTALS-Dilithium and
Falcon, as digital signature schemes in PQC Standardization Round 4. NIST
announced a plan to issue a new Call for Proposals for signature schemes. The
new proposal focuses on signature schemes that are not based on the structured
lattices have short signatures and fast verification to diversify its signature port-
folio. The MQ-signature scheme with a single layer such as UOV is emerging as
a strong candidate. In this document, we propose a new efficient MQ-signature
scheme based on the UOV structure with shorter secret key size and faster sign-
ing performance.

1.1 Design rationale, Advantages and Limitations

Design rationale, advantages and limitations of our scheme are as follows:

Simple Structure that Eliminates the Causes of Potential Threats.
Rainbow using multiple layers is a variant of UOV to improve performance and
reduce key sizes. However, its multiple-layered structure additionally requires
the hardness of the MinRank problem and causes the recent advanced attacks.
The MQ-signature scheme with a single layer, UOV, has withstood rigorous
security analysis for a long time since its invention 1999. It is older, simpler,
and has a strictly smaller attack surface in comparison to Rainbow and none
of the attacks in [6] seem to apply to UOV [6]. The theoretical complexities of
the known attacks against UOV are well-established. Our scheme maintains the
structure of UOV which has long been believed to be secure and provides shorter
secret key size and faster performance.

The Shortest Signature Length and Shorter Key Sizes. Signature length
of our scheme is the shortest among post-quantum signature schemes based on
the other hard problems. More precisely, it requires 134 bytes, 200 bytes and
260 bytes at security categories I, II, and V, respectively. Despite the shortest
signature size and fast performance, the MQ-schemes suffer from relatively large
key public/secret key sizes. Our scheme provides shorter secret key size than
UOV by using sparse polynomials.
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Fast Performance. In Rainbow with two layers, the number of equations is
divided into two resulting in a reduction in the size of the matrix being inverted.
However, the MQ-scheme with a single layer requires relatively large size of
the matrix in Gaussian elimination which makes signing inefficient. In order to
resolve this inefficiency, we use the block inversion method [29] that exploits the
inversions of half-sized matrices. Our scheme provide fast signing and verification
performance.

Easy to Implement. Our scheme is very simple and is easy to understand
and implement requiring basic linear algebra. More precisely, it requires simple
operations such as matrix-vector products and solving linear systems over small
finite fields without multi-precision arithmetic. It can be efficiently implemented
on low cost devices without the need of a cryptographic coprocessor [7–9].

Protection Side-Channel Attacks. For resistance against side-channel at-
tacks, UOV is secure against the correlation power analysis (CPA) presented in
[19] by just using random affine maps instead of the equivalent keys without
requiring an additional countermeasure. Thus, our scheme based on the UOV
structure is also easy to design countermeasures against the CPA attacks. All key
dependent operations in our scheme are performed in a time-constant manner

Additional Performance Improvements. There are additional improvements
for signing and key generation by using precomputations and multi-cores, respec-
tively.

– To speed up the signing process even more, we choose to split the signa-
ture generation in an offline and online phase, where the offline phase can
already be performed before the message to be signed is known. Our scheme
with precomputation is 15x to 60x faster than the original version without
precomputation at the three security categories.

– Despite fast signing and verification performance, the key generation of our
scheme is inefficient. To speed up key generation, we exploit multiple cores
for independent operations resulting in 2x to 3x faster than the performance
on a single core.

1.2 Related Works

There are several proposals for key size reductions of UOV or Rainbow. They use
sparse polynomials (TTS, enTTS [37, 38] as special cases of Rainbow), random
seeds for the part of public key or the whole secret key (CylicUOV, CyclicRain-
bow [23], CompressedRainbow [26]), the coefficients of the secret key in the
smallest subfield F2 (so the coefficients of public key in F2, Lifted UOV (LUOV)
[4, 25]) and circulant or toplitz matrices (Circulant-UOV [22] and Circulant-
Rainbow [21], Block-anti-circulant UOV (BAC-UOV) [31], Hufu-UOV [32]) for
the secret/public key reduction. However, in these schemes, reducing the secret
key increases the public key size, reducing the public key increases the signa-
ture size or some reductions lead to heavy computational costs for signing and
verification.
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Most of these MQ-signature schemes were cryptanalyzed. Circulant-UOV [22]
and Circulant-Rainbow [21] using circulant matrices to reduce the secret keys
and speed up signing performance were entirely broken by Kipnis-Shamir attacks
in [15]. LUOV was broken by a direct attack which forges a signature within 210
minutes [11]. Block-anti-circulant UOV (BAC-UOV) [31] using the block-anti-
circulant matrices to reduce the public key was cryptanalyzed by Furue et al.
[13]. The structural attacks on BAC-UOV [13] reduced the bit complexity up
to 20% compared with the previously known attacks. Hashimoto [16] presented
several algebraic attacks on Hufu-UOV, whose public key is generated by cir-
culant matrices and toepliz matrices. Since some parts of the public key or the
entire public key have the forms of structured matrices such as circulant ma-
trices in BAC-UOV and Hufu-UOV, their public keys are distinguishable from
random systems. It is contradict to make the public keys of the MQ-schemes
to be hardly distinguishable from random systems. Consequently, to the best
of our knowledge, there were no successful key size reduction results for UOV
maintaining both the public key size and fast performance.
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2 Our Signature Scheme: MQ-Sign

2.1 Basic Operations

Main Parameters.

– Fq: a finite field of q elements
– m: the number of polynomials in the public key
– v: the number of Vinegar variables
– o: the number of Oil variables in UOV, m = o
– n: the number of variables in the public key, n = m+ v.

Let V = {1, · · · , v} and O = {v + 1, · · · , v + o} be sets of integers such
that |V | = v, |O| = o, and n = v + o. We first describe the structure of UOV
(Unbalanced Oil and Vinegar) [17]. A central map F : Fnq → Foq of UOV, F =

(F (1), · · · ,F (o)) is o multivariate quadratic equations with n variables x1, · · · , xn
defined by

F (k)(x) =
∑

i∈O,j∈V
α
(k)
ij xixj +

∑
i,j∈V,i≤j

β
(k)
ij xixj +

∑
i∈V ∪O

γ
(k)
i xi + η(k). (1)

Each polynomial F (k) has no quadratic terms indexed by Oil∗Oil, i.e. the quadratic
terms xixj for i, j ∈ O. This is called the missing Oil∗Oil structure that allows to
invert the quadratic systems in signing. An invertible affine map T : Fnq → Fnq is
required to destroy the missing Oil∗Oil structure of F . A public key is P = F ◦T
that seems to be hardly distinguishable from a random quadratic system, thus
be hard to invert. Then a secret key is (F , T ).

Each central quadratic polynomial F (k) is written as

F (k) = F (k)
V + F (k)

OV + F (k)
L,C ,

where F (k)
V and F (k)

OV are the part of Vinegar×Vinegar quadratic terms and the

part of Vinegar×Oil quadratic terms, respectively, and F (k)
L,C are the part of linear

terms and constant terms for k = 1, · · · , o. In UOV, the central polynomial (1)
can be written by

F (k) = F (k)
V,R + F (k)

OV,R + F (k)
L,C .

2.2 The Selection of Central Maps.

Now, we propose several types of the secret key depending on the selection of

the quadratic parts, F (i)
V and F (i)

OV , to achieve secret key reduction and faster
signing performance.

– [Selection of F (k)
V using Sparse Polynomials.] For the Vinegar × Vine-

gar quadratic parts, F (k)
V for k = 1, · · · , o,

F (k)
V = F (k)

V,S =

v∑
i=1

αki xix(i+k−1(mod v))+1,
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where αki ∈R F∗q (i = 1, · · · , v) so that the symmetric matrix of the quadratic

part of F (k)
V has full rank and all the quadratic terms in each F (k)

V don’t
overlap for k = 1, · · · , o.
• Secret Key Size Reduction. This technique reduces the size of the

quadratic part F (k)
V from v×v

2 · o field elements to v × o field elements.

– [Selection of F (k)
OV using Sparse Polynomials.] For the Vinegar × Oil

quadratic parts,

F (k)
OV = F (k)

OV,S =

o∑
i=1

βki xv+ix(i+k−1(mod o))+v+1,

where βki ∈R Fq (i = 1, · · · , o) so that the symmetric matrix of the quadratic

part of F (k)
OV has full rank and all the quadratic terms in each F (k)

OV don’t
overlap for k = 1, · · · , o.
• Secret Key Size Reduction. This technique reduces the size of the

quadratic part F (k)
OV from (v×o) ·o field elements to v×o field elements.

According to the selections of F (k)
V and F (k)

OV (k = 1, · · · , o), there are several
combinations for central maps:

– Sparse Vinegar ∗ Vinegar + Sparse Vinegar ∗ Oil:

F (k)
SS = F (k)

V,S + F (k)
OV,S + F (k)

L,C .

– Random Vinegar ∗ Vinegar + Sparse Vinegar ∗ Oil:

F (k)
RS = F (k)

V,R + F (k)
OV,S + F (k)

L,C .

– Sparse Vinegar ∗ Vinegar + Random Vinegar ∗ Oil:

F (k)
SR = F (k)

V,S + F (k)
OV,R + F (k)

L,C .

– Random Vinegar ∗ Vinegar + Random Vinegar ∗ Oil:

F (k)
RR = F (k)

V,R + F (k)
OV,R + F (k)

L,C .

We describe our scheme based on the combinations of the above techniques.
Our scheme provides the four types of secret keys using the sparse polynomials
and random polynomials. The selection of random Vinegar ∗ Vinegar and ran-
dom Vinegar ∗ Oil quadratic parts is the same as the key generation of UOV.
Despite the different key generation methods, they share the same signing algo-
rithm and verification algorithm. We use a random salt in signing for provable
security [27].

� MQ-Sign
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– KeyGen(1λ). For a security parameter λ, choose a random invertible affine
map T and do the followings:

• Secret Central Polynomials. Choose F (k) as follows:

∗ MQ-Sign-SS: F (k)
SS = F (k)

V,S + F (k)
OV,S + F (k)

L,C .

∗ MQ-Sign-RS: F (k)
RS = F (k)

V,R + F (k)
OV,S + F (k)

L,C .

∗ MQ-Sign-SR: F (k)
SR = F (k)

V,S + F (k)
OV,R + F (k)

L,C .

∗ MQ-Sign-RR: F (k)
RR = F (k)

V,R + F (k)
OV,R + F (k)

L,C .

• Output a public key as PK = P = F ◦ T and a secret key as SK =
(F , T ).

– Sign(SK, λ,M). Given a message M and a collision-resistant hash function
H : {0, 1}∗ → Foq, do the followings:

• Choose a λ-bit random salt r, compute h = H(M ||r) ∈ Foq.
• Compute a = F−1(h), i.e. F(a) = h as follows:

∗ Select Vinegar values sV = (s1, · · · , sv) ∈ Fvq at random and obtain
a linear system of o equations with o unknowns xv+1, · · · , xv+o by
substituting sV into o central polynomials F (k) for 1 ≤ k ≤ o. After
that, find a solution (sv+1, · · · , sv+o) of the linear system using the
BMI method.
∗ If the linear systems is not solvable, choose another vector of Vinegar

values s′V and try again.

• Compute z = T −1(a) and output σ = (z, r) as a signature on M .

– Verify(PK,M, σ). Given a signature σ = (z, r) on a message M and the
public key P, check the equality P(z) = H(M ||r). If the equality holds,
output valid.

2.3 Solving Linear Systems

A main idea to invert a system of quadratic equations in the MQ-schemes with
the missing Oil×Oil structure is to convert the quadratic system to a linear
system by substituting random Vinegar values into the Vinegar variables of the
central quadratic polynomials. There are two major computations in signing.

– Substitution of Vinegar Values into the Central Polynomials. Cal-
culations for substituting random Vinegar values into the central polyno-
mials are required. Since there are a large number of quadratic terms with
Vinegar×Vinegar indexes and Vinegar×Oil indexes being substituted by the
Vinegar values, the computations are heavy.

– Solving Linear System. Solving the linear systems after the Vinegar value
substitution are required. Gaussian elimination is used to find a solution of
the linear system, whose complexity is O(o3) for the number of equations o.

These computations are main bottlenecks for signing cost. Unlike Rainbow with
two layers, UOV with a single layer is required to find a solution of relatively
large linear system: UOV requires the inversion of an o×o matrix, where o is up
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to twice as large as oi (i = 1, 2) in Rainbow, where o1 and o2 are the numbers
of equations in the first and second layers of Rainbow, respectively. In order to
resolve this inefficiency, we use the block inversion method [29] that exploits the
inversions of half-sized matrices.

Block Matrix Inversion Method. In signing, UOV and Rainbow use Gaus-
sian elimination to solve the resulting linear system. In Rainbow implementation
[26], the signing algorithm computes R−1 by using Gaussian elimination, where
R is the coefficient matrix of the resulting liner system obtained from substitut-
ing the Vinegar values. In the single-layered scheme, the size of a matrix being
inverted is one of the reasons for heavy computation. We use a fast method, the
block matrix inversion (BMI) method proposed in [29], to reduce the size of a
matrix being inverted for solving the linear system. The BMI method computes
R−1 · α directly, without finding R−1: for a nonsingular 2 × 2 block matrix R,
R−1 ·α requires two inversions, two matrix multiplications of the half-sized block
matrices and four block matrix-vector products, where o is even. We describe
the BMI method.

– The BMI Method. A nonsingular square matrix R of 2 × 2 blocks is
represented by the LDU decomposition of block matrices based on the Schur
complement as

R =

(
A B
C D

)
=

(
I O

CA−1 I

)(
A O
0 D − CA−1B

)(
I A−1B
0 I

)
= L·DSc·U.

Thus, R−1 ·α can be expressed by A−1 and the inverse of the Schur comple-
ment of A, [D − CA−1B]−1, if they exist,

R−1·

α1

· · ·
αo

 =

(
I −A−1B
0 I

)(
A−1 O

0 [D − CA−1B]−1

)(
I 0

−CA−1 I

)α1

· · ·
αo

 .

After computing A−1, A−1B, C(A−1B) and [D − CA−1B]−1 via two in-
versions and two matrix multiplications of o/2 × o/2 block matrices, all
remaining computations are made by four block matrix-vector products as

A−1 · α = β, C · β,

[D − CA−1B]−1 · γ, (A−1B) · γ′.

– Repeated BMI. The BMI method can be applied to these two half-sized
matrices which results in four inversions of o/4 × o/4 matrices and extra
operations. Like this, for o = 2l · o′, it can be applied l times, where the
number of these iterations of the BMI is defined as a depth. However, l
iterations will always be effective, because 2l inversions of o/2l×o/2l matrices
are required.



(MQ-Sign) 9

According to the results using the BMI method in [29], the larger the size
of a matrix being inverted, the greater the performance improvement and the
higher the security level, the greater the effect of the optimizations. We use the
BMI method with depth 1 to solve the linear system in signing.

2.4 Algorithm Specification

We describe KeyGen, Sign and Verify algorithms of our schemes in Algorithm 1,
Algorithm 2, and Algorithm 3, respectively. In the Sign algorithm, ASc denotes
the Schur complement of A, [D − CA−1B]−1.

Algorithm 1 KeyGen(λ)

Require: parameters (q, v, o), length of salt l.
Ensure: key pair (sk, pk).
1: m← o
2: n← m+ v
3: repeat
4: MT ← Matrix(q, n, n)
5: until IsInvertible(MT ) == TRUE
6: T ←MT

7: InvT ←M−1
T

8: F ← MQmap(q, v, o)
9: P ← F ◦ T

10: sk ← (F , InvT , l)
11: pk ← (P, l)
12: Return (sk, pk)

Algorithm 2 Sign(sk,M)

Require: message M , private key (F , InvT ), length of the salt l.
Ensure: signature σ = (z, r) ∈ Fn

q × {0, 1}l such that P(z) = H(M ||r).
1: repeat
2: y1, ..., yv ←R Fq

3: f̂ (v1+1), ..., ˆf (n) ← f (v+1)(y1, ..., yv), ..., f (n)(y, ..., yv)
4: (A,ASc, B,C,D,CV )← Aff−1(f̂ (v+1), ..., f̂ (n))
5: until IsInvertible(A,ASc) == TRUE
6: InvR = (A−1, A−1

Sc )
7: r ← {0, 1}l
8: x← H(M ||r)
9: (yv+1, ..., yn)← BMI(R,H(M ||r)− CV )

10: z = InvT · y
11: σ ← (z, r)
12: Return σ
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Algorithm 3 Verify(pk,M, σ)

Require: message M , signature σ = (z, r) ∈ Fn
q × {0, 1}l.

Ensure: boolean value TRUE or FALSE.
1: h← H(M ||r)
2: h’← P(z)
3: if h’ == h then
4: return TRUE
5: else
6: return FALSE
7: end if

2.5 Additional Improvements

There are additional performance improvements for signing and key generation
by using precomputations and multi-cores, respectively.

Precomputation. Signing can be divided into two parts: one is independent
of messages being signed, the other depends on the messages. Our scheme has
significantly large message independent operations in signing. Thus, the offline
precomputation can dramatically improve signing in our scheme.

[Offline Signing]

– After choosing random Vinegar values sV = (s1, · · · , sv) ∈ Fvq , substitute sV
into o equations F (k) (1 ≤ k ≤ o) to get the linear system R of o equations
and o unknowns and a constant vector cV = (c1, · · · , co), where cV is a vector
of constant terms of (F (1)(sV ), · · · ,F (o)(sV )).

– Compute A−1, A−1B, C(A−1B) and [D − CA−1B]−1.
– Store < sV , cV , A

−1, A−1B,C(A−1B), [D − CA−1B]−1 > as the precom-
puted values.

[Online Signing]

– Choose a random salt r and compute h = H(M ||r) for a message M .

– Compute R−1 · hTV = α by using the precomputed values, where hV =
(h1 − c1, · · · , ho − co) and h = (h1, · · · , ho).

– Compute T−1 · (SV , α)T = σ and output τ = (σ, r) as a signature on d.

Our scheme with precomputation is 10x to 50x faster than the original ver-
sion without precomputation at the three security categories. According to the
security analysis in [29], if some precomputed values together with signatures
generated by them are exposed or reused then the secret key of our scheme is
completely recovered. Thus, the precomputed values (actually, sV ) should be
stored securely and should not be reused in signing.

Parallel Computation. Despite fast signing and verification performance, the
key generation of our scheme is very inefficient. To speed up key generation, we
exploit 10 cores for independent operations resulting in 2x to 3x faster than the
performance on a single core.
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3 Security Analysis

Now, we provide security analysis of our scheme and cost estimates against
known algebraic attacks. We the suggest secure parameters at the three secu-
rity categories. Throughout this document, we denote by the term ‘complexity’
the number of field multiplications an algorithm performs before outputting a
solution. Our complexity estimates are expressed as the base 2 logarithm of this
number.

3.1 Hard Problems

The underlying problems are defined as follows:

• MQ-Problem: Given a system P = (P (1), · · · , P (m)) of m qudratic equa-
tions defined over Fq in variables x1, · · · , xn and y = (y1, · · · , ym) ∈ Fmq , find

values (x′1, · · · , x′n) ∈ Fnq such that P (1)(x′1, · · · , x′n) = y1, · · · , P (m)(x′1, · · · , x′n) =
ym.

• EIP (Extended Isomorphism of Polynomials) Problem: Given a non-
linear multivariate system P such that P = S◦F ◦T for linear or affine maps
S and T , and F belonging to a special class of nonlinear polynomial system
C, find a decomposition of P such that P = S′ ◦ F ′ ◦ T ′ for linear or affine
maps S′ and T ′, and F ′ ∈ C.

3.2 Existential Unforgeability

In [27], in order to achieve existential unforgeability against adaptive chosen-
message attacks (EUF-CMA) of UOV, the authors used a usual security proof
for the Full-Domain-Hash scheme by modifying the signaing algorithm to pro-
vide uniform distribution of the signatures. Their slightly modified UOV scheme
is to use a random salt r as H(M ||r) instead of H(M). Then the modified sig-
nature has the form τ = (σ, r), where σ is an original UOV. The existential
unforgeability of our scheme follows the security proof of the modified UOV in
[27].

3.3 Security Analysis and Cost Analysis against Known Attacks

Our scheme based on the missing Oil∗Oil structure for inverting the quadratic
map uses the sparse polynomials for improving signing performance and reducing
the secret key size. Our scheme is considered as special cases of UOV central map
preserving full rank of the corresponding symmetric matrices. Security analysis
of our scheme against known algebraic attacks is similar to those of UOV. We
provide complexity estimates of our scheme against known algebraic attacks:
direct attacks, Kipnis-Shamir attacks, key recovery attacks using good keys and
intersection attacks.

[Direct Attacks.] The most straightforward way to cryptanalyze the MQ-
signature schemes is to solve the public system P(x) = H(M ||r). The public
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keys behave like random systems and the degree of regularity of the system de-
rived from the public key is the same as that of random systems of the same size.
In order to solve the resulting quadratic system, the attacker can use an arbitrary
method such as XL, Polynomial XL, Gröbner Basis algorithms and hybrid algo-
rithms [3, 14]. The selection of o for our scheme depends on their security against
the direct attacks. We summarize complexity of our scheme against the direct
attacks at the three security categories using the known algorithms for solving
the MQ-problem in Table 1, Table 2, and Table 3. According to this analysis,
we choose o ≥ 46, 72, 96 at the security categories I, III, and V, respectively.

Algorithms 44 46 48 50 52

Hybrid F5 131.86 137.43 142.99 148.56 154.12
Wiedemann XL 133.40 138.98 144.55 150.13 155.70
Polynomial XL 125.50 131.25 138.19 142.66 146.99

Table 1. Complexity Estimates against Direct Attacks at the Security Category I.

Algorithms 68 70 72 74 76

Hybrid F5 195.37 200.92 203.58 209.03 214.59
Wiedemann XL 196.93 202.51 204.97 210.41 216.01
Polynomial XL 189.41 194.50 199.39 203.04 209.49

Table 2. Complexity Estimates against Direct Attacks at the Security Category III.

Algorithms 94 96 98 100 102

Hybrid F5 261.18 266.50 272.10 277.32 279.90
Wiedemann XL 262.50 267.76 273.38 278.54 281.23
Polynomial XL 253.98 260.24 267.35 271.57 275.31

Table 3. Complexity Estimates against Direct Attacks at the Security Category V.

The complexity of o = 46 using the Polynomial XL algorithm [14] is about
131.25. We suggest another conservative parameter at the security category I
with o = 48 of complexity 139.19.

[Key Recovery Attacks using Gook keys (UOV-Reconciliation).] The
key recovery attacks using equivalent keys and good keys exploit the special
structure of the central map, i.e. zero entries at certain known places to get
equations with variables in T . It is known that there exist a large number of
different secret keys (called equivalent keys) for a given public key of the MQ-
schemes [36, 34]. Wolf and Preneel [36] introduced the notion of equivalent keys as
a fundamental tool to analyze the security of the MQ-schemes. Later, Thomae
[34] generalized the notion of equivalent keys to good keys. If an adversary
finds any of equivalent keys then the adversary can forge any signatures on any
messages although it is not the same as the original secret key. For a private key
(F , T ), (F ′, T ′) is an equivalent key of (F , T ) if P = F ◦ T = F ′ ◦ T ′ and F ′
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preserves all systematic zero coefficients of F . Then, there is an equivalent key
(F ′, T ′) of the secret key (F , T ) with high probability such that

T ′−1 = T −1 ·Ω =

(
Iv×v T̃ ′v×o
0o×v Io×o

)
, Ω =

(
Ω

(1)
v×v 0v×o

Ω
(3)
o×v Ω

(4)
o×o

)
. (2)

To further decrease this complexity, the good keys are used, where the good keys
don’t preserve all the zero coefficients of F , but just some of them. Thus, we
can choose F and Ω more widely and further reduce the number of variables.
The complexity of our scheme against the key recovery attacks using good keys
is determined by solving a system of o quadratic equations with v variables:

ConplexityKRA(q, o, v) = CMQ(q, o, v),

where CMQ(q, o, v) denotes the complexity of solving a random system of o
equations in v variables defined on Fq by using the algorithms for solving the
MQ-problem.

[Kipnis-Shamir Attacks (UOV Attacks)]. The Kipnis-Shamir attacks were
originally used to break the balanced Oil and Vinegar signature scheme (v =
o) [17]. The attacks can be generalized to the unbalanced case (v > o). In
the attacks, to find an equivalent key, we look for the space T −1(O), where O
is the Oil subspace of Fnq . Note that we get P (i) = TT · F (i) · T , where F (i)

and P (i) are the symmetric matrices of the quadratic parts of F (i) and P(i),
respectively, for i = 1, · · · , o. Then the probability that the matrix W−11 · W2,
where W1 (invertible) and W2 are random linear combinations of the matrices
P (i) (i = 1, · · · , o), has a nontrivial invariant subspace (which is also a subspace
of T −1(O)) is qv−o−1. By computing the minimal invariant subspaces ofW−11 ·W2

and finding subspaces T −1 among them, the attack can recover the equivalent
key. The complexity of the whole attack process is estimated by

ConplexityKS(q, o, v) = qv−o−1 · o4.

[Intersection Attacks.] The intersection attack [5], an improved version of
the Kipnis-Shamir attack, is considered as the most powerful attack among the
known attacks. Its complexity is

ConplexityInter(q, o, v) = CMQ(q, ok(k + 1)/2− k(k − 1), vk − o(k − 1)),

where k < v/(v−o). According to the complexity analysis of our schemes against
the intersection attacks, we choose v such that v > 1.5 · o. After determining the
number of polynomials, o, we have to decide the number of Vinegar variables,
v, depending on the Kipnis-Shamir attack, the key recovery attacks using good
keys and the intersection attacks. Since the complexity of our schemes against
the intersection attacks is lower than that of the reconciliation attacks, v can be
determined by the intersection attacks.
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Finally, we summarize complexities of our scheme against all the attacks in
Table 4, where CMQ(q,m, n) denotes the complexity of solving a random system
of m equations in n variables defined on Fq by using the algorithms for solving
the MQ-problem.

Attack Complexity

Direct Attack CMQ(q, o, n)
UOV-Reconciliation Attack CMQ(q, o, v)

Kipnis-Shamir Attack qv−o−1 · o4
Intersection Attack CMQ(1, ok(k + 1)/2− k(k − 1), vk − o(k − 1)

Table 4. Complexities of MQ-Sign(q, o, v) against All the Attacks.

[Implementation Attacks.] For resistance against the correlation power anal-
ysis (CPA) presented in [19], a random affine map T should be used instead of
the equivalent key. For secure implementations, the Vinegar values required in
signing must not be revealed or reused. To prevent fault attacks related to the
Vinegar values in [28], it needs to check if the designated parts of the Vinegar
values and the coefficients of the central polynomials are zero or not.

3.4 Parameter Selection

Now, we suggest secure parameters at the three security categories in Table 5.
Since the most powerful attacks all the attacks are the direct attack and the
intersection attack, we give complexity estimates for the two attacks in Table 5
and Table 6

Security level I III V

(q, o, v) (F28 , 46, 72) (F28 , 72, 112) (F28 , 96, 148)

Direct(HF5) 135.5 202.4 262.3
Intersection attack 171.883 242.9 304.5

Table 5. Suggested Parameters and Complexities of MQ-Sign(q, o, v) against Known
Attacks

Additionally, we choose another conservative parameter for the security cat-
egory I in Table 6.

Security Category I Parameter (F28 , 48, 76)

Direct Attack (Polynomila XL) 138.19
Intersection Attack 180.48

Table 6. Complexity Estimates for Conservative Parameter at Security Category I.

Key sizes and signature lengths of our scheme are given in Table 7, where
PK, SK and Sig. Size represent the sizes of public keys, secret keys and signa-
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Scheme Security Category I III V

Parameter (Fq, o, v) (F28 , 46, 72) (F28 , 72, 112) (F28 , 96, 148)
Sig. Size 134 200 260

MQ-Sign-SS PK 328, 441 1, 238, 761 2, 892, 961
SK 15, 561 37, 729 66, 421

Sig. Size 134 200 260
MQ-Sign-RS PK 328, 441 1, 238, 761 2, 892, 961

SK 133, 137 485, 281 1, 110, 709
Sig. Size 134 200 260

MQ-Sign-SR PK 328, 441 1, 238, 761 2, 892, 961
SK 164, 601 610, 273 1, 416, 181

Sig. Size 134 200 260
MQ-Sign-RR PK 328, 441 1, 238, 761 2, 892, 961

SK 282, 177 1, 057, 825 2, 460, 469

Table 7. Key/Signature Sizes of Our Schemes in Bytes.

tures, respectively. Since SS, RS, SR and RR have the different key generation
algorithms depending on the selection of FV and FOV , they different secret key
sizes. However, they share the share the same parameters which results in the
same signature size and the same public key sizes.

4 Implementation Details

We provide implementations of our scheme based on codes submitted to NIST
PQC Standardization Round 3 [26] on our target platform.

4.1 Implementation Specification

We describe implementation specifications of our schemes.

– Target Platform. The computer we have used is equipped with an In-
tel(R) Core(TM) i7-6700X CPU at the constant clock frequency of 3.40GHz
running Ubuntu 20.04LTS.

– Random Number Generation and Hashing. We use AES CTR DRBG
as the random number generator. We use SHA-2 as the underlying hash
function. In the SHA-2 hash function family, we use SHA256, SHA384, and
SHA512 with output lengths of 256, 384, and 512 bits, respectively.

– Selection of Finite Fields. We choose Fq = F28 as the underlying finite
fields.

– Use of Random Salts. We use a random salts r ∈ {0, 1}l to achieve
provable security as in [27] which should be used only once.

– Use of Equivalent Key and Linear Maps. Our implementations use a

secret key T as an equivalent key of the form T =

(
I T ′

0 I

)
and a linear
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map. While the central polynomials in our schemes except MQ-Sign-RR

have linear part F (k)
L,C and the public key has linear terms and no constant

terms, MQ-Sign-RR has no linear terms which leads to reductions in the
public/secret key sizes.

– Use of the BMI Method with depth 1. To reduce the size of matrices
for solving linear systems, we use the BMI method once by representing 2×2
block matrices. After substituting the Vinegar values into the secret poly-
nomials, we get a linear system of o equations and o variables and represent
its coefficient matrix R as

R =

(
A B
C D

)
.

After computing A−1, A−1B, C(A−1B) and [D − CA−1B]−1 via two in-
versions and two matrix multiplications of o/2 × o/2 block matrices, all
remaining computations are made by four block matrix-vector products as

A−1 · α = β, C · β,

[D − CA−1B]−1 · γ, (A−1B) · γ′.

If A or [D − CA−1B] is not invertible, it has to choose new Vinegar values
and goes back to the first step.

– Constant-time Implementation. As in Rainbow implementation [26], all
key dependent operations are performed in a time-constant manner. There-
fore, our implementation is immune against timing attacks.

4.2 Implementation Results

We provide reference implementations and optimized implementations using
AVX2 of our scheme on the target platform.

– The results presented in Table 8 and 9 include the numbers of CPU cycles
required by the key generation, signing and verification.

– Each result of signing and verification (resp. key generation) is an average
of 100,000 (resp. 10,000) measurements using the C programming language
with GNU GCC version 9.4.0 compiler. Hyperthreading and Turbo Boost
are switched off.

– Since our scheme provides different selection of secret keys in KeyGen, Table
7 and Table 8 show different results for key generation and signing. However,
they share the same verification algorithm and the same parameters which
result in the same performance in verification.
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Scheme Security Category I III V

MQ-Sign-SS
KeyGen. 71,776,432 270,212,460 678,570,779

Sign 464,141 1,013,754 1,818,507
Verify 1,243,091 3,125,277 5,545,017

MQ-Sign-RS
KeyGen. 75,439,328 285,318,117 709,862,234

Sign 1,035,362 2,276,898 4,124,725
Verify 1,243,091 3,125,277 5,545,017

MQ-Sign-SR
KeyGen. 76,237,178 288,902,825 717,203,934

Sign 201,834 707,959 1,486,775
Verify 1,243,091 3,125,277 5,545,017

MQ-Sign-RR
KeyGen. 79,864,302 302,322,971 755,934,235

Sign 1,303,024 3,333,303 6,577,958
Verify 1,243,091 3,125,277 5,545,017

Table 8. Reference Implementations of Our Scheme in CPU cycles.

Scheme Security Category I III V

MQ-Sign-SS
KeyGen. 6,046,385 25,506,351 62,972,759

Sign 154,645 378,634 471,085
Verify 71,267 232,377 401,412

MQ-Sign-RS
KeyGen. 9,026,556 38,892,327 95,016,980

Sign 174,790 447,656 626,373
Verify 71,267 232,377 401,412

MQ-Sign-SR
KeyGen. 10,222,889 43,634,459 104,441,512

Sign 166,987 417,445 630,000
Verify 71,267 232,377 401,412

MQ-Sign-RR
KeyGen. 13,493,778 56,071,342 138,481,524

Sign 184,761 491,738 708,415
Verify 71,267 232,377 401,412

Table 9. Optimized Implementations of Our Scheme using AVX2 in CPU cycles.

5 Conclusion

We propose a new MQ-signature scheme based on UOV with a single layer with
shorter secret key size and faster signing performance. Our scheme uses the
block inversion method using half-sized blockmatrices and sparse polynomials
to improve signing performance and reduce the secret key size, respectively.
It provides fast signing and verification performance. Signature length of our
scheme is the shortest among post-quantum signature schemes based on the
other hard problems.
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