
HAETAE: Hyperball bimodAl modulE rejecTion
signAture schemE⋆

Jung Hee Cheon1,2, Hyeongmin Choe1, Julien Devevey3, Tim Güneysu4,
Dongyeon Hong2, Markus Krausz4, Georg Land4, Junbum Shin2, Damien

Stehlé3,5, and MinJune Yi1,2

1 Seoul National University
{jhcheon, sixtail528, yiminjune}@snu.ac.kr

2 Crypto Lab Inc.
{decenthong93, junbum.shin}@cryptolab.co.kr

3 École Normale Supérieure de Lyon
{julien.devevey, damien.stehle}@ens-lyon.fr

4 Ruhr Universität Bochum
{tim.gueneysu, Markus.Krausz, Georg.Land}@rub.de

5 Institut Universitaire de France

Abstract. We present HAETAE, a new lattice-based signature scheme,
that we are submitting to Korean Post-Quantum Cryptography Competi-
tion for Korean standards. While based on the Fiat-Shamir with Aborts
paradigm like the NIST-selected Dilithium signature scheme, our design
choices depart from it and aim for an improved complexity/compactness
compromise. For the same security levels, our scheme has signature sizes
30% to 40% smaller and verification key sizes 20% smaller. (These figures
are for the same number of repetitions as Dilithium.) Even if we rely on
somewhat more complex operations, we expect our optimized version to
run as fast as Dilithium. Moreover, most operations remain relatively
simple, which should ease constant-time implementations and masking.

Keywords: Lattice Cryptography · Post-Quantum Cryptography ·
Digital Signatures.

1 Introduction

We introduce HAETAE, a new post-quantum digital signature scheme, whose
security is based on the hardness of the module versions of the lattice problems
LWE and SIS [BGV12, LS15]. The scheme design follows the “Fiat-Shamir with
Aborts” paradigm [Lyu09, Lyu12], which relies on rejection sampling: rejection
sampling is used to transform a signature trial whose distribution depends
on sensitive information, into a signature whose distribution can be publicly
simulated. Our scheme is in part inspired from CRYSTALS-Dilithium [DKL+18], a

⋆ This work is submitted to the ‘Korean Post-Quantum Cryptography Competition’
(www.kpqc.or.kr).

www.kpqc.or.kr

2 J.H. Cheon et al.

post-quantum “Fiat-Shamir with Aborts” signature scheme which was selected for
standardization by the American National Institute of Standards and Technology
(NIST). HAETAE differs from Dilithium in two major aspects: (i) we use a
bimodal distribution for the rejection sampling, like in the BLISS signature
scheme [DDLL13], instead of a “unimodal” distribution like Dilithium, (ii) we
sample from and reject to hyperball uniform distributions, instead of discrete
hypercube uniform distributions. This last aspect also departs from BLISS, which
relies on discrete Gaussian distributions, and follows a suggestion from [DFPS22],
which studied rejection sampling in lattice-based signatures following the “Fiat-
Shamir with Aborts” paradigm.

1.1 Design rationale

A brief recap on Fiat-Shamir with Aborts. The Fiat-Shamir with Aborts
paradigm was introduced in lattice-based cryptography in [Lyu09, Lyu12]. The
verification key is a pair of matrices (A,T = AS mod q), where A is a uniform
matrix modulo some integer q and S is a small-magnitude matrix that makes
up the secret key. A signature for a message M is comprised of an integer
vector z of the form y + Sc, for some random small-magnitude y and some
small-magnitude challenge c = H(Ay mod q,M). Rejection sampling is then
used to ensure that the distribution of the signature becomes independent from
the secret key. Finally, the verification algorithm checks that the vector z is short
and that c = H(Az−Tc mod q,M).

Improving compactness. As analyzed in [DFPS22], The choice of the
distributions to sample from and reject to has a major impact on the signature
size. Dilithium relies on discrete uniform distributions in hypercubes, which
makes the scheme easier to implement. However, such distributions are far from
optimal in terms of resulting signature sizes. We choose a different trade-off: by
losing a little on ease of implementation, we obtain more compact signatures.

Uniform distributions in hyperballs. A possibility would be to consider
Gaussian distributions, which are superior to uniform distributions in hypercubes,
in terms of resulting signature compactness (see, e.g., [DFPS22]). However, this
choice has two downsides. First, the rejection step involves the computation
of a transcendental function on an input that depends on the secret key. This
is cumbersome to implement and sensitive to side-channel attacks [EFGT17].
Second, since the final signature follows a Gaussian distribution there is a nonzero
probability that the final signature is too large and does not pass the verification.
The signer must realise that and reject the signature, making the expected number
of rejects slightly grow in practice. Uniform distributions over hyperballs have
been put forward in [DFPS22] as an alternative choice of distributions leading
to signatures with compactness between those obtained with Gaussians and
those obtained with hypercube uniforms. Compared to Gaussians, they do not
suffer from the afore-mentioned downsides: the rejection step is simply checking

HAETAE 3

whether Euclidean norms are sufficiently small; and as there is no tail, there is
no need for an extra rejection step to ensure that verification will pass. HAETAE
showcases that this provides an interesting simplicity/compactness compromise.

Bimodal distributions. A modification of Lyubashevsky’s signatures [Lyu09,
Lyu12] introduced in [DDLL13] allows for the use of bimodal distributions in the
signature generation. The signature is now of the form y + (−1)bSc, where y
is sampled from a fixed distribution and b ∈ {0, 1} is sampled uniformly. The
signature is then rejected to a given secret-independent target distribution.
To make sure that the verification test passes, computations are performed
modulo 2q and key generation forces the equality AS = qId. It turns out that
this modification can lead to more compact signatures than the unimodal setup.
In [DDLL13], the authors relied on discrete Gaussian distributions. We instead
use uniform distributions over hyperballs: like for Gaussians, switching from
unimodal to bimodal for hyperball-uniforms leads to more compact signatures.

Flexible design by working with modules. The original design for
BLISS [DDLL13] relies on Ring-LWE and Ring-SIS, and a variant of the key
generation algorithm relied on ratios of polynomials, à la NTRU. This setup
forces to choose a working polynomial ring for any desired security level. In order
to offer more flexibility without losing in terms of implementation efficiency, we
choose to rely on module lattices, like Dilithium, with a fixed working polynomial
ring R = Z[x]/(x256+1) across all security levels. In our instantiations, we target
the NIST PQC security levels 2, 3 and 5. Varying the security and updating the
parameters is easily achievable and we provide a security estimator that is able
to help one reach a given target security.

A compact verification key. The flexibility provided by modules allows us
to reduce the verification key size. Instead of taking the challenge c as a vector
over R, we choose it in R: the main condition on the challenge is that it has high
min-entropy, which is already the case for binary vectors over R. As a result, the
secret S can be chosen as a vector over R rather than a matrix. The key-pair
equation AS = qId then becomes As = qj, where j is the vector starting with 1
and then continuing with 0’s. Our key generation algorithm just creates an MLWE
sample (Agen,b = Agensgen + egen) modulo q. The k× (k+ ℓ) matrix A is defined
as A = (−2b+ qj | 2Agen | 2Idk) mod 2q. It can be checked that the key-pair
equation is indeed satisfied, for s = (1 | sgen | egen). The verification key consists
of (Agen,b). As Agen is uniformly distributed, we can generate it from a seed
using an extendable output function, and the verification key is reduced to the
seed and the vector b. If we had kept the original key-pair equation AS = qId,
then the appropriately modified variant of our key-generation algorithm would
have led to a verification key that is a matrix (with a seed) rather than a vector
(with a seed).

Compression techniques to lower the signature size. We use two techniques
to compress the signatures. First, as the verification key A is in (almost)-HNF,

4 J.H. Cheon et al.

we can use the Bai-Galbraith technique [BG14]. Namely, the second part of the
signature, which is multiplied by 2Id in the challenge computation and verification
algorithm, can be aggressively compressed by cutting its low bits. This requires in
turn to modify the computation of the challenge c and the verification algorithm,
in order to account for this precision loss. Usually, this is done by keeping only
the high bits of Ay in the computation of the challenge. However, as we multiply
everything by 2, we do not keep the lowest bit of those high bits and keep the
(overall) least significant bit instead. As opposed to Dilithium, our decomposition
of bits technique is a simple Euclidean division with centered remainder, for a
well-chosen divisor. The second compression technique, suggested in [ETWY22]
in the context of lattice-based hash-and-sign signatures, concerns the choice of
the binary representation of the signature. As the largest part of it consists in
a vector that is far from being uniform, we can choose some entropic coding to
obtain a signature size close to its entropy. In particular, as in [ETWY22], we
choose the efficient range Asymmetric Numeral System to encode our signature,
as it allows us to encode the whole signature and not lose a fraction of a bit per
vector coordinate, like with Huffman coding.

Efficient choice of modulus. We choose the prime q to be a good prime in
the sense that the ring operations can be implemented efficiently and that the
decomposition of bits algorithms, are correctly operated. For ring operations, we
use the Number Theoretic Transform (NTT) with a fully splitting polynomial ring.
The polynomial ring R fully splits modulo q when the multiplicative group Z×

q

has an element of order 512, or equivalently when q = 1 mod 512. We choose
q = 64513, which indeed satisfies this property. Interestingly, it fits in 16 bits,
which allows dense storing on embedded devices. Furthermore, it is close to the
next power of two, which is convenient for sampling of uniform integers modulo q.

Deterministic and randomized version. HAETAE can be set in a determin-
istic or randomized mode. We focus on the deterministic version, but we also
give the randomized version. Note that in the randomized version, a significant
part of the signing algorithm can be executed off-line as it does not depend on
the message.

We give estimated security as well as sizes for our parameter sets in Table 1.
The full parameters sets can be found in Section 3.2. The security of our signature
is stated in terms of Core-SVP hardness, as introduced in [ADPS16]. We target
the core-SVP classical hardness of the known attacks against the three proposed
instantiations of HAETAE to be at least 120, 180 and 260, respectively. The
numbers between parentheses refer to the strong unforgeability in the case of the
randomized version of the signature scheme (for the deterministic version, strong
and weak unforgeability are the same). The parameter η refers to the infinity
norm of the secret key sgen. The parameter τ refers to the Hamming weight of the
binary challenge c ∈ R. The sizes are given in bytes. For the signature sizes, we
first give the signature sizes currently implemented in the attached code, without

HAETAE 5

rANS coding. We also give the expected signature sizes when using rANS coding,
which we are working on.

Parameters sets HAETAE120 HAETAE180 HAETAE260
Target security 120 180 260

q 64513 64513 64513
(k, ℓ) (2,4) (3,6) (4,7)
η 1 1 1
τ 39 49 60

Classical hardness of forging 123 (100) 189 (156) 258 (216)
Quantum hardness of forging 108 (87) 166 (137) 227 (190)

Classical hardness of key-recovery 125 236 288
Quantum hardness of key-recovery 109 208 253

Signature size without rANS 3040 4064 5792
Expected Signature size with rANS 1473 2268 2737

Public key size 1056 1568 2080
Expected |sig|+ |vk| 2529 3836 4817

Table 1: Security and sizes for our parameters sets

1.2 Advantages and limitations

Advantages

– Our scheme relies on the difficulty of hard lattice problems, which have been
well-studied for a long time.

– Signature sizes are 30% to 40% smaller than those of Dilithium at comparable
security levels, and verification keys are 20% percent smaller.

– Implementation-wise, while our design rationale departs from Dilithium’s,
the scheme remains implementation-friendly. In particular,
• the rejection step only involves computations of Euclidean norms,
• the decomposition of bits technique does not present any special case,
• a significant message-independent part of signing can be performed “off-
line”, for the randomized version of the scheme.

Comparison with Hash and Sign lattice signatures. In terms of ease of
implementation, our scheme favorably compares to lattice signatures based
on the hash and sign paradigm such as Falcon [FHK+17] and Mitaka [EFG+22].
HAETAE, Falcon and Mitaka all three rely on some form of Gaussian sampling,
which are typically difficult to implement and protect against side-channel attacks.
Falcon makes sequential calls to a Gaussian sampler over Z with arbitrary centers.
Mitaka also relies on an integer Gaussian sampler with arbitrary centers, but
the calls to it can be massively parallelized. It also uses a continuous Gaussian
sampler, which is arguably simpler. HAETAE only relies on a (zero-centered)

6 J.H. Cheon et al.

continuous Gaussian sampler, used to sample uniformly in hyperballs. The calls
to it can also be massively parallelized. Further, in the randomized version of the
signature scheme, these samples can be computed off-line as they are independent
from the message to be signed. The on-line tasks are far simpler than those of
Falcon and Mitaka. Finally, we note that key-generation is simpler for HAETAE
than in Falcon and Mitaka.

Limitations

– Our uniform distributions over hyperballs are over a discrete set. But to
sample from it, we make use of computations over real numbers, which
in practice are instantiated with floating-point numbers. Compared to
Dilithium, this leads to implementation complications (approximations to real
numbers) and analysis complications (computation of a sufficient precision
to maintain security). As a work in progress, we are working on finding the
best compromise between precision of the sampling, accuracy of the resulting
distribution and efficiency.

– The key generation algorithm restarts if the largest singular value of the
secret key is too large. While we chose our parameters such that this occurs
only once on average, this is making the key generation algorithm slower
than Dilithium’s.

Comparison with Hash and Sign signatures. While HAETAE is simpler from an
implementation perspective, its verification key and signature sizes are larger
than Falcon’s and Mitaka’s.

HAETAE 7

2 Preliminaries

2.1 Notations

Matrices are denoted in bold font and upper case letters (e.g., A), while vectors
are denoted in bold font and lower case letters (e.g., y or z1). The i-th component
of a vector is denoted with subscript i (e.g., yi for the i-th component of y).

We define a polynomial ring R = Z[x]/(xn + 1) where n is a power of 2
integer and the quotient ring Rq = Z[x]/(q, xn + 1) = Zq[x]/(x

n + 1) for a
positive integer q. For q = 2, we abuse notations and identify R2 with the set of
elements in R with binary coefficients. We also define a polynomial ring over real
numbers RR = R[x]/(xn + 1). For an integer η, we let the set of polynomials of
degree less than n with coefficients in [−η, η] ∩ Z be denoted by Sη. For a vector

y = (
∑n−1

i=0 yi x
i, · · · ,

∑n−1
i=0 ynk−n+i x

i)⊤ ∈ Rk (or Rk
R), we define its ℓ2-norm

as the ℓ2-norm of the corresponding “flattened” vector ∥y∥2 = ∥(y0, · · · , ynk)⊤∥2.
Let BR,m(r, c) = {x ∈ Rm

R |∥x− c∥ ≤ r} denote the (continuous) hyperball
with radius r > 0 and center c ∈ Rm in dimension m > 0. When c = 0, we omit
it. Let B(1/N)R,m(r, c) = (1/N)Rm ∩ BR,m(r, c) denote the discretized hyperball
with radius r > 0 and center c ∈ Rm in dimension m > 0 with respect to a
positive integer N . When c = 0, we omit it. Given a measurable set X ⊆ Rm of
finite volume, we let U(X) denote the continuous uniform distribution over X.
It admits x 7→ χX(x)/Vol(X) as a probability density, where χX is the indicator
function of X and Vol(X) is the volume of the set X. For the normal distribution
over R centered at µ with standard deviation σ, we use the notation N (µ, σ).

For a positive integer α, we define r mod± α as the unique integer r′ in
the range [−α/2, α/2) satisfying r = r′ mod α. We also define r mod+ α as the
unique integer r′ in the range [0, α) satisfying r = r′ mod α. We naturally extend
this to integer polynomials and vectors of integer polynomials, by applying it
component-wise.

For a vector y = (y1, · · · , ynk)⊤ ∈ Rk
R, we define the matrix rot(y) ∈ Rnk×n

such that the (ni+ j, k) entry is the (j− k)-degree coefficient of yi−1 if j− k ≥ 0,
and the opposite of the (n+j−k)-degree coefficient for 0 ≤ i < n and j, k ∈ [1, n].
We let the largest singular value of a real-valued matrix S be denoted by σmax(S).

2.2 Lattice assumptions

We first recall the well-known lattice assumptions MLWE and MSIS on algebraic
lattices, and the SelfTargetMSIS assumption from [KLS18].

Definition 1 (Decision-MLWEn,q,k,ℓ,η). For positive integers q, k, ℓ, η and the
dimension n of R, we say that the advantage of an adversary A solving the
decision-MLWEn,q,k,ℓ,η problem is

AdvMLWE
n,q,k,ℓ,η(A) =

∣∣Pr [b = 1 | A← Rk×ℓ
q ;b← Rk

q ; b← A(A,b)
]

− Pr
[
b = 1 | A← Rk×ℓ

q ; (s1, s2)← Sℓ
η × Sk

η ; b← A(A,As1 + s2)
] ∣∣.

8 J.H. Cheon et al.

Definition 2 (Search-MSISn,q,k,ℓ,β). For positive integers q, k, ℓ, a positive real
number β and the dimension n of R, we say that the advantage of an adversary A
solving the search-MSISn,q,k,ℓ,β problem is

AdvMSIS
n,q,k,ℓ,β(A) = Pr

[
0 < ∥y∥2 < β ∧

(A | Idk) · y = 0 mod q
A← Rk×ℓ

q ;y← A(A)

]
.

2.3 Bimodal Hyperball Rejection Sampling

Recently, Devevey et al. [DFPS22] conducted a study of rejection sampling in
the context of lattice-based Fiat-Shamir with aborts signatures. They observe
that (continuous) uniform distributions over hyperballs can be used to obtain
compact signatures, with a relatively simple rejection procedure. HAETAE uses
(discretized) uniform distributions over hyperballs, in the bimodal context. A
proof of the following lemma is available in Appendix B.

Lemma 1 (Bimodal Hyperball Rejection Sampling). Let n be the degree
of R, c > 1, r, t,m > 0, and r′ ≥

√
r2 + t2. Define M = 2(r′/r)mn and set

N ≥ 1

c1/(mn) − 1

√
mn

2

(
c1/(mn)

r
+

1

r′

)
.

Let v ∈ Rm ∩ B(1/N)R,m(t). Let p : Rm → {0, 1/2, 1} be defined as follows

p(z) =

0 if ∥z∥ ≥ r,

1/2 if ∥z− v∥ < r′ ∧ ∥z+ v∥ < r′,

1 otherwise.

Then there exists M ′ ≤ cM such that the output distributions of the two algorithms
from Figure 2 are identical.

−v v

Fig. 1: The HAETAE eyes

Figure 1 illustrates (the continuous version) of the rejection sampling that
we consider. The black circles have radii equal to r′ and the pink circle has

HAETAE 9

radius r. We sample a vector z uniformly inside one of the black circles (with
probability 1/2 for each) and keep z with p(z) = 1/2 if z lies in the blue zone,
with probability p(z) = 1 if it lies inside the pink circle but not in the blue zone,
and with probability p(z) = 0 everywhere else.

A(v) :
1: y← U(B(1/N)R,m(r′))
2: b← U({0, 1})
3: z← v + (−1)by
4: Return z with probability p(z)
5: Else return ⊥

B :

1: z← U(B(1/N)R,m(r))
2: Return z with probability 1/M ′

3: Else return ⊥

Fig. 2: Bimodal hyperball rejection sampling

As we do not know the exact value of M ′, we cannot use algorithm B as a
signature simulator in the security proof of HAETAE. Note that in the security
proofs of lattice-based Fiat-Shamir with Aborts signatures, it is required to have
an efficient simulator that simulates all iterations of the signature algorithm.
Hence, simply replacing B with a version that always output z does not suffice.
Our proposal is to use A(0) as efficient simulator: as 0 has norm at most t for
any t > 0, algorithm A(0) has statistical distance 0 with B and thus with A(v)
for any v with norm ≤ t.

2.4 Sampling in a Hyperball

Lattice cryptography often relies on Gaussian distributions. As we depart from
this choice, we explain how to sample uniformly on a hyperball, i.e., how we
generate the sample y from Figure 2.

y← U(B(1/N)R,m(r′))

1: y← U(BR,m(Nr′ +
√
mn/2))

2: If ∥⌊y⌉∥2 ≤ Nr′, return ⌊y⌉/N
3: Else, restart

Fig. 3: Discrete hyperball uniform sampling

Lemma 2. Let n be the degree of R, M0 ≥ 1, r′,m > 0 and set

N ≥
√
mn

2r′
· M

1/(mn)
0 + 1

M
1/(mn)
0 − 1

.

At each iteration, the algorithm from Figure 3 succeeds with probability ≥ 1/M0.
Moreover, the distribution of the output is U(B(1/N)R,m(r′)).

10 J.H. Cheon et al.

The proof of this lemma can also be found in Appendix B.

Now that we reduced the problem of uniformly sampling over a discretized
hyperball to the case of the continuous hyperball, we explain how to do so.
Multiple strategies exist and the one we choose is such that a k-dimensional
module sample is obtained using only kn+2 one-dimensional continuous Gaussian
samples.

y← U(BR,k(r
′′))

1: yi ← N (0, 1) for i = 0, · · · , nk + 1
2: L← ∥(y0, · · · , ynk+1)

⊤∥2
3: y← r′′/L · (

∑n−1
i=0 yi x

i, · · · ,
∑n−1

i=0 ynk−n+i x
i)⊤ ∈ Rk

R

4: Return y

Fig. 4: Hyperball uniform sampling

Lemma 3 ([VGS17]). The distribution of the output of the algorithm in
Figure 4 is U(BR,k(r

′′)).

Using Lemma 2.4, we can conclude that if use the algorithms in Figures 1
to 4 and if we can sample from a normal distribution correctly, then the resulting
distribution of z is indeed the uniform sample from the discretized hyperball.
However, floating-point arithmetic used in normal distribution sampling and
Steps 2 and 3 introduces numerical errors. We are currently working on analyzing
these errors and on how large the precision should be to provably maintain
security.

2.5 High, Low and Least Significant Bits

In our scheme, we compress part of the signature by sending only the so-
called “high” bits of it. While our technique may be reminiscent of the one
from Dilithium [DKL+18], it is somewhat simpler to implement, as no special
case needs to be considered. We first recall the Euclidean division with centered
remainder.

Lemma 4. Let a ≥ 0 and b > 0. It holds that

a =

⌊
a+ b/2

b

⌋
· b+ (a mod± b),

and this writing as a = bq + r with r ∈ [−b/2, b/2) is unique.

This lets us define our decomposition.

Definition 3 (High, low and least significant bits). Let r ∈ Z. Let r2 =
⌊(r+α/2)/α⌋, r′ = r mod± α, r0 = r′ mod+ 2, and r1 = (r′− r0)/2. We define:

(LSB(r), LowBits(r, α),HighBits(r, α)) = (r0, r1, r2).

HAETAE 11

In HAETAE, we will LSB2q, LowBits2q and HighBits2q defined over Z2q as

LSB2q(r) = LSB2q(r mod+ 2q), LowBits2q(r, α) = LowBits(r mod+ 2q, α) and
HighBits2q(r, α) = HighBits(r mod+ 2q, α). We extend these definitions to vectors
by applying it component-wise. We state that this decomposition lets us recover
the original element and bound the components of the decomposition.

Lemma 5. Let α ≥ 4 a multiple of 4. Let q > 2 with 2q−1 < ⌊(2q−1)/α⌋α+α/2
and r ∈ [0, 2q). Then it holds that

r = α · HighBits(r, α) + 2 · LowBits(r, α) + LSB(r),

LowBits(r, α) ∈ [−α/4, α/4),
HighBits(r, α) ∈ [0, ⌊(2q − 1)/α⌋] .

Finally, we also have
HighBits(uα+ v, α) = u

for any integers u ≥ 0 and v ∈ {0, 1}.

Proof. Let r′ = r mod± α. By definition, we have

r′ = 2 · LowBits(r, α) + LSB(r).

By Lemma 4, there exists a unique representation

r = ⌊(r + α/2)/α⌋α+ (r mod± α).

By definition of HighBits(r, α), rewriting the above equations yields the first
result.

By definition of mod ±, we have that r′ ∈ [−α/2, α/2). As α/2 is even and
r0 = r′ mod+ 2, we obtain that r′ − r0 ∈ [−α/2, α/2). This leads to the claimed
range for LowBits(r, α).

For the second range, since ⌊(r + α/2)/α⌋ is a non-decreasing function, it
suffices to show that ⌊(2q − 1 + α/2)/α⌋ ≤ ⌊(2q − 1)/α⌋. By assumption on q,
we have (2q − 1 + α/2) ≤ ⌊(2q − 1)/α⌋α+ α− 1. Dividing by α and taking the
floor yields the result.

Finally, for u ≥ 0 and v ∈ {0, 1}, we have

HighBits(uα+ v, α) = u+ ⌊(α/2 + v)/α⌋ = u,

since 0 < α/2 + v < α. ⊓⊔

Note that LSB(r) = LSB(r + 2y) for any r and y.

2.6 Signature Encoding via range Asymmetric Numeral System

In order to encode a signature, we will split it between its low and high bits.
If we choose the number of low bits correctly, they will be distributed almost
uniformly. We recall a specific type of entropy coding, named range Asymmetric
Numeral systems (rANS) [Dud13]. When used to encode multiple coordinates
that are identically distributed, rANS can be more efficient than Huffman coding
applied on each coordinate.

12 J.H. Cheon et al.

Definition 4 (Range Asymmetric Numeral System (rANS) Coding). Let
n > 0 and S ⊆ [0, 2n−1]. Let f : [0, 2n−1]→ Z∩(0, 2n] such that

∑
x∈S f(x) ≤ 2n

and f(x) = 0 for all x /∈ S. We define the following:

• CDF : S → Z, defined as CDF(s) =
∑s−1

y=0 f(y).
• symbol : Z → S, where symbol(y) is defined as s ∈ S satisfying CDF(s) ≤

y < CDF(s+ 1).
• C : Z× S → Z, defined as

C(x, s) =

⌊
x

f(s)

⌋
· 2n + (x mod+ f(s)) + CDF(s).

Then, we define the rANS encoding/decoding for the set S and frequency f/2n as
in Figure 5.

Encode((s1, · · · , sm) ∈ Sm)

1: x0 = 0
2: for i = 0, · · · ,m− 1 do
3: xi+1 = C(xi, si+1)
4: Return xm

Decode(x ∈ Z)
1: y0 = x
2: i = 0
3: while yi > 0 do
4: ti+1 = symbol(yi mod+ 2n)
5: yi+1 = ⌊yi/2n⌋ · f(ti+1) + (yi mod+ 2n)− CDF(ti+1)
6: i← i+ 1
7: m = i− 1
8: Return (tm, · · · , t1) ∈ Sm

Fig. 5: rANS encoding and decoding procedures

Lemma 6 (Adapted from [Dud13]). The rANS coding is correct and the size
of the rANS code is asymptotically equal to Shannon entropy of the symbols. That
is, for any choice of s = (s1, · · · , sm) ∈ Sm, Decode(Encode(s)) = s. Moreover,
for any positive x and any probability distribution p over S, it holds that∑

s∈S

p(s) log(C(x, s)) ≤ log(x) +
∑
s∈S

p(s) log

(
f(s)

2n

)
+

2n

x
.

Finally, the cost of encoding the first symbol is ≤ n, i.e., for any x ∈ S, we have
log(C(0, s)) ≤ n.

We apply this strategy to the high bits of the coordinates of a vector sampled
following the rounding of a uniformly distributed over a discretized hyperball

HAETAE 13

sample. We rely on a few heuristics. First, we choose to ignore the dependency
between the coordinates, as we do not know how to handle it. We note that
this dependency is likely to be limited, in the sense that it should heuristically
become significant only when considering many coordinates. Second, we estimate
the probability mass function ps by replacing the discretized hyperball with the
continuous one. Finally, we apply some rounding strategy to compute f such that
the average overcost per coordinate caused by this rounding is almost negligible.
We give the script used to compute the look-up tables as a supporting script of
this submission. Please refer to the file “helper script/compute rans table.py”.

14 J.H. Cheon et al.

3 Specification

Readers who are not familiar with the Fiat-Shamir with Aborts line of work may
first check the uncompressed version of the scheme in Appendix A to get a first
approach on HAETAE.

We give the high-level description of our signature scheme in Figure 6. In
all of the following sections, we let j = (1, 0, . . . , 0) ∈ Rk. The parameters ρ
and α refer to the size of the seed and the compression factor, respectively. The
parameter γ is the maximum allowed value for σmax(rot(s)), which ensures that
∥sc∥2 ≤ γ wt(c) for all c ∈ R2. The parameters B, B′, and B′′ refer to radii of
hyperballs. At Step 2 of the Sign algorithm, the variable y0 ∈ RR refers to the
first component of the vector y ∈ Rk+ℓ

R . At Step 3 of the Sign algorithm, the

vector z ∈ Rk+ℓ
R is decomposed as z = (z⊤1 , z

⊤
2)

⊤ with z1 ∈ Rℓ
R and z2 ∈ Rk

R. At
Step 3 of the Verify algorithm, the variable z̃0 ∈ R refers to the first component
of the vector z̃ ∈ Rk+ℓ.

We assume that q and α satisfy the assumptions from Lemma 5.

KeyGen(1λ)

1: Agen ←Rk×(ℓ−1)
q and (sgen, egen)← Sℓ−1

η × Sk
η

2: b = Agen · sgen + egen ∈ Rk
q

3: A = (−2b+ qj |2Agen |2Idk) and write A = (A1 | 2Idk)
4: s = (1, s⊤gen, e

⊤
gen)

⊤

5: if σmax(rot(sgen)) > γ, then restart
6: Return sk = s, vk = A

Sign(sk,M)

1: y← U(B(1/N)R,(k+ℓ)(B))
2: c = H(HighBits2q(A⌊y⌉, α), LSB2q(⌊y0⌉ · j),M) ∈ R2

3: z = (z⊤1 , z
⊤
2)

⊤ = y + (−1)bc · s for b← U({0, 1})
4: h = HighBits2q(A⌊z⌉ − qcj, α)− HighBits2q(A1⌊z1⌉ − qcj, α) ∈ Rk

5: if ∥z∥2 ≥ B′, then restart
6: if ∥2z− y∥2 < B, then restart with probability 1/2
7: Return σ = (Encode(HighBits(⌊z1⌉, a)), LowBits(⌊z1⌉, a), LSB(⌊z1⌉),h, c)

Verify(vk,M, σ = (x,v,w,h, c))

1: z̃1 = Decode(x) · 2a + 2v +w
2: z̃2 = (h · α− 2 · LowBits2q(A1z̃1 − qcj, α)) /2 mod q
3: z̃ = (z̃⊤1 |z̃⊤2)⊤
4: h′ = LSB2q((z̃0 − c)j)
5: Return

(
c = H(HighBits2q(Az̃− qcj, α),h′,M)

)
∧ (∥z̃∥ < B′′)

Fig. 6: High-level description of HAETAE

HAETAE 15

3.1 Specification of HAETAE

We now give the full description of the signature scheme HAETAE in Figure 7
with the following building blocks:

• Hash function Hgen for generating the seeds and hashing the messages,
• Hash function H for signing, returning c ∈ R2 with Hamming weight ≤ τ ,
• Extendable output function expandA for deriving Agen from seedA,
• Extendable output function expandS for deriving s from seedsk, such that
σmax(rot(s)) ≤ γ,
• Extendable output function expandYbb for deriving y, b and b′ from seedybb
and counter,

The above building blocks can be implemented with symmetric primitives.
For the expandSγ function, however, there should be rejection sampling on the
sampled secret to bound the size of the signature. If we bound the largest singular
value of s as σmax(Rot(s)) ≤ γ, then we can bound ∥cs∥2 ≤ γ · τ . The secret will
be sampled and tested whether the inequality holds. If it fails then restart (using
extra pseudo-randomness). Note that γ is set to be the median of σmax(Rot(s))
for randomly chosen s ∈ Sk+ℓ

η with always 1 in the first component.

Note that at Step 3 of the Verify algorithm, the division by 2 is well-defined
as the operand is even and defined modulo 2q.

We also give a fully randomized version of our scheme in Figure 8. It uses
only expandA and Hgen among the above building blocks. We observe that in the
randomized version signing process, the sampling algorithms for y and b can be
performed “off-line”, i.e., before receiving a message M to be signed. The same
holds for other computations such as HighBits2q(A⌊y⌉, α) and LSB2q(⌊y0⌉ · j). In
the “on-line” phase of signing, we can use y and b by choosing them randomly
among the pre-sampled samples.

Lemma 7. We borrow the notations from Figure 7. If we run Verify(vk,M, σ)
on the signature σ returned by Sign(sk,M) for an arbitrary message M and an
arbitrary key-pair (sk, vk) returned by KeyGen(1λ), then the following relations
hold:

1) HighBits2q(Az̃− qcj, α) = HighBits2q(A⌊z⌉ − qcj, α),
2) ⌊z2⌉ − z̃2 = LowBits2q(Az̃− qcj, α) if B′ + α/4 ≤ B′′ < q/2,
3) h′ = LSB2q(⌊y0⌉ · j).

Proof. Let us prove the first statement. Let w = A1⌊z1⌉ − qcj. We have,
modulo 2q:

Az̃− qcj = w + 2z̃2

= w + h · α− 2 · LowBits2q(w, α)

= LSB2q(w) + HighBits2q(A⌊z⌉ − qcj, α) · α,

where we used the definition of h. Hence, it stems from Lemma 5 that,

HighBits2q(Az̃− qcj, α) = HighBits2q(A⌊z⌉ − qcj, α).

16 J.H. Cheon et al.

KeyGen(1λ)

1: seed← {0, 1}ρ
2: (seedA, seedsk,K) = Hgen(seed)

3: Agen ∈ Rk×(ℓ−1)
q := expandA(seedA)

4: s = (1, sgen, egen) ∈ 1× Sℓ−1
η × Sk

η := expandSγ(seedsk) // s ∈ Sk+ℓ
η

5: b = Agen · sgen + egen mod q // b ∈ Rk
q

6: A = (A1| 2 Idk) = (−2b+ qj| 2Agen| 2Idk) mod 2q // A ∈ Rk×(k+ℓ)
2q

7: Return sk = (A,K, s), vk = (seedA,b)

Sign(sk,M)

1: µ = Hgen(seedA,b,M)
2: seedybb = Hgen(K,µ)
3: σ =⊥, counter = 0
4: while σ =⊥ do
5: (y, b, b′) ∈ (B(1/N)R,(k+ℓ)(B))× {0, 1}2 := expandYbb(seedybb, counter)
6: c = H(HighBits2q(A⌊y⌉, α), LSB2q(⌊y0⌉ · j), µ) // c ∈ R2

7: z = (z⊤1 , z
⊤
2)

⊤ = y + (−1)bc · s
8: h = HighBits2q(A⌊z⌉ − qcj, α)− HighBits2q(A1⌊z1⌉ − qcj, α) // h ∈ Rk

9: if ∥z∥2 ≥ B′, then σ =⊥
10: if ∥2z− y∥2 < B and b′ = 0, then σ =⊥
11: else σ = (Encode(HighBits(⌊z1⌉, a)), LowBits(⌊z1⌉, a), LSB(⌊z1⌉),h, c)
12: counter++
13: Return σ

Verify(vk,M, σ = (x,v,w,h, c))

1: z̃1 ← Decode(x) · 2a + 2v +w
2: A1 = (−2b+ qj | 2 · expandA(seedA)) mod 2q
3: z̃2 = (h · α− 2 · LowBits2q(A1z̃1 − qcj, α)) /2 mod± q
4: z̃ = (z̃⊤1 |z̃⊤2)⊤
5: h′ = LSB2q((z̃0 − c)j)
6: Return

(
c = H(HighBits2q(Az̃− qcj, α),h′, Hgen(seedA,b,M))

)
∧ (∥z̃∥ < B′′)

Fig. 7: Deterministic version of HAETAE

We move on to the second statement. By successively using the form of A
and the definitions of z̃2 and h, and Lemma 5, we obtain, modulo 2q:

2⌊z2⌉ − 2z̃2 = A⌊z⌉ − qcj− (w + 2z̃2)

≡ A⌊z⌉ − qcj− (HighBits2q(w, α) · α+ LSB2q(w) + h · α)
≡ A⌊z⌉ − qcj− HighBits2q(A⌊z⌉ − qcj, α) · α− LSB2q(w)

≡ 2 · LowBits2q(A⌊z⌉ − qcj, α) + LSB2q(A⌊z⌉ − qcj)

− LSB2q(A⌊z⌉ − qcj)

≡ 2 · LowBits2q(A⌊z⌉ − qcj, α).

For the penultimate inequality, we used the fact that w = A⌊z⌉ − qcj mod 2.
We then have z̃2 ≡ ⌊z2⌉ − LowBits2q(Az̃− qcj, α) mod q. We now show that this

HAETAE 17

KeyGen(1λ)

1: seed← {0, 1}ρ

2: Agen = Hgen(seed) // Agen ∈ Rk×(ℓ−1)
q

3: s =⊥
4: while σmax(rot(s)) > γ do
5: s = (1, sgen, egen)← 1× Sℓ−1

η × Sk
η // s ∈ Sk+ℓ

η

6: b = Agen · sgen + egen mod q // b ∈ Rk
q

7: A = (A1 | 2Idk) = (−2b+ qj | 2Agen | 2Idk) mod 2q // A ∈ Rk×(k+ℓ)
2q

8: Return sk = (A, s), vk = (seed,b)

Sign(sk,M)

1: σ =⊥
2: while σ =⊥ do
3: y← U(B(1/N)R,(k+ℓ)(B)) // y ∈ (1/N)Rk+ℓ

4: c = H(HighBits2q(A⌊y⌉, α), LSB2q(⌊y0⌉ · j),M) // c ∈ R2

5: b← U({0, 1})
6: z = (z⊤1 , z

⊤
2)

⊤ = y + (−1)bc · s
7: h = HighBits2q(A⌊z⌉ − qcj, α)− HighBits2q(A1⌊z1⌉ − qcj, α) // h ∈ Rk

8: if ∥z∥2 ≥ B′, then σ =⊥
9: if ∥2z− y∥2 < B, then σ =⊥ with probability 1/2
10: else σ = (Encode(HighBits(⌊z1⌉, a)), LowBits(⌊z1⌉, a), LSB(⌊z1⌉),h, c)
11: Return σ

Verify(vk,M, σ = (x,v,w,h, c))

1: z̃1 ← Decode(x) · 2a + 2v +w
2: A1 = (−2b+ qj | 2 ·Hgen(seed)) mod 2q
3: z̃2 = (h · α− 2 · LowBits2q(A1z̃1 − qcj, α)) /2 mod± q
4: z̃ = (z̃⊤1 |z̃⊤2)⊤
5: h′ = LSB2q((z̃0 − c)j)
6: Return

(
c = H(HighBits2q(Az̃− qcj, α),h′,M)

)
∧ (∥z̃∥ < B′′)

Fig. 8: Randomized version of HAETAE

equality actually holds over the integers. Note first that by definition of mod ±, we
have z̃2 ∈ [−q/2, q/2)nk. Further, by using the triangle inequality and Lemma 5,
we have:

∥⌊z2⌉ − LowBits2q(Az̃− qcj, α)∥∞ ≤ B′ + α/4 ≤ B′′ < q/2,

which implies the desired equality.

For the last statement, by considering only the first component of z =
y + (−1)bc · s, we obtain, modulo 2:

z̃0 = ⌊z0⌉ = ⌊y0⌉+ (−1)bc = ⌊y0⌉+ c.

Multiplying by j yields the result. ⊓⊔

Theorem 1 (Completeness). Assume that B′′ = B′ +
√
n(k + ℓ)/2 +

√
nk ·

α/4 < q/2. Then the signature schemes of Figures 7 and 8 are complete, i.e., for

18 J.H. Cheon et al.

every message M and every key-pair (sk, vk) returned by KeyGen(1λ), we have:

Verify(vk,M, Sign(sk,M)) = 1.

Proof. We use the notations of the algorithms. We will focus on the deterministic
version in Fig. 7, since Fig. 8 also has almost the same proof. Then the first and
last equations from Lemma 7 state that we will indeed have

c = H(HighBits2q(Az̃− qcj, α),h′, µ).

On the other hand, we use the second equation from the same lemma to bound
the size of z̃. We have:

∥z̃∥ ≤ ∥z∥+ ∥z− ⌊z⌉∥+ ∥⌊z⌉ − z̃∥

≤ B′ +
√
n(k + ℓ) · ∥z− ⌊z⌉∥∞ + ∥⌊z2⌉ − z̃2∥

≤ B′ +

√
n(k + ℓ)

2
+
√
nk · ∥LowBits2q(A⌊z⌉ − qcj, α)∥∞

≤ B′ +

√
n(k + ℓ)

2
+

α
√
nk

4
.

The definition of B′′ implies that the scheme is correct. ⊓⊔

3.2 Parameter sets

We instantiate the HAETAE signature scheme to reach the NIST PQC security
levels 2, 3 and 5. The instantiations are set to be at least as secure as the
corresponding parameter sets for Dilithium and Falcon. We use the core-SVP
methodology introduced in [ADPS16], a conservative security estimation method
in lattice cryptography (see Section 5.2 for more details). The names of the
three parameter sets correspond to the core-SVP security figures: HAETAE120 ,
HAETAE180 and HAETAE260. The parameters are provided in Table 2.

The ring dimension n and the modulus q are set to 256 and 64, 513 across
all parameter sets. Our choice of modulus q allows for efficient integer sampling
over Zq. This constraint leads in an unexpected estimated 236 bits of LWE
security for HAETAE180. However, if we decrease ℓ by 1 (this is the parameter
that has the most impact on the LWE security), we obtain only 175 bits of
core-SVP hardness, which is below the 180 target.

Note that increasing k mostly increases the SIS security. Increasing η increases
the LWE security, while decreasing the SIS security as it makes the SIS bound
larger and should only be changed for fine-tuning. All of our estimations are
computed using a modified version of the Dilithium security script, that we also
submit as part of our submission package.

The variable B′′ denotes the verification bound, which is half of the SIS
bound. It is set significantly smaller than q, to avoid potential attacks exploiting
the q-vectors: vectors with coordinates that are multiples of q always belong to

HAETAE 19

the lattice corresponding to the cryptanalysis, and could potentially be used to
improve lattice reduction attacks.

The figures between parentheses are for the strong unforgeability security
in the case of the randomized signing version of HAETAE (in the deterministic
version, strong and weak unforgeability are the same).

Parameters sets HAETAE120 HAETAE180 HAETAE260
Target security 120 180 260

n 256 256 256
q 64513 64513 64513

(k, ℓ) (2,4) (3,6) (4,7)
η 1 1 1
τ 39 49 60
S 293.51 385 457.01
B 9779.3329 15709.1546 20614.9815
B′ 9774.9271 15704.4361 20609.9152
B′′ 11197.4229 17973.1740 23740.4482
α 256 324 384
a 8 8 9
N 6161 7045 7254

BKZ block-size b to break SIS 421 (342) 647 (536) 885 (740)
Core-SVP classical hardness 123 (100) 189 (156) 258 (216)
Core-SVP quantum hardness 108 (87) 166 (137) 227 (190)

BKZ block-size b to break LWE 428 810 988
Core-SVP classical hardness 125 236 288
Core-SVP quantum hardness 109 208 253

Signature size without rANS 3040 4064 5792
Expected signature size with rANS 1473 2268 2737

Public key size 1056 1568 2080
Expected |sig|+ |vk| 2529 3836 4817

Table 2: Parameter choices for 120, 180, 260 bits of core-SVP hardness

20 J.H. Cheon et al.

4 Performance analysis

In this section, we report the performance of our C reference implementation.

4.1 Description of platform

Tables 3 and 4 report the performance results of the reference implementation
and the sizes. All benchmarks were obtained on one core of an AMD Ryzen
3700x processor clocked at 3589 MHz (as reported by /proc/cpuinfo) with
TurboBoost and hyperthreading disabled. The benchmarking machine has 64
GB of RAM and is running Debian GNU/Linux with Linux kernel version 5.4.0.
Implementations were compiled with gcc version 9.4.0 and the compiler flags as
indicated in the CMakeLists included in the submission package.

4.2 Performance of reference implementation

All cycle counts reported are the median of the cycle counts of 1,000 executions
of the respective function.

Scheme KeyGen Sign Verify

HAETAE120 3094776 16088256 4571820
HAETAE180 6940764 30830184 9163440
HAETAE260 10777032 44705664 13739508

Table 3: Cycle counts for all parameter sets of HAETAE. Cycle counts were
obtained on one core of an AMD Ryzen 7 3700X. For each funtion, this includes
cycles of packing to bytes array from each data structure such as sign key,
verification key, and signature and randombytes sampling.

We recall that the verification key consists of a seed of Agem and a polynomial
vector b in Rk

q . The signature consists of encoding of high bits of a polynomial
vector ⌊z1⌉, its low bits and LSB, a hint vector h, and a challenge c. However,
the current implementation outputs ⌊z1⌉, h and c, i.e., without rANS encoding.
Table 4 shows the currently implemented sizes of the verification key and signature
in bytes.

Note that the representation of signatures is still a work in progress. Hence, as
neither rANS or Huffman coding, the signatures are much bigger than what we
could theoretically get. Our preliminary implementations of the rANS encoding,
confirm that the final signature size will be very close to the expected size
presented in Table 2. As this is just a matter of representation, it does not affect
on security. We will provide the implementation with full compressions, in nearly
future release.

HAETAE 21

Scheme vk σ

HAETAE120 1056 3040
HAETAE180 1568 4064
HAETAE260 2080 5792

Table 4: Key and signature sizes in bytes. The sizes reflect the current state of
the implementation, yet without rANS coding.

5 Security

Unforgeability under Chosen Message Attacks (UF-CMA) is regarded as a
standard security notion for digital signature schemes. The adversary is given
the verification key and has access to a signing oracle that it can call on
(adaptively) chosen messages. The adversary wins if it forges a valid signature of
a new, non-queried message. Strong Unforgeability under Chosen Message Attacks
(SUF-CMA) is a slightly stronger security notion then UF-CMA: the adversary
wins if it forges a valid signature-message pair that it did not already see.

The concrete SUF-CMA security of HAETAE can be proven in the classical
Random Oracle Model (ROM) under the standard MLWE and MSIS assumptions.
However, since the proof is based on the forking lemma, the reduction is not tight
and it is not applicable in the Quantum Random Oracle Model (QROM) setting.
First, using the zero-knowledge property of the underlying identification scheme,
Unforgeability under No Message Attacks (UF-NMA) reduces to (S)UF-CMA
security, both in the ROM [AFLT16] and the QROM [KLS18, GHHM21]. UF-NMA
is directly related to a problem that can be viewed as a “convolution” of lattice and
hash function problems. We call this problem BimodalSelfTargetMSIS. Similar to
the SelfTargetMSIS described in [DKL+18, KLS18], we can analyze the UF-CMA
security based on the MLWE and BimodalSelfTargetMSIS assumptions. Note that
in the ROM, MSIS reduces to BimodalSelfTargetMSIS, but the reduction is not
tight and does not readily extend to quantum adversaries (it relies on the forking
lemma). This said, this non-tightness and limitation to classical adversaries is
not known to reflect any weakness.

For setting parameters, we consider hardness of MSIS and MLWE for relevant
parameters. Intuitively, the MLWE assumption is used for security against
key-recovery attacks, and the BimodalSelfTargetMSIS used for security against
forgeries is identified to the MSIS assumption.

5.1 Security definition

We first introduce the BimodalSelfTargetMSIS assumption and give a classical
reduction from the standardMSIS assumption. BimodalSelfTargetMSIS is a variant
of the SelfTargetMSIS assumption adapted to the bimodal setup.

Definition 5 (BimodalSelfTargetMSISH,n,q,k,ℓ,β). Suppose that H : {0, 1}∗ ×
M→ R2 is a cryptographic hash function. For positive integers q, k, ℓ, a positive

22 J.H. Cheon et al.

real number β and the dimension n of R, we say that the advantage of an
adversary A solving the search-BimodalSelfTargetMSISH,n,q,k,ℓ,β problem with

respect to j ∈ Rk
2 \ {0} is

AdvBimodalSelfTargetMSIS
H,n,q,k,ℓ,β (A) =

Pr

 0 < ∥y∥2 < β ∧
H(Ay − qcj mod 2q,M) = c

(A0,b)← Rk×(ℓ−1)
q ×Rk

q ;
A = (−2b+ qj | 2A0 | 2 Idk) mod 2q;

(y, c,M)← A|H(·)⟩(A)

 .

In the ROM (resp. QROM), the adversary is given classical (resp. quantum)
access to H.

Theorem 2 (Classical Reduction from MSIS to BimodalSelfTargetMSIS).
Assume that q is odd, H : {0, 1}∗ ×M → R2 is a cryptographic hash function
modeled as a random oracle, and that every polynomial-time classical algorithm has
a negligible advantage against MSISn,q,k,ℓ,β. Then every polynomial-time classical
algorithm has negligible advantage against BimodalSelfTargetMSISn,q,k,ℓ,β/2.

Proof (sketch). Consider a BimodalSelfTargetMSISn,q,k,ℓ,β/2 classical algorithmA
that is polynomial-time and has classical access to H. If A|H(·)⟩(A) makes Q
hash queries H(wi,Mi) for i = 1, · · · , Q and outputs a solution (y, c,Mj) for
some j ∈ [Q], then we can construct an adversary A′ for MSISn,q,k,ℓ,β as follows.

The adversary A′ can first rewind A to the point at which the i-th query was
made, and reprogram the hash as H(wj ,Mj) = c′(̸= c). Then, withprobability
approximately 1/Q, algorithm A will produce another solution (y′, c′,Mj). We
then have

Ay − qcj = zj = Ay′ − qc′j mod 2q and ∥y∥2, ∥y∥2 < β/2.

As q is odd, we have A(y − y′) = (c− c′)j mod 2. The fact that c′ ≠ c implies
that the latter is non-zero modulo 2, and hence so is y− y′ over the integers. As
it also satisfies (−b | A0 | Idk) · (y−y′) = 0 mod q and ∥y−y′∥ < β, it provides
a MSISn,q,k,ℓ,β solution for the matrix (−b | A0 | Idk), where the submatrix
(−b | A0) ∈ Rk×ℓ

q is uniform. ⊓⊔

The above classical reduction from MSIS to BimodalSelfTargetMSIS is very
similar to the reduction from MSIS to SelfTargetMSIS introduced in [DKL+18]
and is similarly non-tight. Moreover, since the reduction relies on the forking
lemma, it cannot be directly extended to a quantum reduction in the QROM.

Security definitions. We recall the definitions of the aforementioned security
notions for digital signatures.

Definition 6 (Unforgeability under No Message Attacks (UF-NMA)).
For a signature scheme S = (KeyGen, Sign, Verify), the advantage of a UF-NMA
adversary A is defined as:

AdvUF-NMA
S (A) = Pr [Verify(vk,M, σ) = 1 | (sk, vk)← KeyGen; (M,σ)← A(vk)] .

HAETAE 23

Definition 7 (Unforgeability under Chosen Message Attacks (UF-CMA)).
Let S = (KeyGen, Sign, Verify) be a signature scheme. A UF-CMA adversary A
has access to the verification key and a signing oracle, to which it can make
adaptive queries. Let the queried messages and the received signatures be (Mi, σi)
for i = 1, · · · , Q. At the end of the experiment, it outputs a message-signature
pair (M∗, σ∗). Then the advantage of A is defined as:

AdvUF-CMA
S (A) = Pr

[
M∗ /∈ {Mi}i∈[Q] ∧ (sk, vk)← KeyGen;

Verify(vk,M∗, σ∗) = 1 (M∗, σ∗)← ASign(sk,·)

]
.

Definition 8 (Strong Unforgeability under Chosen Message Attacks
(SUF-CMA)). Let S = (KeyGen, Sign, Verify) be a signature scheme. An
SUF-CMA adversary A has access to the verification key and a signing oracle, to
which it can make adaptive queries. Let the queried messages and the received
signatures be (Mi, σi) for i = 1, · · · , Q. At the end of the experiment, it outputs
a message-signature pair (M∗, σ∗). Then the advantage of A is defined as:

AdvSUF-CMA
S (A) = Pr

[
(M∗, σ∗) /∈ {(Mi, σi)}i∈[Q] (sk, vk)← KeyGen;
∧ Verify(vk,M∗, σ∗) = 1 (M∗, σ∗)← ASign(sk,·)

]
.

HAETAE achieves UF-CMA security in (Q)ROM, assuming MLWE and
BimodalSelfTargetMSIS are hard.

Theorem 3 (UF-CMA Security of HAETAE in the QROM). Let B′ ≥
S/

√
(M/2)2/m − 1 and B = (M/2)1/m ·B′ for M > 1 and m = n(k+ℓ). Assume

that γ ·
√
τ ≤ S. Assume further that H is modeled as random oracle that the

adversary can quantumly query (i.e., we place ourselves in the QROM). Then for
any (quantum) UF-CMA adversary A of randomized HAETAE in Figure 8, there
exist (quantum) adversaries A′ and A′′ with similar run-times for MLWE and
BimodalSelfTargetMSIS satisfying

AdvUF-CMA
HAETAE(A) ≤ AdvMLWE

n,q,k,ℓ−1,η(A′) + AdvBimodalSelfTargetMSIS
H′,n,q,k,ℓ,B′′ (A′′) + ε,

where ε is the min-entropy of the underlying identification protocol and H ′ is a
random oracle derived from H.

Proof (sketch). Assume that there exists a (quantum) UF-CMA adversary A
that can forge the signature with probability AdvUF-CMA(A). The identification
protocol underlying HAETAE is zero-knowledge, meaning that it does not leak
the secret, by Lemma 1. We recall from [KLS18] that there exists a (quantum)
UF-NMA adversary A′ that can forge the signature, i.e., without the signing
oracle query.

Assuming MLWEn,q,k,ℓ−1,η is hard, adversary A′ cannot distinguish the
verification key component b = Agensgen+egen from a truly uniform b← Rk

q . Now,
assume that adversary A′ outputs a forgery which can be decoded to σ = (z1,h, c)

24 J.H. Cheon et al.

for a message M satisfying Verify (vk,M ,σ) = 1. For u = HighBits2q(Az̃− qcj, α),
h′ and z̃2 as in the verification algorithm, we have

α · u+ h′ ≡ A1z1 + 2z̃2 − qcj mod 2q.

By the definition of HighBits, 0 ≤ ∥α · u+ h′∥∞ ≤
⌊
2q−1
α

⌋
holds, which implies

that α · u+ h′ = (A1z1 + 2z̃2 − qcj mod 2q). So we can rewrite the verification
condition c = H(u,h′,M) as

c = H

(
(A1z1 + 2z̃2 − qcj mod 2q)− h′

α
,h′,M

)
= H ′ (A1z1 + 2z̃2 − qcj mod 2q,M) ,

where H ′ : {−1, 0, α − 1, α, · · · ,
⌊
2q−1
α

⌋
· α − 1,

⌊
2q−1
α

⌋
· α}nk × {0, 1}∗ → R2 is

defined as:
H ′(α · u− h,M) = H(u, h,M),

for any bit-string M and any integer vectors u and h, whose components are in
[0,

⌊
2q−1
α

⌋
] and [0, 1], respectively. Note that there is a one-to-one correspondence

between the inputs of H and H ′ as h = (a mod 2), u = (a − h)/α for a =
α · u+ h. The function H ′ can hence be modeled as a random oracle. We have
H ′ (A · (z⊤1 , z̃⊤2)⊤ mod 2q,M

)
= c, with ∥(z⊤1 , z̃⊤2)⊤∥2 < B′′. This implies that

we can construct an adversary A′ that outputs a solution ((z⊤1 , z̃
⊤
2)

⊤, c,M) of
BimodalSelfTargetMSISH′,n,q,k,ℓ,B′′ with advantage that is at least

AdvUF-NMA(A)− AdvMLWE
n,q,k,ℓ−1,η(A′′)− ε,

for any polynomial-time MLWEn,q,k,ℓ−1,η adversary A′′. ⊓⊔

We now adapt the theorem statement for SUF-CMA security reduction, without
proof.

Theorem 4 (SUF-CMA Security of HAETAE in the QROM). Let the
same conditions hold as in Theorem 3. Assume further that Hgen, expandS
and expandYbb are pseudo-random, and expandA produces uniform sample in

Rk×(k+ℓ)
q . The adversary can quantumly query H and classically query the

signing oracle. Then for any poly-time (quantum) SUF-CMA adversary A of
the deterministic HAETAE in Fig. 7, there exist (quantum) adversaries A′, A′′

and A′′′ for the MLWE, BimodalSelfTargetMSIS and MSIS such that

AdvSUF-CMA(A) ≤ AdvMLWE
n,q,k,ℓ−1,η(A′) + AdvBimodalSelfTargetMSIS

H′,n,q,k,ℓ,B′′ (A′′)

+ AdvMSIS
n,q,k,ℓ,2B′′(A′′′) + ε.

5.2 Cost of known attacks

For the concrete security analysis, we list the best known lattice attacks and
consider their costs for attacking HAETAE.

HAETAE 25

All the best known attacks rely on the Block–Korkine–Zolotarev (BKZ) lattice
reduction algorithm [SE94, CN11, HPS11]. The BKZ algorithm is a lattice basis
reduction algorithm that uses a Shortest Vector Problem (SVP) solver repeatedly
in small-dimensional projected sublattices. The dimension b of these projected
sublattices is called the block-size. BKZ with block-size b hence relies on an
SVP solver in dimension b. The block-size drives the cost of BKZ and also
determines the quality of the resulting basis. It provides a quality/time trade-off:
If b gets larger, a better quality will be guaranteed but also the time complexity
for the SVP solver will be exponentially increased. The time complexity of the
b-BKZ algorithm is same with the SVP solver for dimension b, up to polynomial
factors. Hence the time complexity differs depending on the SVP solver used. The
most efficient SVP algorithm is using the sieving method proposed by Becker
et al. [BDGL16] which takes time ≈ 20.292b+o(b). The fastest known quantum
variant was recently proposed by Chailloux and Loyer in [CL21], and takes time
≈ 20.257b+o(b).

Based on the BKZ algorithm, we will follow the core-SVP methodology
from [ADPS16] and as in the subsequent lattice-based schemes [ABB+19,
DKL+18, FHK+17, DKSRV18, BDK+18]. It is regarded as a conservative way
to set the security parameters. We ignore the polynomial factors and the o(b)
terms in the exponents of the run-time bounds above for the time complexity of
the BKZ algorithm.

We consider the primal attack and the dual attack for MLWE, and the plain
BKZ attack for MSIS and BimodalSelfTargetMSIS problems. We remark that
any MLWEn,q,k,ℓ,η instance can be viewed as an LWEq,nk,nℓ,η instance, and also
any MSISn,q,k,ℓ,β can be viewed as an SISq,nk,nℓ,β instance. Even though the
MLWE and MSIS problems have some extra algebraic structure compared to the
LWE and SIS problems, we do not currently know how to exploit it to improve
the best known attacks. For this reason, we estime the concrete hardness of the
MLWE and MSIS problems over the structured lattices as the concrete hardness
of the corresponding LWE and SIS problems over the unstructured lattices.

We summarize the costs of the known attacks in Table 5. In the table, the
required block-sizes for BKZ and the costs of the attacks in core-SVP hardness
are given, estimated by the python script we submitted to KpqC competition with
this document. It is a modification of the security estimator of Dilithium [DS20].
The parameters for MLWE and MSIS problems are chosen based on Theorems 2, 3
and 4. The numbers in parentheses are for the SUF-CMA security of randomized
HAETAE (in the case of the deterministic signature, strong and weak unforgeability
are the same). All costs are rounded downwards.

Primal attack. Given an LWE instance (A,b) ∈ Zk×ℓ
q × Zk

q , we first define

the lattices Λm = {v ∈ Zℓ+m+1 : Bv = 0 mod q} for all m ≤ k, where

B =
(
A[m] | Idm | b[m]

)
∈ Zm×(ℓ+m+1)

q , A[m] is the uppermost m × ℓ sub-
matrix of A and b[m] is the uppermost m-dimensional sub-vector of b. As

(A,b) ∈ Zk×ℓ
q × Zk

q is an LWE instance, there exist s and e short such that
b = As+ e. This implies that (s | e | − 1) is a short vector of Λm. The primal

26 J.H. Cheon et al.

Parameter sets HAETAE120 HAETAE180 HAETAE260

Target security 120 180 260

BKZ block-size b to break SIS 421 (342) 647 (536) 885 (741)
Classical hardness 123 (100) 189 (156) 258 (216)
Quantum hardness 108 (87) 166 (137) 227 (190)

BKZ block-size b for primal attack 431 820 1001
Classical hardness 126 239 292
Quantum hardness 110 210 257

BKZ block-size b for dual attack 428 810 988
Classical hardness 125 236 288
Quantum hardness 109 208 253

Table 5: Core-SVP hardness for the best known attacks

attack consists in running BKZ on Λm to find short vectors in Λm. The variable
m is optimized to minimize the cost of the attack.

Dual attack. Given an LWE instance (A,b) ∈ Zk×ℓ
q × Zk

q , we first define the

lattices Λ′
m = {(u,v) ∈ Zm × Zℓ : A⊤

[m]u + v = 0 mod q} for all m ≤ k,

where A[m] is the uppermost m× ℓ sub-matrix of A. If (u,v) is a short vector

in Λ′
m, then u⊤b = v⊤s+u⊤e[m] is short if b = As+ e for short vectors s and e,

and is uniformly distributed modulo q if b is uniform and independent from A
(here e[m] refers to the uppermost m-dimensional sub-vector of e). This provides
a distinguishing attack. The dual attack consists in finding a short non-zero
vector in the lattice Λ′

m using BKZ. The variable m is optimized to minimize
the cost of the attack.

SIS attack. To analyze the hardness of BimodalSelfTargetMSIS, we analyze
the hardness of the corresponding MSIS. Intuitively, if we assume that H is a
cryptographic hash, then the structure of the input will not help finding the
preimage. So we can assume that M is fixed. Then the problem turns into finding
the preimage x of c with respect toH(·,M) and then finding y satisfying x = Ay−
qcj mod 2q. Apart from the first step, if we have the preimage c then the second
step will be turned into finding y′ satisfying (2b | A0 | Idk) ·y′ = t mod q, for a
known vector t overRq. Here, y

′ is defined as y′ = ((y0 − x′
0)/2, y1, · · · , yk+ℓ−1)

⊤

and t = 2−1 · x + x′
0b mod q, where x′

0 = (x0 + c mod 2) which actually
decides the LSB of y0. Also, ∥y′∥2 is bounded by the same bound used for ∥y∥2.
This implies that solving BimodalSelfTargetMSIS is at least as hard as solving
MSIS with the same norm bound or finding the preimage of a hash, as an attack
perspective. However, for the hardness of BimodalSelfTargetMSIS problem, we
will analyze it in a more conservative way, as the hardness of MSIS problem
with a twice larger norm bound, taking into account the classical reduction from
MSIS to BimodalSelfTargetMSIS in Theorem 2. We analyze the best known attacks

HAETAE 27

for SIS problem, for both MSIS and BimodalSelfTargetMSIS problems that the
unforgeability of our signature scheme relies on.

Given an SIS instance A ∈ Zk×ℓ
q with a bound β, we define the lattices

Λ′′
m = {u ∈ Zm : Bu = 0 mod q} for all m ≤ k + ℓ, where B is the k ×m

leftmost sub-matrix of (A | Idk). Then a short non-zero vector in the lattice Λ′′
m

is a solution to the SIS problem. Once more, we use BKZ and optimize the choice
of m.

Note that if β > q, then there are some trivial non-zero solutions to
SIS problem such as (q, 0, · · · , 0) with ℓ2-norm < β. Depending on the parameters,
the security could be affected by some existing attacks [DKL+18]. To avoid such
weaknesses, we choose the prime q larger than the MSIS bound β.

28 J.H. Cheon et al.

6 Conclusion

HAETAE follows the Fiat-Shamir with Abort design for lattice-based signatures.
Our goal was to keep as much as possible from the conceptual simplicity of
Dilithium and in particular avoid complex rejection conditions, while pushing
the scheme in a more efficient direction regarding signature size. Overall, this
leads to a simplicity/compactness compromise between Dilithium and Falcon,
both standardized in the NIST PQC process.

HAETAE is a scheme with shorter signatures than Dilithium and that is easier
to implement and protect against side-channel attacks than Falcon or Mitaka.
We believe that the advantages we gain from this compromise outbalance the
extra complications in signing we introduced. Indeed, while our scheme is not as
compact as Falcon or Mitaka, our gain of 30% to 40% on signature size compared
to Dilithium justifies having a scheme that is somewhat harder to implement.

Future works and directions. We believe that our signature scheme provides
an interesting in-between between the two selected candidates of the NIST post-
quantum cryptography projects. However, our distribution choice is unusual in
lattice-based cryptography. This means in particular that we need to develop
specific tools to handle this change. We give here a few directions that we are
currently exploring in order to improve HAETAE.

Theoretical work. First, we are looking into the sampling algorithm for y. As of
now, the algorithm description (see Figure 4) considers exact computations over
the reals, but the implementation relies on floating-point arithmetic. We intend
to make this sampling rigorous and have the description and implementation
coincide. First, we will derive a sufficient precision for the sampling computations,
by analyzing the growth of numerical errors. We do not envision particular
difficulties here, as similar techniques have been used for [FHK+17] (based on
[Pre17]). Second, we will consider replacing floating-point arithmetic by fixed-
point arithmetic. This should also work as these differ only when numbers of
widely different magnitudes are being considered: thanks to Gaussian tail bounds,
very large real numbers have vanishingly small probabilities of occurring; and
vector coordinates that would be very close to 0 have a negligible impact on the
rounding of the algorithm from Figure 3.

We are also studying how to best implement arithmetic mod 2q, notably using
the Chinese remainder theorem (using a mod2 part and a modq part).

Finally, while our choice of distribution is new, we note that the cryptanalyses
approach we considered also apply to Dilithium, and have hence been well-
studied already. It is however different when one considers leakage, as the signing
algorithms differ significantly. We would like to better understand this aspect.

Implementation work. In the key generation algorithm, we did not implement
yet the rejection condition on the maximum singular value of a matrix derived
from the secret key. Also, we will add the rANS coding described in the present
documentation in the code. Further, when any of the above questions will have
been handled, we will adapt the implementation accordingly.

HAETAE 29

We are also considering side-channel resistance of the scheme. We intend
to make the implementation constant-time. We will also consider a masked
implementation, in particular once floating-point arithmetic will have been
removed.

Acknowledgments. The authors thank to Jai Hyun Park and Wonhee Cho for
helpful discussions. Julien Devevey and Damien Stehlé were supported by the
AMIRAL ANR grant (ANR-21-ASTR-0016), the PEPR quantique France 2030
programme (ANR-22-PETQ-0008) and the PEPR Cyber France 2030 programme
(ANR-22-PECY-0003).

30 J.H. Cheon et al.

References

ABB+19. Erdem Alkim, Paulo S. L. M. Barreto, Nina Bindel, Juliane Kramer, Patrick
Longa, and Jefferson E. Ricardini. The lattice-based digital signature
scheme qTESLA. Cryptology ePrint Archive, Number 2019/085, 2019.
https://eprint.iacr.org/2019/085.

ADPS16. Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe.
Post-quantum key Exchange—A New Hope. In 25th USENIX Security
Symposium, pages 327–343. USENIX Association, 2016.

AFLT16. Michel Abdalla, Pierre-Alain Fouque, Vadim Lyubashevsky, and Mehdi
Tibouchi. Tightly secure signatures from lossy identification schemes. J.
Cryptol., 29(3):597–631, 2016.

BDGL16. Anja Becker, Léo Ducas, Nicolas Gama, and Thijs Laarhoven. New
directions in nearest neighbor searching with applications to lattice sieving.
In Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
10–24, 2016.

BDK+18. Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky,
John M Schanck, Peter Schwabe, Gregor Seiler, and Damien Stehlé.
CRYSTALS-Kyber: a CCA-secure module-lattice-based KEM. In IEEE
European Symposium on Security and Privacy (EuroS&P), pages 353–367,
2018.

BG14. Shi Bai and Steven D. Galbraith. An improved compression technique for
signatures based on learning with errors. In Josh Benaloh, editor, Topics
in Cryptology – CT-RSA 2014, pages 28–47, 2014.

BGV12. Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled)
fully homomorphic encryption without bootstrapping. In Shafi Goldwasser,
editor, Innovations in Theoretical Computer Science (ITCS), pages 309–325.
ACM, 2012.

CL21. André Chailloux and Johanna Loyer. Lattice sieving via quantum random
walks. In Mehdi Tibouchi and Huaxiong Wang, editors, Advances in
Cryptology - ASIACRYPT, pages 63–91. Springer, 2021.

CN11. Yuanmi Chen and Phong Q. Nguyen. BKZ 2.0: Better lattice security
estimates. In Dong Hoon Lee and Xiaoyun Wang, editors, Advances in
Cryptology – ASIACRYPT, pages 1–20. Springer, 2011.

DDLL13. Léo Ducas, Alain Durmus, Tancrède Lepoint, and Vadim Lyubashevsky.
Lattice signatures and bimodal gaussians. In Ran Canetti and Juan A.
Garay, editors, Advances in Cryptology – CRYPTO, pages 40–56. Springer,
2013.

DFPS22. Julien Devevey, Omar Fawzi, Alain Passelègue, and Damien Stehlé. On
rejection sampling in lyubashevsky’s signature scheme. Cryptology ePrint
Archive, Number 2022/1249, 2022. https://eprint.iacr.org/2022/1249.

DKL+18. Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, Peter
Schwabe, Gregor Seiler, and Damien Stehlé. CRYSTALS-Dilithium: A
lattice-based digital signature scheme. IACR Transactions on Cryptographic
Hardware and Embedded Systems, 2018(1):238–268, 2018.

DKSRV18. Jan-Pieter D’Anvers, Angshuman Karmakar, Sujoy Sinha Roy, and Frederik
Vercauteren. Saber: Module-LWR based key exchange, CPA-secure
encryption and CCA-secure KEM. In Africacrypt, pages 282–305. Springer,
2018.

https://eprint.iacr.org/2019/085
https://eprint.iacr.org/2022/1249

HAETAE 31

DS20. Léo Ducas and John Schanck. Security estimation scripts for kyber and
dilithium, 2020. GitHub repository, available at https://github.com/

pq-crystals/security-estimates.

Dud13. Jarek Duda. Asymmetric numeral systems: entropy coding combining speed
of huffman coding with compression rate of arithmetic coding, 2013. ArXiv
preprint, available at https://arxiv.org/abs/1311.2540.

EFG+22. Thomas Espitau, Pierre-Alain Fouque, François Gérard, Mélissa Rossi,
Akira Takahashi, Mehdi Tibouchi, Alexandre Wallet, and Yang Yu. Mitaka:
A simpler, parallelizable, maskable variant of Falcon. In Orr Dunkelman
and Stefan Dziembowski, editors, Advances in Cryptology – EUROCRYPT,
pages 222–253. Springer, 2022.

EFGT17. Thomas Espitau, Pierre-Alain Fouque, Benôıt Gérard, and Mehdi Tibouchi.
Side-channel attacks on BLISS lattice-based signatures: Exploiting
branch tracing against strongswan and electromagnetic emanations in
microcontrollers. In Bhavani Thuraisingham, David Evans, Tal Malkin,
and Dongyan Xu, editors, ACM SIGSAC Conference on Computer and
Communications Security (CCS), pages 1857–1874, 2017.

ETWY22. Thomas Espitau, Mehdi Tibouchi, Alexandre Wallet, and Yang Yu.
Shorter hash-and-sign lattice-based signatures. In Yevgeniy Dodis and
Thomas Shrimpton, editors, Advances in Cryptology – CRYPTO, pages
245–275. Springer, 2022.

FHK+17. Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim Lyubashevsky,
Thomas Pornin, Thomas Prest, Thomas Ricosset, Gregor Seiler, William
Whyte, and Zhenfei Zhang. Falcon: Fast-Fourier lattice-based compact
signatures over NTRU, 2017. Submission to the NIST post-quantum
cryptography standardization process.

GHHM21. Alex B. Grilo, Kathrin Hövelmanns, Andreas Hülsing, and Christian Majenz.
Tight adaptive reprogramming in the QROM. In Mehdi Tibouchi and
Huaxiong Wang, editors, Advances in Cryptology - ASIACRYPT, pages
637–667. Springer, 2021.

HPS11. Guillaume Hanrot, Xavier Pujol, and Damien Stehlé. Algorithms for the
shortest and closest lattice vector problems. In Yeow Meng Chee, Zhenbo
Guo, San Ling, Fengjing Shao, Yuansheng Tang, Huaxiong Wang, and
Chaoping Xing, editors, Coding and Cryptology, pages 159–190. Springer,
2011.

KLS18. Eike Kiltz, Vadim Lyubashevsky, and Christian Schaffner. A concrete
treatment of Fiat-Shamir signatures in the quantum random-oracle model.
In Advances in Cryptology – EUROCRYPT, pages 552–586. Springer, 2018.

LS15. Adeline Langlois and Damien Stehlé. Worst-case to average-case reductions
for module lattices. Des. Codes Cryptogr., 75(3):565–599, 2015.

Lyu09. Vadim Lyubashevsky. Fiat-Shamir with aborts: Applications to lattice
and factoring-based signatures. In Mitsuru Matsui, editor, Advances in
Cryptology – ASIACRYPT, pages 598–616. Springer, 2009.

Lyu12. Vadim Lyubashevsky. Lattice signatures without trapdoors. In David
Pointcheval and Thomas Johansson, editors, Advances in Cryptology –
EUROCRYPT, pages 738–755. Springer, 2012.

Pre17. Thomas Prest. Sharper bounds in lattice-based cryptography using the
Rényi divergence. In Tsuyoshi Takagi and Thomas Peyrin, editors, Advances
in Cryptology - ASIACRYPT, pages 347–374. Springer, 2017.

https://github.com/pq-crystals/security-estimates
https://github.com/pq-crystals/security-estimates
https://arxiv.org/abs/1311.2540

32 J.H. Cheon et al.

SE94. Claus-Peter Schnorr and Martin Euchner. Lattice basis reduction: Improved
practical algorithms and solving subset sum problems. Mathematical
programming, 66(1):181–199, 1994.

VGS17. Aaron R Voelker, Jan Gosmann, and Terrence C Stewart. Efficiently
sampling vectors and coordinates from the n-sphere and n-ball. Centre for
Theoretical Neuroscience-Technical Report, 01 2017.

HAETAE 33

A Uncompressed HAETAE

In this appendix, we present HAETAE without its compression step. Readers who
are not familiar with the Fiat-Shamir with Aborts line of work may find it easier
to read this version first. It highlights the use of bimodal rejection sampling
applied to the Fiat-Shamir with Aborts paradigm.

The key generation algorithms ensures that As = qj mod 2q, while also
putting A in a “close to Hermite Normal Form”. Namely, instead of the right
part of A being Idk, it is 2Idk. This subtlety impacts the compression design, in
the uncompressed version of HAETAE.

The signature for a message M consists of c = H(A⌊y⌉ mod 2q,M) and z =
⌊y⌉±cs. Sometimes, the vector z is rejected and the signing procedure is restarted.
Note that Az = A⌊y⌉+ qcj mod 2q, independently of the sign that was chosen
for cs. The verification step then checks the consistency of the pair (z, c) and the
smallness of z.

KeyGen(1λ)

1: Agen ←Rk×(ℓ−1)
q and (sgen, egen)← Sℓ−1

η × Sk
η

2: b = Agen · sgen + egen ∈ Rk
q

3: A = (−2b+ qj |2Agen |2 Idk) and write A = (A1 | 2 Idk)
4: s = (1, s⊤gen, e

⊤
gen)

⊤

5: Return sk = s and vk = A

Sign(sk,M)

1: y← U(B(1/N)R,(k+ℓ)(B))
2: c = H(A⌊y⌉,M) ∈ R2

3: z = y + (−1)bc · s for b← U({0, 1})
4: if ∥z∥2 > B′, then restart
5: if ∥2z− y∥2 < B, then restart with probability 1/2
6: else return σ = (⌊z⌉, c)

Verify(vk,M, σ = (z̃, c))

1: Return (c = H(Az̃− qcj,M)) ∧ (∥z̃∥ < B′′)

Fig. 9: High-level description of uncompressed HAETAE

B Discretizing Hyperballs

B.1 Useful Lemma

We will rely on the following claim.

Lemma 8. Let n be the degree of R. Let m,N, r > 0 and v ∈ Rm. Then the
following statements hold:

34 J.H. Cheon et al.

1. |(1/N)Rm ∩ BR,m(r)| = |Rm ∩ BR,m(Nr)|,
2. |Rm ∩ BR,m(r,v)| = |Rm ∩ BR,m(r)|,
3. Vol(BR,m(r −

√
mn/2)) ≤ |Rm ∩ BR,m(r)| ≤ Vol(BR,m(r +

√
mn/2)).

Proof. For the first statement, note that we only scaled (1/N)Rm and BR,m(r)
by a factor N . For the second statement, note that the translation x 7→ x− v
maps Rm to Rm.

We now prove the third statement. For x ∈ Rm, we define Tx as the hypercube
of Rm

R centered in x with side-length 1. Observe that the Tx’s tile the whole
space when x ranges over Rm (the way bounderies are handled does not matter
for the proof). Also, each of those tiles has volume 1. As any element in Tx is at
Euclidean distance at most

√
mn/2 from x, the following inclusions hold:

BR,m(r −
√
mn/2) ⊆ ∪x∈Rm∩BR,m(r)Tx ⊆ BR,m(r +

√
mn/2).

Taking the volumes gives the result. ⊓⊔

B.2 Proof of Lemma 1

Proof. Figure 2 is the bimodal rejection sampling algorithm applied to the
source distribution U((1/N)Rm∩BR,m(r′)) and target distribution U((1/N)Rm∩
BR,m(r)) (see, e.g., [DFPS22]). For the result to hold, it suffices that the support
of the shift of the source distribution by v is contained in the support of the
target distribution. This is implied by r′ ≥

√
r2 + t2.

We now consider the number of expected iterations, i.e., the maximum ratio
between the two distributions. To guide the intuition, note that if we were to
use continuous distributions, the acceptance probability 1/M ′ would be bounded
by 1/M . In our case, the acceptance probability can be bounded as follows (using
Lemma 8):

1

M ′ =
|(1/N)Rm ∩ BR,m(r)|
2|(1/N)Rm ∩ BR,m(r′)|

=
|Rm ∩ BR,m(Nr)|
2|Rm ∩ BR,m(Nr′)|

≥ Vol(BR,m(Nr −
√
mn/2))

2Vol(BR,m(Nr′ +
√
mn/2))

=
1

2

(
Nr −

√
mn/2

Nr′ +
√
mn/2

)mn

.

It now suffices to bound the latter term from below by 1/(cM) = 1/(2c(r′/r)mn).
This inequality is equivalent to:

c ≥ 1

2
·
(

r

r −
√
mn/(2N)

)mn

·
(
r′ +
√
mn/(2N)

r′

)mn

,

and to:

N ≥ 1

c1/(mn) − 1
·
√
mn

2

(
c1/(mn)

r
+

1

r′

)
,

which allows to complete the proof. ⊓⊔

HAETAE 35

B.3 Proof of Lemma 2

Proof. Let y ∈ BR,m(Nr′ +
√
mn/2) and set z = ⌊y⌉. Note that z is sampled

(before the rejection step) with probability

Vol(Tz ∩ BR,m(Nr′ +
√
mn/2))

Vol(BR,m(Nr′))
,

where Tz is the hypercube of Rm
R centered in z with side-length 1. By the triangle

inequality, this probability is equal to 1/Vol(BR,m(Nr′ +
√
mn/2) when z ∈

BR,m(Nr′). Hence the distribution of the output is exactly U(Rm ∩BR,m(Nr′)),
as each element is sampled with equal probability and as the algorithm almost
surely terminates (its runtime follows a geometric law of parameter the rejection
probability).

It remains to consider the acceptance probability, which is:∑
y∈Rm∩BR,m(Nr′) Vol(Ty ∩ BR,m(Nr′ +

√
mn/2))

Vol(BR,m(Nr′ +
√
mn/2))

.

By the triangle inequality and Lemma 8, it is

|Rm ∩ BR,m(Nr′)|
Vol(BR,m(Nr′ +

√
mn/2))

≥
(
Nr′ −

√
mn/2

Nr′ +
√
mn/2

)mn

.

Note that by our choice of N , this is ≥ 1/M0. ⊓⊔

	HAETAE: Hyperball bimodAl modulE rejecTion signAture schemE

