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Abstract. In 2009, Lyubashevsky proposed a lattice-based signature
scheme by applying the Fiat-Shamir transformation and proved its se-
curity under the generalized compact knapsack (GCK) problem. This
scheme has a simple structure but has large signature and key sizes due
to the security requirement of their security reduction. Dilithium, which
was submitted to the NIST Post-Quantum Cryptography standardiza-
tion and selected as one of the final candidates, is an improvement of the
Lyubashevsky’s signature scheme and decreases key and signature sizes
by modifying the form of a public key and including additional steps in
key generation, signing, and verification algorithms. Thus, Dilithium has
a more complex structure to implement compared to the Lyubashevsky’s
scheme. To combine the strength of both signature schemes, we modify
the Lyubashevsky’s signature scheme and present a new security proof
eliminating the security requirement, which made their signature ineffi-
cient. As a result, we propose a simple and practical signature scheme
based on the hardness of a new GCK assumption, called target-modified
one-wayness of GCK function. The signature size of our scheme decreases
40 percent, the sum of signature and public key sizes decreases 25 per-
cent, and the secret key size decreases 90 percent for the NIST security
level III, compared to Dilithium. Furthermore, by virtue of the sim-
plicity of our construction, the key generation, signing, and verification
algorithms of our scheme run 2.4×, 1.7×, and 2.0× faster than those of
Dilithium, respectively.

Keywords: Post-quantum cryptography · Lattice-based signature · Gen-
eralized compact knapsack problem.
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1 Introduction

Lattice-based cryptography is seen as a very promising alternative to traditional
cryptography with the arrival of quantum computers. Traditional cryptography
is mostly based on the hardness of the number-theoretic problems such as in-
teger factorization and discrete logarithm for their security. As it was shown
that those problems can be solved in polynomial-time by quantum algorithms,
cryptography based on the hardness of lattice problems, which are known to
have resistance to quantum algorithms, has attracted a lot of attention. The Na-
tional Institute of Standard and Technology (NIST) launched the Post-Quantum
Cryptography (PQC) Standardization for digital signature, encryption, and key
establishment protocols resistant to quantum algorithms. In the fourth round
NIST-PQC announcement of 2022, two lattice-based signatures Dilithium [13]
and Falcon [16] were selected as the final three signature candidates.

Falcon is a compact signature scheme over NTRU lattices based on the GPV
framework [17] and its security relies on the hardness of the NTRU problem
that finds a short vector in NTRU lattices [16]. Although cryptography based
on the NTRU problem has a long and established history, it lacks a formal
reduction from worst-case to average-case hardness. While NTRU lattices are
very attractive because of their performance and storage efficiency, there are
some concerns that the assumed difficulty of the underlying NTRU problem may
be weaker than expected. In that respect, it is desired to avoid using the NTRU
assumption as long as the efficiency penalty is not too high. Also, Falcon samples
elements from the discrete Gaussian distribution which has a potential side-
channel vulnerabilities [10,27]. Additionally, Falcon suffers from a very complex
signing algorithm which makes it hard to implement and parallelize.

On the other hand, Dilithium is a signature scheme based on the Fiat-Shamir
transformation [15] and its security relies on the hardness of the Module Learn-
ing with Errors (MLWE) and Module Short Integer Solutions (MSIS) prob-
lems [13]. The design of Dilithium is based on the “Fiat-Shamir with Aborts”
framework [20] and other signature schemes proposed in [5,8,18]. Dilithium has a
simpler structure to implement compared to Falcon and samples elements from
the uniform distribution, not from the discrete Gaussian distribution. To de-
crease the size of a public key, Dilithium uses only high-order bits of a public
key, composed of the LWE instances, since the low-order bits of the LWE in-
stances do not affect the verification phase too much. However, to make up for
the correctness error resulted from this, Dilithium adds extra algorithms during
the signing and verification algorithms and this point leads to the increase of
complexity for the scheme.

1.1 Our Contributions

The main results of this paper is to give a simple and efficient signature scheme,
requiring no sampling with the discrete Gaussian distribution and extra algo-
rithms such as a hint algorithm in [13]. We modify the construction of [20] and
propose a simpler lattice-based signature scheme than Dilithium and Falcon. Our
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scheme is based on the hardness of a new GCK problem, called target-modified
one-wayness (TMO) problem, to get rid of the security requirement of [20], which
made the parameter of their signature scheme inefficient. Due to the absence of
the requirement, our parameter sets get a smaller-sized signature and secret key,
compared to Dilithium. The simplicity of our signature scheme allows for a fast
and efficient implementation secure against side-channel attacks and makes it
easy for a developer to detect subtle implementation mistakes that could leak
a secret key. The main features of our signature scheme can be summarized as
follows:

Simplicity and ease of implementation. Our signature scheme has a very
simple and compact structure to implement. The design of our scheme is based
on the Lyubashevsky’s framework [20], which is one of the simplest lattice-based
signature construction following the design of the Schnorr signature. Also, our
scheme only uses the uniform sampling, not the Gaussian sampling, which has
a potential side-channel vulnerabilities. Moreover, all other operations including
the polynomial multiplication and the rounding can be implemented in constant
time. This simplicity allows for an implementation secure against side-channel
attacks.

Minimization of public key and signature size. The goal of our signature
scheme is to minimize the sum of public key and signature sizes because many
applications require the transmission of these parameters. By eliminating the
security requirement of [20] and analyzing a bounding parameter rigorously using
the Central Limit Theorem (CLT) and the error function analysis, our signature
scheme can have smaller signature size and secret key compared to Dilithium.
That is, our scheme has the smallest value of the sum of the public key and the
signature size of any lattice-based scheme with the same security levels under
the restriction that a scheme does not use Gaussian sampling.

Fast and efficient implementation. The simplicity of our signature scheme
results in the fast and efficient implementation. Also, we minimize the dimen-
sion of the public key to get not only a smaller key size and also the fast imple-
mentation. A polynomial multiplication and a sampling are the most expensive
operations in implementing a cryptosystem. The main operations performed in
our scheme are the multiplication and the sampling of a public key. Hence, the
smaller the dimension of the public key we have, the more efficient our scheme is.
Additionally, to get the small dimension of the public key, we analyze a bound
parameter rigorously and set the form of the public key based on the GCK
one-wayness problem, not the LWE problem, which is required to increase the
dimension for the security.

1.2 Our Technique

In this paper, we define a relaxed notion of one-wayness problem of GCK function
called the TMO problem, which is to solve the one-wayness problem of GCK
function approximately instead of exactly. We now provide an overview of the
TMO problem of GCK function. Given a public polynomials a = (a1, . . . , am) ∈
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Rm
q and t ∈ Rq, we call a polynomial vector x = (x1, . . . , xm) ∈ Rm and a

polynomial c ∈ R a solution of the TMO problem if
∑m

i=1(ai · xi) = c · t mod q
where both x and c are short. Under proper settings of parameters, we show the
TMO problem is as hard as the collision-resistance problem of GCK function, or
no easier than the one-wayness problem of GCK function. The TMO problem of
GCK function is a natural generalization of the one-wayness problem of GCK
function. The primary motivation is to improve the efficiency of lattice-based
Fiat-Shamir signatures. With a relaxation of the GCK problem, it is possible
to prove the security of [20] without the security requirement, which made the
signature scheme inefficient. Because of the absence of the requirement, our
parameter sets get a smaller-sized public key, secret key, and signature.

Another technique that we use to get the smaller signature size in this paper
is to analyze the bounding parameter Ls rigorously and set the value tightly
based on the analysis. In our signature scheme, one component of the signature
z is computed as z = y+c ·s where s is a small secret polynomial vector and c is
also short. The range which the value y is sampled from needs to be large enough
to hide the secret s from the signature (z, c). Also, to make the distribution of the
signature independent of the secret key s, we apply the rejection sampling [20],
which is that the signing algorithm outputs z only if all coefficients of z are
in [−B + Ls, B − Ls] where the value B is the range of all coefficients of y
and the value Ls is the bound parameter of c · s, i.e. ∥c · s∥∞ ≤ Ls. The value
Ls is determined to ensure both the correctness and security of the signature
scheme. In [13] and [20], the bound parameter Ls is calculated assuming the
worst-case scenario. For the improvement of the efficiency, we study the bound
parameter selection and present a rigorous analysis of setting more tight bound
by analyzing the multiplication of two polynomials over the ring Zq[x]/(x

n + 1)
using the CLT and the error function analysis. This point leads to a decrease in
the signature size.

1.3 Related Work

In 2009, Lyubashevsky [20] proposed a signature scheme whose security is based
on the GCK problem adapted from the Fiat-Shamir transformation in the ran-
dom oracle model. The signature scheme has a very simple structure because it is
based on the Schnorr signature. However, the public key and the signature sizes
of [20] are considerably large. This is mainly due to the security requirement
of the security proof under the collision resistance problem of GCK function
(or the MSIS problem). We briefly introduce the Lyubashevsky’s identification
protocol and the security proof in Chapter 2.3 and Appendix B. The signature
scheme has a public key of the form t =

∑m
i=1(ai · si) mod q where a is sam-

pled from Rm
q and s is sampled from the small uniform distribution, which is

based on the Module Inhomogeneous SIS (MISIS) problem. In order to prove the
unforgeability of the signature scheme, there should be another valid secret key
corresponding a public key. This is achieved by taking the range which the secret
key is sampled from to be sufficiently large, which is the security requirement
of [20]. This approach would increase the signature size and the public key size.
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In 2012, Lyubashevsky gave an improved signature scheme [21] based on the
construction of [20]. The signature scheme has a public key based on the stan-
dard ISIS problem and its security proof is based on the standard SIS problem.
Similar to [20], there should be another valid secret key corresponding a public
key. Instead of taking the range of the secret key to be sufficiently large, they
employ an alternative proof technique based on the SIS decision problem. The
SIS decision problem is to distinguish between the uniform distribution and the
SIS distribution, which is t = As mod q where A and s are sampled from Zn×m

q

and [−η, η]m, respectively. It is shown that the decisional version of the random
subset sum problem is as hard as the search version [19] and Micciancio and
Mol have generalized the relationship to the standard SIS problem [25]. In their
security proof, using the SIS decision problem, the public key t = As is replaced
to t = As′ where s′ has much larger entries than s does. Thus, the public key
t = As′ has non-unique solutions with overwhelming probability. Since the SIS
decision problem is not transferred easily to ring setting, the construction of [21]
can not be extended to the ring version of the construction, which has an effi-
cient multiplication operation and supports the reduction of the public key size
by the algebraic structure.

Bai and Galbraith presented a provably secure efficient signature following
the idea of the security proof of [21] and they changed the form of the public key
based on the standard LWE and SIS problems [5] in 2014. Since then, several
follow-up works based on the design of [5] have been proposed [1,3,6,12–14]. The
decisional LWE problem can be extended to ring version and module version so
their schemes have small size of the secret key, the public key, and signature and
have an efficient performance by the algebraic structure. The signature scheme
of [5] has a public key based on the LWE problem over standard lattices. The
signature scheme of Dilithium [13] has a public key of the form t = As + e
mod q where A is sampled from Rk×m

q and s and e are sampled from the small
uniform distribution, which is based on the MLWE problem over ideal lattices.
Also, Ducas et al. [13] points out that the low-order bits of a public key, composed
of LWE instances, do not affect the verification phase too much. Thus, Dilithium
uses only high-order bits of the LWE instances as the public key. Because of the
form of the public key and the public key compression technique, Dilithium has a
shorter key sizes than previous lattice-based signatures. However, to make up for
the correctness error resulted from this compression technique, Dilithium adds
an extra algorithms and this point leads to an increase of the complexity for the
scheme.

2 Preliminaries

2.1 Digital Signatures

A public-key signature (PKS) scheme for a message space M consists of three
algorithms: KeyGen, Sign, and Verify which are defined as follows:

– KeyGen(λ): The key generation algorithm takes as input a security parameter
λ and outputs public key and secret key (pk, sk).
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– Sign(sk, µ): The signing algorithm takes as input the secret key sk and a
message µ ∈M, and then outputs a signature σ.

– Verify(pk, µ, σ): The verification algorithm takes as input the public key pk,
a message µ and a signature σ, and then outputs 1 if the signature is valid
or 0 otherwise.

Correctness. We say that a signature scheme is (1− γ)-correct if the following
condition holds: for all (pk, sk) ∈ KeyGen(λ) and all messages µ ∈M,

Pr
[
(pk, sk)← KeyGen(λ); σ ← Sign(sk, µ) : Verify(pk, µ, σ) = 1

]
> 1− γ(λ),

where γ is a negligible function for the security parameter λ.

Let PKS = (KeyGen, Sign, Verify) be a signature scheme. The unforgeability
against chosen-message attack (UF-CMA) is defined via the following experiment
UF-CMAAPKS(λ) between an adversary A and a challenger C:

1. C runs (pk, sk)← KeyGen(λ) and gives pk to A.
2. A queries signing oracle Sign(sk, µ) with a message µ.
3. Finally, A outputs a signature σ∗ and a message µ∗ which was not previ-

ously queried to the signing oracle. C returns 1 if Verify(pk, µ∗, σ∗) = 1 and
otherwise returns 0 as the output of the game.

The advantage of A for breaking the UF-CMA security of PKS is defined as
AdvUF-CMA

PKS (A) = Pr[UF-CMAAPKS ⇒ 1]. We say that a signature scheme is UF-
CMA secure if for any polynomial-time adversary A, we have AdvUF-CMA

PKS (A) ≤
ϵ(λ), where ϵ is a negligible function for the security parameter λ.

2.2 Lattice Problems

Before we present lattice problems, we define the GCK function, introduced by
Micciancio [24]

Definition 1 (GCK Function). For a ring R, subset S ⊂ R, integer m ≥ 1,
and a randomly and independently chosen element a = (a1, . . . , am) ∈ Rm, the
generalized knapsack function Fa : Rm → R is defined as follow:

Fa(x) =
∑m

i=1(ai · xi),

for x ∈ Sm, where
∑m

i=1(ai · xi) is computed using the ring multiplication and
addition operation.

In this paper we consider the ring Rq = Zq/(x
n + 1) and a subset S ⊂ R =

R[−β,β] for some positive integer β.

Definition 2 (One-Wayness of GCK function [24]). A GCK function is
one-way (OW) if for any probabilistic polynomial-time algorithm A, it is easy
to compute, but computationally hard to invert the GCK function: given a pair
(a, t = Fa(x)) for randomly chosen a ∈ Rm and x ∈ R[−β,β], find an x in the
domain such that Fa(x)) = t. For integers m, q ∈ N and a real number β ∈ R+,
we define AdvOW

m,q,β to be the advantage of an algorithm A in solving the OW
problem of GCK function over the ring Rq.
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Based on the analysis in [24], solving the OW problem of GCK function with
non-negligible probability is as hard as approximating the shortest independent
vector problem (SIVP) on cyclic lattices in the worst case.

Definition 3 (Collision-Resistance of GCK function [22, 26]). A GCK
function is collision-resistant (CR) if for any probabilistic polynomial-time algo-
rithm A, it is computationally hard to find the collision of GCK function: given
a random a ∈ Rm, find a pair (x,x′) in the domain such that Fa(x) = Fa(x

′).
For integers m, q ∈ N and a real number β ∈ R+, we define AdvCR

m,q,β to be the
advantage of an algorithm A in solving the CR problem of GCK function over
the ring Rq.

Based on the analysis of [22, 26], finding the collision of GCK function with
non-negligible probability is as hard as the shortest vector problem (SVP) over
cyclic lattices in the worst case.

It is easy to see that there is a reduction from the CR problem of GCK
function to the OW problem of GCK function. In other words, if there is a
polynomial-time algorithm A that can solve the OW problem of GCK function,
then there is another algorithm B that can break the collision resistance of
GCK function, i.e. AdvOW

m,q,β ≤ AdvCR
m,q,β . We briefly describe how B solves the

CR problem using A. Initially, B takes a ∈ Rm
q as input and needs to find a

pair (x,x′) such that Fa(x) = Fa(x
′), ∥x∥∞ ≤ β, and ∥x′∥∞ ≤ β. It samples

x ← Rm
[−β,β] and computes t = Fa(x). Then it runs A on input (a, t). Finally,

A outputs x′ ∈ Rm
q such that ∥x′∥∞ ≤ β and Fa(x

′) = t. We need to show that
x ̸= x′. For a randomly picked x ∈ Rm

[−β,β], there is another value x′ ∈ Rm
[−β,β]

which produces the same value t with high probability since (2β + 1)nm ≫ qn.
Also, A does not know which value is used to compute t. Thus, it holds that
x ̸= x′ with high probability. Thus B solves the CR problem by outputting a
pair (x,x′).

Definition 4 (Target-Modified One-wayness of GCK function). For any
n,m, q ∈ N and α, β ∈ R, the target-modified one-wayness (TMO) problem is
defined as follows: Given a ∈ Rm

q , t ∈ Rq, find x ∈ Rm
q and c ∈ Rq such that

∥c∥∞ ≤ α, ∥x∥∞ ≤ β satisfying

Fa(x) = c · t mod q.

The TMO problem is to solve the OW problem approximately instead of
exactly, which is a relaxed notion of the OW problem. Recall that the OW
problem is to find a short x ∈ Rm

q , which is a preimage of t for the GCK function
Fa(·). Now, the TMO problem is to find x ∈ Rm

q , which is an approximate
short preimage of t such that Fa(x) = c · t mod q for some short c ∈ Rq. The
TMO problem is non-trivial when the bound α are relatively small compared
to the bound β. For integers m, q ∈ N and real numbers α, β ∈ R+, we define
AdvTMO

m,q,α,β to be the advantage of an algorithm A solving the TMO problem of
GCK function over the ring Rq. We present the hardness of the TMO problem
based on previous GCK problems in Appendix A.
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2.3 GCK-based Identification Protocol

A lattice-based identification protocol (Figure 1), introduced by Lyubashevsky in
2009 [20], is based on the CR problem of GCK function. In this protocol, a public
key does not reveal a secret key because of the OW problem of GCK function
and its security is proved under the stronger assumption that the underlying
GCK function is CR. At a high level, the protocol of Lyubashevsky has a public
key (a, t = Fa(s) mod q) and a response is a proof of knowledge of a secret key
s where s ∈ Rm

[−η,η] for some small integer η. In the first round, a prover picks

y ∈ Rm
[−B,B] for some relatively large integer B and sends Fa(y) to a verifier.

Next, the verifier picks a random challenge c ∈ Rn,h, and send it to the prover.
After that, the prover computes z = y + c · s. If z and c · s are in a proper
range, then the prover sends z to the verifier to prevent the leakage of the secret
key. Otherwise, the prover has to abort and the protocol has to be repeated.
This identification protocol can be converted into a signature scheme by using
the Fiat-Shamir transformation. In Appendix B, we sketch the security proof of
Lyubashevsky’s signature scheme under the CR problem of GCK function.

Fig. 1. Lyubashevsky’s identification protocol

3 GCKSign Specification

3.1 Notation

For an even (odd) modulus q ∈ Z≥0 and an integer k ∈ Z, define k′ = k mod ±q
as the unique element k′ such that −q/2 < k′ ≤ q/2 (resp. −⌊q/2⌋ ≤ k′ ≤ ⌊q/2⌋)
and k′ = k mod q. Zq = Z/qZ denotes the quotient ring of integers modulo q.
Let R and Rq respectively denote the rings Z[x]/(xn + 1) and Zq[x]/(x

n +
1), where n is a power of two, and q is a prime such that q ≡ 1 mod 2n.
Vectors with entries in Rq are denoted with bold lowercase letters, for example,
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a = (a1, . . . , am) ∈ Rm
q where a1, . . . , am ∈ Rq for some positive integer m.

Rn,h denotes a set of an element in Rq that has all zeros coefficients except
h out of n coefficients are in {1,−1}. We have ∥Rn,h∥ = 2h ·

(
n
h

)
. Let R[−x,x]

denotes a set of an element in Rq satisfying that all coefficients are between
[−x, x] for a positive integer x. We define the infinity norm for a polynomial
f = f0+f1x+ . . .+fn−1x

n−1 ∈ R as ∥f∥∞ = max0≤i≤n−1|fimod±q|. Similarly,
for f = (f1, . . . , fm) ∈ Rm, we define ∥f∥∞ = maxi(∥fi∥∞).

3.2 Construction

In this section we describe our signature scheme based on the GCK problem.
This scheme requires a hash function H to binary strings of fixed length ℓ and
an encoding function encode that maps binary strings of length ℓ to an element
in the set Rn,h. For the security parameter λ, the system parameter params is
generated as follows: choose an integer n such that n = 2a for a positive integer
a ∈ N and we set n = 256 for the NIST security level II and III and n = 512
for the NIST security level V. Also, choose a modulus q as a prime and positive
integers m,B, h, Ls to fulfill the security requirements. Then, params is given
by (n, q,m,B, h, Ls). It is assumed that params is used for all algorithms in our
signature construction. The key generation, signing, and verification algorithms
of our signature scheme are described as follows:

KeyGen. This algorithm first chooses random 256-bit seeds seeda and seeds. It
samples public polynomials a1, . . . , am uniformly at random over Rq by expand-
ing seeda and secret polynomials s1, . . . , sm uniformly at random over R[−η,η]
by expanding seeds. Next, it computes a polynomial t = Fa(s) =

∑m
i=1(ai · si).

Finally, it outputs a public key pk = (t, seeda) and a secret key sk = (s =
(s1, . . . , sm), seeda).

Algorithm 1: KeyGen

Input : -
Output: public key pk = (t, seeda), and secret key sk = (s, seeda)

1 seeda, seeds ← {0, 1}256;
2 a = (a1, . . . , am)← samplea(seeda) ∈ Rm

q ;
3 s = (s1, . . . , sm)← samples(seeds) ∈ Rm

[−η,η];

4 t← Fa(s) =
∑m

i=1(ai · si);
5 pk ← (t, seeda);
6 sk ← (s, seeda);
7 return (pk, sk);

Sign. This algorithms first regenerates the public polynomials a1, . . . , am from
seeda. It chooses a random 256-bit seed seedy and initializes a counter at 1. It
samples polynomials y1, . . . , ym uniformly at random over R[−B,B] by using seedy
and the counter. Next, it computes a polynomial v = Fa(y) =

∑m
i=1(ai · yi). It
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obtains ĉ by computing the hash function H(v, µ) together with the message
µ. It obtains a sparse polynomial c ∈ Rn,h by running encode(ĉ) and computes
z = y + c · s. If z ̸∈ R[−B+Ls,B−Ls], then it increase the counter and goes to
the step that samples y and repeats the subsequent steps. Finally, it outputs a
signature σ = (z, ĉ).

Algorithm 2: Sign

Input : message µ, and secret key sk = (s, seeda)
Output: signature (z, ĉ)

1 counter← 1;
2 a = (a1, . . . , am)← samplea(seeda) ∈ Rm

q ;
3 seedy ← {0, 1}256;
4 y = (y1, . . . , ym)← sampley(seedy, counter) ∈ Rm

[−B,B];

5 v ← Fa(y) =
∑m

i=1(ai · yi);
6 ĉ← H(v, µ) ∈ {0, 1}256;
7 c← encode(ĉ) ∈ Rn,h;
8 z ← y + s · c;
9 if z /∈ Rm

[−B+Ls,B−Ls]
then

10 counter← counter + 1;
11 goto step 4;

12 end
13 return σ = (z, ĉ);

Verify. This algorithm first derives a polynomial c from ĉ in the signature.
It regenerates the public polynomials a1, . . . , am from the seed seeda. Next, it
computes w = Fa(z) − c · t =

∑m
i=1 ai · zi − c · t. This polynomial w is used

to compute the hash value H(w, µ) together with the message µ. It accepts the
signature if the hash value matches the signature ĉ and z ∈ R[−B+Ls,B−Ls].

Algorithm 3: Verify

Input : message µ, signature σ = (z, ĉ), and public key pk = (t, seeda)
Output: {1, 0} // accept or reject signature

1 c← encode(ĉ) ∈ Rn,h;
2 a = (a1, . . . , am)← samplea(seeda) ∈ Rm

q ;
3 w ← Fa(z)− t · c =

∑m
i=1 ai · zi − t · c;

4 if z /∈ Rm
[−B+Ls,B−Ls]

∨ ĉ ̸= H(w, µ) then

5 return 0;
6 end
7 return 1;
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3.3 Correctness

We show the correctness of our signature scheme. To guarantee the correctness of
this signature scheme, it has to hold two requirements for a signature σ = (z, ĉ):
The first one is that ∥z∥∞ < B−Ls and the second one is that the output of the
hash function in the signing algorithm and the output of the hash function in the
verification algorithm are same. The first one is guaranteed since this condition
is checked in the signing algorithm. The second one is also guaranteed by the
following equations

m∑
i=1

(ai · zi)− c · t =
m∑
i=1

(ai · (yi + c · si)− c ·
m∑
i=1

(ai · si)

=

m∑
i=1

(ai · yi) + c ·
m∑
i=1

(ai · si − ai · si) =
m∑
i=1

(ai · yi)

3.4 Implementation Details

Generation of a. The function samplea maps a uniform seed seeda ∈ {0, 1}256
to a vector a ∈ Rm

q in NTT (number theoretic transform) domain representation
during the key generation, signing, and verification algorithms. It computes each
coefficient of ai ∈ Rq of a separately. The seed is expanded using SHAKE-
128. The output stream is considered as a sequence of integers between 0 and
2⌈log q⌉−1. Then it proceeds to do rejection sampling to obtain a value less than
the modulus q. It repeats SHAKE-128 until all the mn coefficients are filled out
in case that the output stream is exhausted.

Generation of s. The function samples maps a uniform seed seeds ∈ {0, 1}256
to a vector s ∈ Rm

[−η,η] during the key generation and signing algorithms. The
process is similar to the way to sample a. The seed is expanded using SHAKE-
128 and the output stream is considered as a sequence of integers between 0 and
2⌈log(2η+1)⌉ − 1. Then it proceeds to do rejection sampling to generate a value
in the range {0, 2η − 1}. Afterwards, the integers are obtained by subtracting
(η − 1) from the value.

Generation of y. The function sampley maps a uniform seed seedy ∈ {0, 1}256
to a vector s ∈ Rm

[−B,B] during the signing algorithm. The process is similar to the
way to sample s. The seed is expanded using SHAKE-128 and the output stream
is considered as a sequence of integers between 0 and 2⌈log(2B+1)⌉ − 1. Then it
proceeds to do rejection sampling to generate a value in the range {0, 2B − 1}.
Afterwards, the integers are obtained by subtracting (B − 1) from the value.

Encoding function. The encoding function encode maps a bit string ĉ to a
polynomial c ∈ Rn,h of elements of R which have h coefficients that are either
1 or -1 and the rest are 0. This function absorbs the bit string ĉ into SHAKE-
256 and outputs a stream of random bytes that are interpreted as the positions
and signs of the h nonzero entries of ĉ. It repeats SHAKE-256 until all the h
coefficients are filled out in case that the output stream is exhausted.
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Table 1. Security requirements for our signature scheme

Parameters Definitions Security Requirements

λ security parameter -

n 2k where k ∈ N
h number of ±1 in c 2h ·

(
n
h

)
≥ 2λ

η secret polynomial range -

m dimension of pk -

q modulus q ≡ 1 mod 2n

Ls bound of ∥c · s∥∞ ηs ·
√

τ
3η2

δz 1− rejection probability ≥ 0.3

B y coefficient range ≥
n√δz+2Ls−1
2(1− n√δz)

≥ 1
2
· (q1/m − 1)

pk size (bytes) (n · log2 q + 256)/8

σ size (bytes) (nm · (⌈2 log2(B − Ls)⌉+ 1) + 256)/8

sk size (bytes) (nm · ⌈log2(2η + 1)⌉) + n)/8

3.5 Number of Iterations

We analyze the probability of z ∈ Rm
[−B+Ls,B−Ls]

that stops the iterations of

the signing steps. The probability that ∥z∥∞ < B − Ls can be (heuristically)
computed as

δz =
(2B − 2Ls + 1

2B + 1

)nm

.

The probability that ∥s · c∥∞ ≤ Ls is approximately 1− 1/210 in our parameter
sets by setting Ls in the way in Chapter 5. The expected number of iterations
during the signing algorithm is the inverse of the product of the probability δz
and (1 − 1/210). In Table 2, the expected number of iterations of our scheme
varies from approximately 2.97 to 3.08.

3.6 Parameter Sets

We provide bounds of all the system parameters and concrete parameters to
fulfill the security requirements. In Table 1, we summarize the bounds and re-
quirements of all the system parameters. All parameters satisfy the requirements
in Table 1 to ensure both correctness and security of our signature scheme.

Let λ be the security parameter, which is the bit security of our signature
scheme. Let R and Rq denote the rings Z[x]/(xn + 1) and Zq[x]/(x

n + 1) re-
spectively where q is a prime modulus such that q ≡ 1 mod 2n and n is the
dimension of the ring which is a power of 2. Let η be the value indicating the
range used to sample the coefficients of secret polynomials in [−η, η]. Let m
be the number of public polynomials and h be the number of non-zero coeffi-
cients in the output of the hash function. A public key consists of seeda and
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Table 2. Parameters for our signature scheme

NIST Security Level II III V

n 256 256 512

q 254 − 10751 260 − 2559 244 − 7167

m 4 4 3

h 39 45 44

challenge space 192 212 256

B 214 − 1 214 + 29 215 − 1

η 1 1 1

Ls 18 18 19

Repetitions 3.08 2.97 2.43

SIS Hardness (Core-SVP)

BKZ block-size b 430 628 917

Classical Core-SVP 125 183 268

Quantum Core-SVP 114 166 243

Output Size

pk size (bytes) 1,760 1,952 3,040

σ size (bytes) 1,952 2,080 3,104

sk size (bytes) 288 288 544

Performance (Reference Code)

KeyGen (K cycles) 184 202 265

Sign (K cycles) 1,062 1,240 1,421

Verify (K cycles) 237 253 373

t, which is (256 + n · log2 q)/8 bytes. A signature consists of z and ĉ, which is
(n · (2⌈log2(B − Ls)⌉+ 1) + 256)/8 bytes. A secret key consists of seeda and s,
which is (nm · ⌈log2(2η + 1)⌉) + 256)/8 bytes.

We propose three sets of parameters targeting the NIST security level II,
III, and V in Table 2. We set n = 256 (or n = 512) for the dimension of the
polynomial ring and η = 1 for the coefficient bound of the secret polynomials.
For the NIST security level II, we set n = 256 and q ≈ 254. For the NIST
security level III, we set n = 256 and q ≈ 260. For the NIST security level V, we
set n = 512 and q ≈ 244.

In Table 3, we compare our signature’s parameter to those of Lyubashevsky’s
scheme [20] and Dilithium [13]. The table shows the parameters of our scheme
including the sizes of public key, signature, and secret key compared to those
of [13,20]. Whereas our scheme is based on the TMO problem of GCK function,
the scheme of [20] is based on the collision-resistance of GCK function, which is a
stronger assumption. Also, in [20], the coefficient range of the secret polynomials
η is set to 2047 to satisfy their additional security requirement (2η + 1)nm ≥
qn · 2128 cased by the witness indistinguishability. Because large η causes larger
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Table 3. Comparison of parameters in signature schemes

n m q η
Sig

(bytes)

PK

(bytes)

SK

(bytes)

PK + Sig

(bytes)

Classical

Hardness

Hard

Problem

[20]
512 5 ≈ 260 2047 9, 000 3, 875 3, 875 12, 875 71 GCK-

CR512 8 ≈ 296 2047 14, 875 6, 125 6, 125 21, 000 127

[13]

256 (4, 4) ≈ 223 2 2, 420 1, 312 2, 544 3, 732 123
MLWE,

MSIS
256 (6, 5) ≈ 223 4 3, 293 1, 952 4, 016 5, 245 182

256 (8, 7) ≈ 223 2 4, 595 2, 592 4, 880 7, 187 252

Ours

256 4 ≈ 254 1 1, 952 1, 760 288 3, 712 125
GCK-

TMO
256 4 ≈ 260 1 2, 080 1, 952 288 4, 032 183

512 3 ≈ 244 1 3, 104 3, 040 544 6, 144 268

bound parameter Ls and large range of y, these values directly affect the size
of signature. By changing the lattice problem and the security analysis of our
scheme, we can remove their additional security requirement. Thus we can set
smaller η = 1. As a result, the public key, secret key, and signature sizes of our
scheme decrease considerably compared to those of [20].

Dilithium is an improvement of the signature scheme of [5]. Thus, the security
of Dilithium is based on the hardness of not only the MSIS problem but also
the MLWE problem. Briefly speaking, key-recovery attack, which attempts to
recover a secret key from a public key, is to solve the MLWE problem and forgery
attack, which attempts to forge a signature, is to solve the MSIS problem. To
guarantee that the scheme is secure against those attacks, both the MSIS and
MLWE problems have enough hardness against the best known lattice attacks
such as primal attack and dual attack. The MLWE and MSIS problems involve
finding a short vector in lattices. However, the analysis of two instances is slightly
different. We now recall the MLWE and MSIS problems briefly. For integers k
and m, given (A, t = As + e), the MLWE problem is finding (s, e) where A
is sampled from Rk×m

q . The MSIS problem is finding y such that A · y = 0

mod q where A is sampled from Rk×m
q . The straightforward way of increasing

the hardness of the MLWE problem is to increase the values (k,m). However,
the hardness of the MSIS problem is increased when k is increased and m is
decreased. In other words, if m is increased, the MLWE problem became harder,
but the MSIS problem became easier. Thus, in Dilithium, m is set to a value
providing similar hardness of the MLWE and MSIS problems after k is set.

Unlike Dilithium, our signature scheme is based on only SIS problem, so
the security increases when the value m decreases (until the GCK function has
a collision). Also, setting the bound parameter Ls more tightly, as described
in Chapter 5, helps to reduce the value m and the bound parameter B while
maintaining the number of iterations during the signing phase. Since the value
m and the bound parameter B are directly related to the signature size (=
m · ⌈log2 B⌉), our scheme provides smaller signature sizes compared to [13] for
the same security level. In detail, the size of signature for our scheme decreases
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Table 4. Performance comparison of signature schemes

NIST

Security Level

KeyGen

(K cycle)

Sign

(K cycle)

Verify

(K cycle)

Classical

Hardness

Dilithium [13]

II 272 1, 323 298 123

III 495 2, 155 520 182

V 728 2, 592 779 252

Ours

II 184 1, 062 237 125

III 202 1, 240 253 183

V 265 1, 421 373 268

20 percent for the NIST security level II and around 35 percent for the NIST
security level III, compared to [13]. Moreover, we minimize the sum of the public
key and the signature. The sum of these parameters decreases 25 percent for the
NIST security level III.

4 Performance Analysis

In Table 4, we evaluate the performance of our implementations on a 3.7GHz
Intel Core i7-8700k running Ubuntu 20.04 LTS. The table shows that the key
generation, signing, and verification algorithms of our scheme are faster for every
security level, compared to those of Dilithium. We choose the modulus q satisfy-
ing the condition q ≡ 1 mod 2n, which enables the “fully-splitting” NTT algo-
rithm for the multiplication operation. Even though our modulus q is much larger
than the modulus of Dilithium (q ≈ 223), our scheme is faster than Dilithium
because of the simplicity of our scheme.

A polynomial multiplication and a sampling are the most costly operations
in implementing a cryptosystem. Both Dilithium and our scheme apply the NTT
to optimize polynomial multiplication. The main operation performed in both
schemes is a multiplication of a public key (A ∈ Rk×m

q in Dilithium and a ∈
Rm

q in our scheme). In the NIST security level III, the multiplication A · y
involves 30 polynomial multiplications in Dilithium, whereas a · y involves only
4 polynomial multiplications in our scheme. Since one polynomial multiplication
for each scheme costs similarly, our multiplication operation of a public key is
approximately 7 times faster than that of Dilithium.

Secondly, Dilithium needs to sample ⌈log2 q⌉ · n · k · m ≈ 22, 080 bytes to
generate a public matrix A ← Rk×m

q . Meanwhile, our scheme needs to sample
⌈log2 q⌉ ·n ·m ≈ 7, 680 bytes to generate a ∈ Rm

q . As a result, the sampling time
of our scheme is approximately 3 times faster than that of Dilithium. These
points make our scheme faster than Dilithium overall.
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5 Security Analysis

5.1 Security Proof

The concrete security of our scheme is supported by a security reduction that
gives a reduction from the TMO problem of GCK function to the unforgeability
under chosen-message attack in the random oracle model.

Theorem 1. If our signature scheme is insecure against chosen message at-
tacks for the proposed parameters, then there is a polynomial-time algorithm
that can solve the TMO problem of GCK function with success probability at
least ϵ′

(
ϵ′

qs+qh
− 1

2λ

)
where ϵ′ = AdvUF-CMA

PKS (A) + qs
(2B−1)n .

The security proof of this theorem is given in Appendix C.

5.2 Concrete Security Analysis

The BKZ lattice reduction algorithm [11] is the most important building block in
most efficient SIS attacks. Thus, our estimator determines the overall hardness
against the SIS solvers by estimating the cost of the BKZ algorithm. There are
a variety of approaches to cost the running time of BKZ [2, 4, 11]. In general,
an SVP solver is the main building block of the BKZ algorithm. Regarding the
number of SVP oracle calls the BKZ algorithm makes, the Core-SVP model [4] is
to assume that an SVP oracle is required to be called only once in a conservative
model. This methodology is significantly more conservative than prior ones used
in lattice-based cryptography. In particular, we assume that an adversary can run
the asymptotically best algorithms known, with no overhead compared to the
asymptotic run-times. In particular, we assume that the adversary can cheaply
handle huge amounts of (possibly quantum) memory. This conservatism is in
line with the goal of long-term post-quantum security. The best known classical
SVP solver runs in time ≈ 20.292·b and best known quantum SVP solver runs in
time ≈ 20.265·b. Therefore, we determined to adopt the BKZ cost model of 0.292b
for the classical model and the BKZ cost model of 0.265b for the quantum model
where b is the BKZ block size. The security parameters in Table 2 are based on
this conservative methodology.

As we mentioned above, it is assumed that the adversary can run the asymp-
totically best algorithms known, with no overhead compared to the asymptotic
run-times in Core-SVP model. To estimate the cost of schemes more rigorously,
Kyber [9] and Dilithium [13] refine the core-SVP methodology to count the num-
ber of gates required to solve lattice problems (e.g. MLWE) by relying on the
concrete estimation for the cost of sieving in gates and by accounting for the
number of calls to the SVP oracle. The required security level specified by NIST
is based on the classical and quantum gate counts for the optimal key recovery
and collision attacks on AES and SHA3, respectively. For example, security level
1, 3 and 5 are defined in terms of block ciphers AES128, AES192, AES256 and
2143, 2207 and 2272 classical gates are required, respectively. Also, categories 2 and
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4 are defined in terms of hash functions SHA-256 and SHA-384 and 2146 and
2210 classical gates are required for the corresponding security level, respectively.

With this refined estimates for the MLWE hardness, Dilithium present three
parameters for the NIST security level II, III, and V with 158, 216 and 285
security (=log2(gates)) for MLWE hardness. Applying this analysis to the MSIS
problem is not complete yet but it is strongly expected that the refined cost of
SIS would be somewhat larger than the cost of LWE [13] when they have the
same BKZ blocksize b. Based on this observation, we believe that our scheme
satisfies their stated “NIST Security Level” designation as long as Kyber and
Dilithium satisfy their security level since our parameter sets require larger BKZ
block sizes than [13] for the same security categories.

5.3 Cost of Known Attacks

Forgery Attack: Solving the GCK-TMO problem. The attacker may at-
tempt to forge a signature. By Theorem 1, this implies finding (x, c̃) such that
Fa(x) = c̃ · t, ∥c̃∥∞ ≤ α where α = 2 and ∥x∥∞ ≤ β where β = 2(B −Ls). As a
result, it follows that Pr[δ2] ≤ AdvTMO

m,q,2,2(B−Ls).
To estimate the hardness of the TMO problem of GCK function upon which

the security of our signature scheme is based, we follow the way explained in [13],
which is a software to estimate the hardness of infinite norm SIS problem. This
approach seems naturally since there are the reductions from MSIS problem
to the CR problem of GCK function and from the CR problem to the TMO
problem of GCK function. To our best knowledge, since there is no algorithm
to solve TMO problem efficiently, we estimate the concrete security level using
the algorithms to estimate the hardness of SIS problem instead. While the MSIS
problem is defined over polynomial rings, the best attacks are applied by simply
considering the problem as SIS problem since we do not currently have any
attack for this ring structure. Note that the MSIS instance can be mapped to a

SIS instance by considering the matrix A ∈ Z(n×n·m)
q with infinity norm bounds

β = 2(B − Ls).

Key-Recovery Attack: Solving the GCK-OW problem. The attacker may
also attempt to recover the secret key s from the public key a, t =

∑m
i=1(ai · si).

As each of the m elements of the secret polynomials is sampled from Rm
[−η,η],

this amounts to solving the OW problem of GCK function, which is reduced to
the MSIS problem. Note that the smaller the bound parameter in SIS problem,
the harder the SIS problem is. Since η is much smaller than β in our parameter
setting, key-recovery attack is concretely harder than the forgery attack. There-
fore, we set our parameters to provide enough hardness for at least the forgery
attack as described above.

6 Conclusion

We proposed a simple and practical signature scheme based on the hardness
of the TMO problem of GCK function in ideal lattices. Dilithium [13], which
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is one of NIST finalist candidates for PQC signature schemes, has short pub-
lic key and signature sizes. However, the scheme has a complicated structure
with a public key compression technique. Meanwhile, Lyubashevsky’s signature
scheme has a much simpler structure to implement. However, the scheme has
large public key and signature sizes resulted mainly due to the additional security
requirement. To combine the strength of both schemes, we modified the scheme
of Lyubashevsky slightly and presented a new security proof eliminating the se-
curity requirement. Because of the absence of this requirement, our parameter
sets enable our scheme to have small public key, secret key, and signature sizes.
Besides, we presented a tight analysis of bounding parameters Ls using CLT
and error function analysis, which results in a decrease in the public key and
secret key sizes as well. Furthermore, our scheme has a very simple and compact
structure to implement, which results in the fast and efficient implementation.
As a result, our signature scheme has small key and signature sizes and a simple
and efficient structure to implement compared to that of Dilithium for the NIST
security level II, III, and V.
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A Hardness of the TMO problem

First, we observe a rather obvious reduction that bases the hardness of solving
the TMO problem on the hardness of the OW problem. The following theorem
shows that the OWn,m,q,β problem is as hard as the TMOn,m,q,α,β problem for
α ≥ 1.

Theorem 2. Suppose there is a PPT algorithm A that solves the OWm,q,β

problem with advantage ϵ(k). Then there is a PPT algorithm B that solves the
TMOm,q,α,β problem with the same advantage ϵ(k) for any α ≥ 1.

Proof. Algorithm B takes a ∈ Rm
q and t ∈ Rq as input and needs to find x and

c such that Fa(x) = c · t, ∥c∥∞ ≤ α, and ∥x∥∞ ≤ β. Algorithm B runs algorithm
A on input (a, t). With advantage ϵ(k), algorithm A outputs x ∈ Rm

q such that
∥x∥∞ ≤ β and Fa(x) = t. Algorithm B sets c = 1 ∈ Rq. Then it is easy to check
that a pair (x, c) is a solution for the TMOm,q,α,β problem when α ≥ 1. That is,

AdvOW
m,q,β ≤ AdvTMO

m,q,α,β for any α ≥ 1. ⊓⊔

In the following theorem, we derive upper bound on the AdvTMO
m,q,α,β .

Theorem 3. Let n,m, q ∈ N, α, β, γ ∈ R satisfying that γ ≪ β and nαγ ≤ β.
For x and y are chosen uniformly at random from R[−α,α], if (2β + 1)n ≫ qn,

then it holds that AdvTMO
m,q,α,β ≤ 2AdvCR

m,q,β.

Proof. Suppose there is a PPT algorithm A that solves the TMOm,q,α,β problem

with advantage AdvTMO
m,q,α,β for any α ≥ 1. Recall that algorithm A takes (a, t) as

input and find a pair (x, c) such that Fa(x) = c · t. As described in [28, Section
3.3], the probability that an element chosen uniformly random in Rq is in the
subset of the multiplicative invertible elements of Rq is given by (1 − 1/q)n §.
This probability is overwhelming for our parameter setting. Thus we assume that
c has an inverse element in Rq. With (x, c) that A outputs, we set z = x · c−1.
Note that Fa(z) = Fa(x · c−1) = Fa(x) · c−1 = t. Let Ω be the set of all possible
(x, c) derived from A when the pair (a, t) is given. We partition the set Ω into
two disjoint sets ΩI and ΩII which are defined as follows.

Case 1: ΩI = { (x, c) ∈ Ω : ∥z∥∞ > γ},
Case 2: ΩII = { (x, c) ∈ Ω : ∥z∥∞ ≤ γ},
where z := x · c−1. Algorithm A’s output (x, c) belongs to either case 1 or case
2. First, we will show that algorithm B in case 1 solves the CRm,q,β problem
using algorithm A in case 1 as follows:

§ To make the probability 1, we can change the modulus q satisfying the condition
presented in [23, Corollary 1.2.], i.e. q ≡ 2k + 1 mod 4k for some integer k such
that n ≥ k > 1 and k is a power of 2 (instead of satisfying the condition q ≡ 1
mod 2n for the fully-splitting NTT algorithm). For example, if we set k = 16, any
y ∈ Rq that satisfies 0 < ∥y∥∞ ≤ 2 will always have an inverse in Rq. This implies
that the polynomial xn +1 splits into k factors and we can run “partially-splitting”
NTT algorithm for the multiplication operation, which can lead to an increase in
the multiplication cost slightly.



22 J. Woo et al.

1. Choose a random z′ ∈ Rm
[−γ,γ] and compute t = Fa(z

′).

2. Run A on input (a, t) and get (x, c) from A.
3. Compute x′ = c · z′ and output (x,x′) as a solution for CRm,q,β problem.

For (x,x′) to be a solution of the CRm,q,β problem, we need to show that
Fa(x) = Fa(x

′) first. Since (x, c) is a solution for the TMO problem, it holds
that Fa(x) = c · t. Also, we set t = Fa(z

′) in step 1. By the homomorphic
property of GCK function, it holds that c · t = c · Fa(z

′) = Fa(c · z′) = Fa(x
′).

Secondly, it holds that ∥x∥∞ ≤ β by definition and ∥x′∥∞ ≤ β since it holds
that ∥x′∥∞ ≤ n · ∥c∥∞ · ∥z′∥∞ ≤ nαγ ≤ β. Lastly, we will show that x and x′

are distinct. Note that z ̸= z′ since ∥z∥∞ > γ and ∥z′∥∞ ≤ γ by definition.
Therefore, x− x′ = c · (z − z′) ̸= 0.

Now, we consider algorithm A in case 2. We will show that there is algorithm
C that solves the OWm,q,γ problem using algorithm A in case 2. When algorithm
B takes (a, t) as input, B runs algorithm A on input (a, t). Then algorithm A
outputs (x, c). After then, B outputs z = x · c−1 as a solution for the OWm,q,γ

problem. The reason why z is a solution for the OW problem is because it holds
that Fa(z) = t and ∥z∥ ≤ γ by definition.

Note that AdvTMO
m,q,α,β is less than the sum of the advantage of algorithm A in

solving the TMO problem in case 1 and the advantage of algorithm A in solving
the TMO problem in case 2. Because we showed that the advantage of algorithm
A in solving the TMO problem in case 1 is less than AdvCR

m,q,β and the advantage

of algorithm A in solving the TMO problem in case 2 is less than AdvOW
m,q,γ . Note

that AdvOW
m,q,γ ≤ AdvOW

m,q,β ≤ AdvCR
m,q,β . Therefore, we complete the proof. ⊓⊔

B Security Proof of Lyubashevsky’s Scheme

We see how to prove that Lyubashevsky’s signature scheme [20] is EU-CMA
based on the CR problem of GCK function.

Theorem 4 ( [20]). If the signature scheme is insecure against chosen message
attacks for the proposed parameters, then there is polynomial-time algorithm that
can solve the CR problem of GCK function.

We sketch the main idea here. Let A be a forger against the signature scheme.
Then it is sufficient to build the polynomial-time algorithm B that solves the CR
problem of GCK function using A. In the first stage of the attack, the adversary
B chooses a random secret key s ∈ R[−η,η] and sends the public key pair a and
t = Fa(s) to A. Since B knows the secret key, B can perfectly respond A’s signing
oracles. In the second stage,A sends the forgery signature (z, c). A forking lemma
argument shows that the reduction can then extract two signatures (z, c) and
(z′, c′) for c ̸= c′ such that∑m

i=1(ai · zi)− c · t =
∑m

i=1(ai · z′i)− c′ · t
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Then B sets x = z − c · s and x′ = z′ − c′ · s. We can easily check that
Fa(x) = Fa(x

′) as follow:

m∑
i=1

(ai · xi) =

m∑
i=1

(ai · (z − c · s)) =
m∑
i=1

(ai · zi)− c ·
m∑
i=1

(ai · si)

=

m∑
i=1

(ai · zi)− c · t =
m∑
i=1

(ai · z′i)− c′ · t

=

m∑
i=1

(ai · z′i)− c′ ·
m∑
i=1

(ai · si) =
m∑
i=1

(ai · x′i)

To guarantee that x and x′ are distinct, the system parameters satisfy the con-
dition that for a randomly-picked s ∈ Rm

[−η,η], there is another s′ ∈ Rm
[−η,η] such

that Fa(s) = Fa(s
′) and the adversary A can not know the exact secret key

the adversary B picked, which is called the witness-indistinguishability. So, the
bound of the secret key η needs to be large enough to satisfy that (2η+1)nm ≫ qn

for the existence of another secret s′ and the witness-indistinguishability. The
proof in detail is given in [20].

C Security Proof of Our Signature Scheme

Proof. In order to prove the security of our signature scheme under the TMO
problem of GCK function, we define a sequence of hybrid games Game0, . . . ,
Game3, where Game0 is an actual game defining the unforgeability of the sig-
nature scheme in Chapter 2 and Game2 is a game in which we can easily bound
the success probability of the forger based on the hardness of the TMO prob-
lem of GCK function. For i = 0, . . . , 2, we define an event δi which corresponds
to the probability that the adversary A successfully outputs a valid forgery in
experiment Gamei.

Game0. In this game, the challenger runs (pk, sk)← KeyGen(λ) and returns pk
to the adversary A.

Whenever A asks for a hash query (cmt, µ), the challenger checks if the query
has already been asked and returns the same answer if this is the case. If it has
not, then the challenger chooses a new value ĉ in the challenge space and returns
it to A.

Whenever A asks for a sign query µ, the challenger computes a signature
σ as in the signing algorithm, i.e, σ ← Sign(sk, µ) and returns σ = (z, ĉ). In
doing so, the challenger checks if H(cmt, µ) has been defined. If not, then the
challenger chooses a new value ĉ from the challenge space, sets H(cmt, µ) = ĉ,
and computes z using this value.

Finally, when A outputs a forgery (µ, σ), where µ was not queried by the
signing oracle, the challenger returns Verify(pk, σ, µ) as the output of the exper-
iment. Thus, we get Pr[δ0] = AdvUF-CMA

PKS (A) by definition.
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Game1. This game is the same as Game 0 except that the sign queries are
replaced by a simulation in the random oracle model as Mid sign (see Algorithm
4 below) and hash queries are handled by answering with random values. Since
Game 1 is the same as Game 0, except that the challenge value ĉ is generated
by the random oracle, the adversary can not tell if the sign oracle was answered
by Sign algorithm or Mid sign algorithm.

Note that there is a possibility that the hash function responses are not
consistent in Game 1. In other words, for the same input, the output of the hash
function which was set for a hash oracle can be different from the output of the
hash function which was reprogrammed for a sign oracle. The event occurs with
the probability that the commitment value in Rm

q chosen by the adversary for the
hash oracle is same to the value

∑m
i=1(ai·yi) with the public key a = (a1, . . . , am)

and randomly sampled y = (y1, . . . , ym) in the Mid sign algorithm. First, we give
proof for bounding the following probability.

Lemma 1. For all w, given a randomly sampled a← Rm
q , Pry←Rm

[−B,B]
[
∑m

i=1(ai·
yi) = w] ≤ ( 1

2B−1 )
n

Proof. Note that a random polynomial x← Rq is invertible in Rq = Zq[X]/(xn+
1) when the polynomial xn+1 splits into n linear factors with the probability at
least 1 − n/q. Hence the probability that at least one of m polynomials in a =
(a1, . . . , am) ← Rm

q is invertible is greater than 1 − (n/q)m. This probability is
overwhelming for our parameter setting. We assume that a1 is invertible without
loss of generality. Then, for all w, we can rewrite the above probability as

Pry←Rm
[−B,B]

[y1 = a−11 (w −
∑m

i=2(ai · yi))] ≤ ( 1
2B−1 )

n.

The inequality follows due to the fact that a value a−11 (w −
∑m

i=2(ai · yi)) is
an element in Rq and the size of the set R[−B,B] is (2B − 1)n. ⊓⊔

By summing up the probability over all qs signing queries, we get [Pr[δ1] −
Pr[δ0]] ≤ qs/(2B − 1)n.

Algorithm 4: Mid sign

Input : Message m, public key (a, t)
Output: Signature (z, ĉ)

1 Choose y uniformly at random from R[−B,B];

2 Choose ĉ ∈ {0, 1}ℓ uniformly at random;
3 Compute c = encode(ĉ)(ĉ);
4 Compute z = y + c · s. If ∥zi∥∞ ≥ B − Ls for some i, then retry at step 1;
5 Compute w =

∑m
i=1(ai · yi);

6 Re-program the hash oracle H(·) so that H(w, µ) = ĉ;
7 Return (z, ĉ);

Game2. This game is the same as Game 1 except that the sign queries are
replaced by a simulation in the random oracle model as Simulated sign (see
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Algorithm 5 below) and hash queries are handled by answering with random
values. Game 2 is the same as Game 1, except the way the value z is generated.
In Game 1, y and ĉ are sampled from Rm

[−B,B], {0, 1}
ℓ, respectively. The value z

is computed as z = y+c·s and it checks if ∥z∥∞ ≤ B−Ls. Then, the hash oracle
is reprogrammed as ĉ = H(

∑m
i=1(ai ·yi), µ) where c = Enc(ĉ). On the other hand,

in Game 2, z and ĉ are sampled from Rm
[−B+Ls,B−Ls]

, {0, 1}ℓ, respectively. Then,
the hash oracle is reprogrammed as ĉ = H(·) so that H(

∑m
i=1(ai · zi) − c · t, µ)

where c = Enc(ĉ).
We need to check if the adversary can distinguish between the distributions

of (z, c, w) in Game 1 and Game 2. In Game 1, the commitment wG1, which
is an input of the hash function, is computed as wG1 =

∑m
i=1(ai · yi) where

y ∈ Rm
[−B,B]. In Game 2, however, the commitment wG2 is computed as wG2 =∑m

i=1(ai · zi) - c · t where z ∈ Rm
[−B+Ls,B−Ls]

. Even though the way how to
compute the commitment value is changed, the commitment wG2 should be able
to be expressed as an inner product of the public parameter a and r for some
r ∈ Rm

[−B,B]. To guarantee this, we can set r = z − c · s for an unknown secret

key s ∈ R[−η,η] such that t =
∑m

i=1(ai · si). It is easy to see that
∑m

i=1(ai · ri) =∑m
i=1(ai · (z − c · s)) =

∑m
i=1(ai · zi) − c · t = wG2. Also, note that ∥c · s∥∞ is

less than or equal to Ls under a proper parameter set. Since z is sampled from
R[−B+Ls,B−Ls], we get ∥r∥∞ ≤ ∥z∥∞+∥c ·s∥∞ ≤ B−Ls+Ls = B. As a result,
we get Pr[δ2] = Pr[δ1].

Algorithm 5: Simulated sign

Input : Message m, public key (a, t)
Output: Signature (z, ĉ)

1 Choose z uniformly at random from R[−B+Ls,B−Ls];

2 Choose ĉ ∈ {0, 1}ℓ uniformly at random;
3 Compute c = encode(ĉ)(ĉ);
4 Compute w =

∑m
i=1(ai · zi)− c · t;

5 Re-program the hash oracle H(·) so that H(w, µ) = ĉ;
6 Return (z, ĉ);

In the next stage, we apply the forking lemma argument of Bellare and
Neven [7]. With the probability ϵ′

(
ϵ′

qs+qh
− 1

2λ

)
where ϵ′ = Pr[δ2], we obtain two

signatures (z, c) and (z′, c′) for c ̸= c′ such that∑m
i=1(ai · zi)− c · t = w,

∑m
i=1(ai · z′i)− c′ · t = w.

We set x as x = z − z′ and c̃ as c̃ = c − c′. We can easily check that ∥x∥∞ ≤
2(B − Ls) and ∥c̃∥∞ ≤ 2. Also, we can check that Fa(x) = c̃ · t as follow:

Fa(x) = Fa(z − z′) = (w + c · t)− (w + c′ · t)
= (c− c′) · t = c̃ · t
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As a result, we proved that forging a signature implies solving the TMO
problem of GCK function, i.e. finding an x and c̃ such that Fa(x) = c̃ · t,
∥c̃∥∞ ≤ α where α = 2 and ∥x∥∞ ≤ β where β = 2(B − Ls). As a result, it

follows that the probability ϵ′
(

ϵ′

qs+qh
− 1

2λ

)
≤ AdvTMO

m,q,2,2(B−Ls). This completes
the proof. ⊓⊔
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