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Abstract. In this paper, we present FIBS : Fast isogeny-based digital
signature based on isogeny-based hash function. We combine the CGL
hash function and LMS/SPHINCS hash-based digital signature algo-
rithm. For a 128-bit quantum security level, our implementation in C
takes 121.66s for key generation, 2837.04s for signing, and 172.37s for
verification.
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1 Introduction

Due to the increasing interest in post-quantum cryptography, isogeny-based
cryptography regained its attention after the work of Couveignes [9]. Especially,
due to the introduction of CGL hash function [7] and SIDH (Supersingular
Isogeny Diffie-Hellman) key exchange [12], many algorithms have been proposed
based on the difficulty of finding the isogeny between two supersingular elliptic
curves defined over a finite field. The main advantage of isogeny-based cryptog-
raphy is that it offers the smallest key sizes among post-quantum cryptography
(PQC) primitives. However, as the implementation of isogeny-based cryptogra-
phy involves isogeny operations in addition to the standard elliptic curve arith-
metic over a finite field, its performance is slower than most of the PQC algo-
rithms. On the other hand, for researchers studying isogeny, the lack of diversity
in cryptographic primitive compared to other PQC algorithms is also a problem
for isogeny-based cryptography.

Constructing a digital signature scheme is much harder to achieve than key
exchange for isogeny-based cryptography. The first isogeny-based digital sig-
nature algorithm was proposed by Yoo et al. [19] through the application of
Unruh’s construction of non-interactive zero-knowledge proofs to an interactive
zero-knowledge proof. However, not only was their scheme inefficient, but the size
of the signature is larger than other post-quantum signature schemes. Moreover,
as SIDH was completely broken by Castryck and Decru in [6], this signature is
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no longer secure. Meanwhile, the signature scheme proposed by Galbraith, Petit,
and Silva was the first signature scheme based on KLPT algorithm [14]. How-
ever, although the algorithm is mathematically complete, its performance was
inefficient for practical use. In 2019, SeaSign, a CSIDH-based digital signature
scheme proposed by De Feo and Galbraith, alleviated the problem of revealing
the secret key through rejection sampling in [9], although several minutes are
still required to sign a message [11]. Later, by computing the class group having
a 154-digit discriminant, CSI-FiSh [4] offers a practical digital signature scheme
that requires 390ms to sign a message. For isogeny-based cryptography, this is
a remarkable result, which shed light that various cryptographic primitives can
be constructed through elliptic curve isogenies. However, the work in [8] showed
that the size of the prime field used in CSI-FiSh must be about 4096-bit to
achieve a 128-bit quantum security level. This means that a computation of a
class group excessively larger than the 154-digit discriminant is required to reach
a practical performance level, which is out of the current computing level.

This paper proposes a moderately fast isogeny-based digital signature based
on isogeny-based hash functions. Currently, SQISign proposed by De Feo et al.
is considered the most practical digital signature algorithm in isogeny-based
cryptography [13]. The performance of the proposed algorithm is not faster than
SQISign. However, the aim of this work is to provide diversity in isogeny-based
cryptographic primitive. The following list details the main contributions of this
work.

1.1 Design rationale

Design rationale and advantages We present FIBS – Fast isogeny-based
digital signature based on isogeny-based-hash functions. Isogeniests have long
devoured to develop practical isogeny-based digital signature algorithms. How-
ever, out of all the hard efforts, the main bottleneck is that its performance is
slower than any other digital signature algorithm. The proposal of FIBS sim-
ply came from the idea that if an isogeny-based hash function is used for a
hash-based digital signature algorithm, the performance could be moderate in
an isogeny world. FIBS is ’fast’ not ’fastest’ as SQISign is the fastest algorithm
in isogeny-based digital signatures. However, after the introduction of [8] and [6]
it is faster than CSI-FiSh, and safer than [19].

Limitations The major drawback of FIBS is its performance. As an isogeny-
based hash function is much slower than cryptographic hash functions such as
SHA, FIBS is a magnitude slower than the original hash-based digital signature.
However, there is room for improvement. First, finite field arithmetic can be fur-
ther optimized. Unlike SIDH or CSIDH-based algorithms, the CGL hash function
uses Montgomery-friendly primes, so that reduction is much more efficient than
other primes of the same bit size. Secondly, isogeny computation can be further
optimized by using Richelot (2,2)-isogeny. Lastly, the CGL hash algorithm itself
can be modified. The major difference between the CGL hash function and the
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general cryptographic hash functions is the size of the input. Unlike the general
cryptographic hash functions, the CGL hash function has limited the input size
due to the collision attack. There is a lot of research regarding this point and
we plan to investigate it as well. The listed above will be later reflected in the
optimized implementation.

2 Preliminaries

In this section, we briefly introduce the isogeny-based hash function and hash-
based digital signature, which are the main ingredients to the proposed algorithm
of the paper.

2.1 Isogeny graph and CGL hash function

In [7], a provable collision-resistant hash function based on the pseudo-random
behavior of expander graphs is introduced. As the isogeny graph of supersingular
elliptic curves is a Ramanujan graph which is an expander graph with extra
properties, this can be exploited for the hash function proposed in [7]. In this
subsection, we briefly describe the CGL hash function and its improved version
proposed in [17].

The CGL hash function It is well known to complexity theorists that ex-
pander graphs produce pseudo-random behavior. In [7], they exploited this char-
acteristic to produce a collision-resistant hash function. In a high-level view, the
input message to the hash function is used as directions for walking around a
graph, and the output of the hash function is the final vertex of the walk.

Let p and ℓ be two distinct prime numbers. Consider the graph G = (V,E).
Let V be the vertex set of the graph G, the set of supersingular elliptic curves
defined over the finite field Fp2 . The vertices are labeled with their j-invariants.
The number of vertices in G is ⌊ p

12⌋ + ϵ, where ϵ ∈ {0, 1, 2}, depending on the
congruence class of p modulo 12. Let E be the set of edges of the graph G.
We defined edge e ∈ E between vertex v1, v2 ∈ V where there exist ℓ-isogeny
between elliptic curves E1 and E2 having j-invariant corresponding to v1 and
v2, respectively. For a separable isogeny, there is a one-to-one correspondence
with a finite subgroup of elliptic curves and its isogeny. Let ϕ be a separable
ℓ-isogeny. Then kerϕ has ℓ-elements. If gcd(p, ℓ) = 1 then ℓ-torsion subgroup is
isomorphic to the product of two cyclic groups, and as there are ℓ+ 1 different
subgroups of order ℓ, it follows that there are ℓ+ 1 isogenies of degree ℓ. Hence
the graph G is (ℓ+1)-regular graph. Let A be the adjacency matrix of G. Then
the eigenvalues λ of A satisfies the Ramanujan bound | λ |≤ 2

√
ℓ, so that the

isogeny graph of G is the Ramanujan graph.
As an isogeny graph is a special form of expander graph, it can be exploited

to instantiate the hash function proposed in [7]. For the rest of the paragraph,
we shall describe the CGL hash function using 2-isogenies. Let p be a large
prime of the form p = 2n · f ± 1. Then since we use supersingular elliptic curve
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E, E(Fp2) = (p ∓ 1)2. For a 2-isogeny on E, there are 3 possible choices, and
since no backtracking is allowed in a walk, there are two choices that can be
determined by a single bit of input.

Improved version of CGL hash function Later, it was investigated that
the CGL hash function on isogeny graphs of supersingular elliptic curves is
insecure under collision attack when the endomorphism ring of the starting curve
is known [18].

Let E0 be the starting curve of the hash function and O = End(E0) be the
endomorphism of E0. Since E0 is a supersingular elliptic curve, O is an order in a
quaternion algebra. The hash collision in the CGL hash function corresponds to
the cycles in the ℓ-isogeny graph containing E0 which is equivalent to the ℓ-power
norm endomorphism of E0. By using the Deuring correspondence, isogeny from
E0 to some supersingular elliptic curve E corresponds to the left ideals of O.
Hence, when an endomorphism αinO of norm ℓn for some n is found, an attacker
computes the ideal Oα+Oℓk, (1 ≤ k ≤ n−1). Then using the KLPT algorithm,
each of these ideals is transformed into an equivalent ideal of the power-smooth
norm to compute the corresponding codomain curve. Then an attacker obtains
a sequence of elliptic curves (E0, E1, . . . , En−1, En = E0), which corresponds to
the collision of the CGL hash function.

One might think that this attack can be eliminated if an elliptic curve of an
unknown endomorphism ring is used as the starting curve. However, since there
is no known way to generate a supersingular elliptic curve with an unknown
endomorphism ring, the CGL hash function can only be used after a trusted
setup. In [17], an efficient method is proposed which prevents collision attacks
and permits the use of arbitrary starting curves.

The main idea in [17] is to use only a fraction of the available edges at each
step. Note that the attack in [18] assumes that all of the ℓ-isogeny cycles in the
graph yield a collision. Suppose we use ℓ-isogeny graph. The algorithm selects
one of r outgoing edges at each step. Then the probability that a cycle of length
C yields a collision is roughly upper-bounded by (r/ℓ)C . If ℓ is increased, r/ℓ
gets small, which decreases the chance that a given cycle yields a collision, but
decreases the expected cycle length of the graph as well which increases the
chance of the attack. For implementation, the r, ℓ is adjusted to suit the security
level and the performance.

2.2 Primitives for hash-based digital signatures

In this subsection, we mainly explain the primitives used in FIBS. FIBS is a
stateless hash-based signature framework. It can be composed of one-time sig-
nature scheme (OTS), WOTS+ (Winternitz one-time signature scheme plus),
Few-time signature scheme (FTS), Forest of Random Subsets (FORS), and bi-
nary hash trees.
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Winternitz one-time signature scheme plus (WOTS+) We now describe
the WOTS+ [15]. WOTS+ is an OTS scheme. A description of the algorithms
for key generation and signing is as follows.

Parameters
WOTS+ is parameterized by security parameter n ∈ N, message length m ∈ N
and Winternitz parameter w. And define

l1 = ⌈ m

log(w)
⌉, l2 = ⌊ log(l1(w − 1))

log(w)
⌋+ 1, l = l1 + l2.

WOTS+ uses a cryptographic hash function

Fn : {fk : {0, 1}∗ → {0, 1}n|k ∈ Kn}

with key space Kn.
We use the notation cik(x, r) for input of value x ∈ {0, 1}n, iteration counter

i ∈ N and random bitmask r = (r1, ..., rj) ∈ {0, 1}n×j , Let ra,b be the set
{ra, ..., rb}. We define c recursively as

ck
i(x, r) = fk(ck

i−1(x, r)⊕ ri), c0(x) = x.

Key Generation Algorithm (sk, pk ←WOTSKeyGen(S, r))
On input of seed S ∈ {0, 1}n and random bitmask r, the key generation algorithm
computes secret key sk = (sk1, ..., skl), ski ∈ {0, 1}n. The public key pk is
computed as

pk = (pk0, ..., pkl) = ((r, k), cw−1
k (sk1, r), ..., c

w−1
k (skl, r)), for pki ∈ {0, 1}n

Signature Algorithm (Σ ←WOTSSign(M, sk, r))
On input of m-bit message M , the secret key {ski} and the random bitmask
r. WOTS+ signature algorithm first computes a base-w representation of M :=
(M1, ...Ml1),Mi ∈ {0, ..., w−1}. Also, it computes the checksum C =

∑l1
i=1(w−

1−Mi) and its base w representation C = (C1, ..., Cl2).
Define B = (b1, ..., bl) =M ||C. The signature is computed as

Σ = (Σ1, ..., Σl) = (cb1k (sk1, r), ..., c
bl
n (skl, r)).

V erification Algorithm (0 or 1←WOTSV rfy(M,Σ, pk))
On input ofm-bit messageM , a signature Σ and a public key pk, the verification
algorithm first computes bi, 1 ≤ i ≤ l as described above. Then it returns:

pk = (pk0, pk1, ...pkl)

?
= (cw−1−b1

k (Σ1, rb1+1,w−1), ..., c
w−1−bl
k (Σl, rbl+1,w+1))

If the comparison holds, it returns true and false otherwise.
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Hyper tree Hash-based digital signature schemes often use the Merkle tree
technique to merge the public keys contained in leaf nodes in the bottom layer
into smaller public keys. We use the construction proposed in [10]. The Merkle
tree method used in FIBS is essentially the same as the XMSS [5] structure.
A Merkle tree of height h always has 2h leaves which are n bit string Li, i ∈
[2h − 1].Each node Ni,j for 0 < j ≤ h, 0 ≤ i < 2h−j of the tree stores an n-bit
string. To construct the tree, h bitmasks Qj ∈ {0, 1}2n, are used. The value of
the nodes Ni,j are computed as

Ni,j = H((N2i,j−1||N2i+1,j−1)⊕Qj)

for H : {0, 1}2n → {0, 1}n.
The notion of authentication path AUTHi = (A0, ..., Ah−1) of a leaf node Ni,0 =
Li. AUTHi consists of all the sibling nodes of the nodes contained in the path
Li to th root. We then extend this to a multi-tree setting, in the same style as
XMSSMT . A hyper-tree constructs the multi-level XMSS. The bottom layer tree
is used to sign the message, and the rest of the tree is used to sign the root node
of the XMSS tree in each layer.

FORS: Forest of Random Subsets SPHINCS+ defines and uses FORS,
a few-time signature improved from HORST [2]. FORS is defined in terms of
integers k and t = 2a, and can be used to sign strings of ka bit string. The FORS
private key consists of kt random n-bit values, grouped into k sets of t values
each. In the context of SPHINCS+, these values are deterministically derived
from seed using PRF. To obtain the FORS public key, k hash trees are on top
of the sets of private key elements. Each t value is used as a leaf node and k
binary hash trees with height a are created. We compress the root nodes using
a call to the hash function. The resulting n-bit value is the FORS public key.
Given a message of ka bits, we divide it into k strings of a bit. Each of these bit
strings corresponds to an index of a single leaf node in each FORS tree. Then
the signature consists of authentication paths of k binary tree.

2.3 SPHINCS+

SPHINCS+ [3] is a quantum-resistant hash-based digital signature scheme. It is
a stateless hash-based signature using WOTS+, the Merkle tree, and the FTS
algorithm FORS. Use a hyper-tree structure, a Merkle tree where each tree has a
public key of WOTS+ as a leaf node. The WOTS+ in the leaf node of the lowest
layer of the hyper tree is used to sign the public key of FORS. When signing
a message, select the leaf node by determining the index of the hyper-tree that
one part of the message digest will use. The FORS key pair corresponding to
the leaf node is used to sign the digest, and the FORS public key is signed to
the corresponding WOTS+ for the leaf node. Each Merkle root in the path from
the leaf to the root of the hyper-tree is signed with a WOTS+ key pair in the
tree leaf of the layer above it. This continues until the root of the public key,
the highest level tree, is reached. The signature contains all FORS and WOTS+
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signatures used and the authentication path of the Merkle tree required by the
validator to calculate the root of the hypertree.

3 Specification

In this section, the structure of the FIBS proposal in this paper is explained.
Based on the security of the CGL hash function mentioned in the section, we
apply CGL hash to the part of the chain of hash functions for the private key
ski in the WOTS+ algorithm.

3.1 Notation

For the rest of the paper, we will use a common notation for various parameters
for describing FIBS algorithms.

Table 1: Meanings for symbols used in this paper

Symbols Meaning

M The message space which is a subset of {0, 1}∗

w The Winternitz parameter

n The security parameter

h The height of the hypertree

d The number of layers in the hypertree

k The number of trees in FORS

t The number of leaves of a FORS

Table 2: Meanings for variables used in this paper

Variables Meaning

Sk.seed Used to generate the WOTS+ and FORS private key elements

Sk.prf Used to deterministically generate randomized values for randomized
message hashes

Pk.seed Used to generate random values used in hash functions of WOTS+ and
Merkle tree, etc

Pk.root Denote the top root node in the hypertree of FIBS

WOTS.Sk, WOTS.Pk Denote the private key and public key of WOTS+ algorithm

FORS.Pk, FORS.Sig Denote the public key and signature of FORS algorithm

AUTH Denote the authentication path of Merkle tree

XMSS.Pk, XMSS.Sig Denote the public key and signature of XMSS algorithm
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3.2 Specification of FIBS

Tweakable Hash Function The SPHINCS+ used tweakable hash function [3].
A tweakable hash function takes public seed PK.seed and context information in
form of an address ADRS in addition to the message input. The address ADRS are
five types of addresses for the different use cases. They are the WOTS+ hash
chain, compression of the WOTS+ public key, hashes in the main Merkle tree,
hashes in the FORS Merkle tree, and compression of the tree roots of FORS.
These types largely share a common format. The address consists of the follow-
ing: It always starts with a layer address of one word in the most significant bit,
followed by a tree address of three words. The address for each use case consists
of the following:

1. WOTS+ hash address
– Layer address: type = 0
– Tree address: key pair address ∥ chain address ∥ hash address

2. WOTS+ public key compression address
– Layer address: type = 1
– Tree address: key pair address ∥ zero padding ∥ zero padding

3. Hash tree address
– Layer address: type = 2
– Tree address: zero padding ∥ tree height ∥ tree index

4. FORS tree address
– Layer address: type = 3
– Tree address: key pair address ∥ tree height ∥ tree index

5. FORS tree roots compression address
– Layer address: type = 4
– Tree address: key pair address ∥ zero padding ∥ zero padding

Therefore, if the given address is used for functions with different use cases within
the function, it should be used after initialization. These processes are omitted
in this section.

The SPHINCS+ defined the function family using the tweakable hash func-
tion. FIBS does not define all hash functions differently because it uses the
CGL hash function exclusively. All compression hash functions and keying hash
functions are used the CGL hash function. The CGL hash function can process
arbitrary length input:

CGL-HASH ψ : {0, 1}∗ → {0, 1}n

The hash functions used in FIBS are organized as follows:
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– Hmsg: Additional key hash function that can handle messages of arbitrary
length.

– PRF: Pseudo-random function for generating pseudo-random keys.

– PRFmsg: Using PRF to generate randomness for message compression.

– F: Second-preimage resistant, one-way function

– H: Second-preimage resistant hash function

– Tl :Tweakable hash functions of the form mapping an ln-byte message M
to an n-byte hash value

The compression function and hash function that we actually use in FIBS are
as follows:

– Hmsg(R, PK.seed, PK.root, M) = CGL-HASH(R∥PK.seed∥PK.root∥M),

– PRF(SEED, ADRS) = CGL-HASH(SEED∥ADRS)

– PRFmsg(SK.prf, Optrand, M) = CGL-HASH(SK.prf∥Optrand∥M),

– F(PK.seed, ADRS, M1) = CGL-HASH(PK.seed∥ADRS∥M1),

– H(PK.seed, ADRS, M1∥M2) = CGL-HASH(PK.seed∥ADRS∥M1∥M2)

– Tl(PK.seed, ADRS, M) = CGL-HASH(PK.seed∥ADRS∥M).

WOTS+ WOTS+ uses the security parameter n, Winternitz parameter w,
the number of n-byte string elements in a WOTS+ private key, public key, and
signature. The l is defined as l = l1 + l2, where l1 and l2 are as follows:

l1 = ⌈ n

log(w)
⌉, l2 = ⌊ log(l1(w − 1))

log(w)
⌋+ 1.

The functions used in WOTS+ are base w(X, w, len), chain(X, i, s,
PK.seed, ADRS ), WOTS KeyGen(Sk.seed, Pk.seed, ADRS), WOTS Sign(M, Sk.seed,

Pk.seed, ADRS), WOTS PkFromSig(sig, M, Pk.seed, ADRS).
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base w(X, w, len) is a function that for a given X of a byte length len it
returns its base-w value. The details of the function is shown in Algorithm 1.

Algorithm 1 base w

Require: X, w, len
Ensure: base w
1: in, out, total, bits, consumed ← 0
2: for consumed = 0, ..., len− 1 do
3: if bits==0 then
4: total = X[in]
5: in++
6: bits+=8
7: end if
8: bits − = log(w)
9: base w [out] = (total >> bits) && (w - 1)
10: out++
11: end for
12: return base w

chain(X, i, s, PK.seed, ADRS) function computes an iteration of hash func-
tion F on an n-byte input using a WOTS+ hash address ADRS and a public seed
PK.seed. The chain function takes as input an n-byte string X, a starting index
i, a number of steps s, and ADRS and PK.seed. The details of the function is
shown in Algorithm 2.

Algorithm 2 chain

Require: X, i, s, PK.seed, ADRS
Ensure: Hval
1: if s == 0 then
2: return X
3: end if
4: if (i+ s) > (w − 1) then
5: return NULL
6: end if
7: byte[n] Hval ← chain(X, i, s− 1, Pk.seed, ADRS)
8: Hval ← F(Pk.seed, ADRS, Hval)
9: return Hval
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WOTS KeyGen(Sk.seed, Pk.seed, ADRS) function computes a key pair in
WOTS+ algorithm. The WOTS+ private key WOTS.Sk must not be used to sign
more than one message. The public key is the end nodes of the tweakable hash
chains. The details of the function is shown in Algorithm 3.

Algorithm 3 WOTS KeyGen

Require: Sk.seed, Pk.seed, ADRS
Ensure: WOTS.Sk, WOTS.Pk
1: for i = 0, ..., l − 1 do
2: WOTS.Sk[i] ← PRF(Sk.seed, ADRS)
3: tmp[i] ← chain(WOTS.Sk[i], 0, w − 1, Pk.seed, ADRS)
4: end for
5: WOTS.Pk ← Tl(Pk.seed, ADRS, tmp)
6: return WOTS.Sk, WOTS.Pk

WOTS Sign(M, SK.seed, PK.seed, ADRS) function computes the signature
in WOTS+. First M is converted to base-w form, then the function calculates
the checksum for the message. By concatenating checksum to the message, the
chain function is repeated as many times as the message and checksum value to
call the hash function. The iteration of the hash function uses the chain function.
The details of the function is shown in Algorithm 4.

Algorithm 4 WOTS SigGen

Require: M , Sk.seed, Pk.seed, ADRS
Ensure: WOTS.sig
1: msg = base w(M , w, l1)
2: for i = 0, ..., l1 − 1 do
3: csum = csum+w −1−msg[i]
4: end for
5: msg ← msg ∥ base w(csum,w,l2)
6: for i = 0, ..., l − 1 do
7: sk ← PRF(Sk.seed, ADRS)
8: WOTS.Sig[i] = chain(sk, 0, msg[i], PK.seed, ADRS)
9: end for
10: return WOTS.sig
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WOTS PkFromSig(sig, M, Pk.seed, ADRS) function computes the public
key from sign. FIBS uses implicit signature verification for WOTS+. To verify
a WOTS+ signature on a message M , the verifier computes a WOTS+ public
key value from the signature. The details of the function is shown in Algorithm
5.

Algorithm 5 WOTS PkFromSig

Require: WOTS.Sig, M , Pk.seed, ADRS
Ensure: WOTS.Pk

1: msg = base w(M,w, l1)
2: for i = 0, ..., l1 − 1 do
3: csum = csum+w − 1−msg[i]
4: end for
5: for i = 0, ..., l − 1 do
6: sk ← PRF(Sk.seed)
7: tmp[i] = chain(sig[i], msg[i],w − 1−msg[i], PK.seed, ADRS)
8: end for
9: WOTS.sig ← Tl(PK.seed, ADRS, tmp)
10: return WOTS.Sig

XMSS The parameter h in XMSS denotes the height of the tree. There are
2h leaves in the tree. The functions used in XMSS are treehash(Sk.seed, s, z,
Pk.seed), XMSS Sign(M , SK.seed, ind, PK.seed, ADRS), XMSS PkFromSig(ind,
XMSS.Sig, M , PK.seed, ADRS).

treehash(Sk.seed, s, z, Pk.seed) function computes the root node of a
Merkle tree of height z(the height) at index s(starting index). In this function
use stack function push() and pop(). The details of the function is shown in
Algorithm 6.

Algorithm 6 treehash

Require: Sk.seed, s, z,Pk.seed
Ensure: Stack.pop()
1: for i = 0, ..., 2z do
2: node = WOTS KeyGen(Sk.seed, Pk.seed, ADRS)
3: while Top node on Stack has same heigt as node do
4: node ← H(PK.seed, ADRS, (Stack.pop()∥node))
5: end while
6: Stack.push(node)
7: end for
8: return Stack.pop()
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XMSS Sign(M , SK.seed, ind, PK.seed, ADRS) function compute XMSS
signature of the message M according to the WOTS+ index of a key pair ind.
This function computes the WOTS+ signature WOTS.Sig and the XMSS signa-
ture XMSS.Sig. The details of the function is shown in Algorithm 7.

Algorithm 7 XMSS Sign

Require: M , SK.seed, ind, PK.seed, ADRS

Ensure: XMSS.Sig
1: for j = 0, ..., h− 1 do
2: k = ⌊ ind

2j
⌋

3: AUTH[j]=treehash(SK.seed, k · 2j , j, Pk.seed)
4: end for
5: WOTS.Sig ← WOTS Sign(M, Sk.seed, Pk.seed)

6: XMSS.Sig = WOTS.Sig ∥ AUTH
7: return XMSS.Sig

XMSS PkFromSig(ind, XMSS.Sig, M , PK.seed, ADRS) function computes
the public key of XMSS from XMSS.Sig. The public key of XMSS, such as
WOTS+, is not explicitly used. In this function, WOTS+ public key is calcu-
lated using the WOTS PkFromSig function, and the root node is computed using
WOTS+ public key and authentication path in XMSS.Sig. The details of the
function is shown in Algorithm 8.

Algorithm 8 XMSS PkFromSig

Require: ind, XMSS.Sig, M , PK.seed, ADRS
Ensure: node[0]
1: WOTS.Sig ← Get WOTS.Sig from XMSS.Sig

2: AUTH ← Get AUTH from XMSS.Sig

3: node[0] ← WOTS PkFromSig(WOTS.Sig, M , Pk.seed, ADRS)
4: for k = 0, ..., h− 1 do
5: if (⌊ ind

2k
⌋ mod 2) == 0 then

6: node[1] = H(PK.seed, ADRS, (node[0]∥AUTH[k]))
7: else
8: node[1] = H(PK.seed, ADRS, (AUTH[k]∥node[0]))
9: end if
10: node[0] = node[1]
11: end for
12: return node[0]
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FORS In FORS, the parameter k denotes the number of private key sets and
t denotes the number of elements per private key set, and t must be a power
of 2. The functions used in FORS are FORS treehash(SK.seed, s, z, PK.seed,
ADRS), FORS Sign(M, SK.seed, Pk.seed, ADRS), FORS PkFromSig(FORS.Sig,

M, PK.seed, ADRS).
FORS treehash(SK.seed, s, z, PK.seed, ADRS) computes the root node of

a FORS trees of height z at index s. This function is essentially the same as the
treehash function (Algorithm 6), although the method of calculating the address
value ADRS, and secret key is different from that of treehash function. The details
of the function is shown in Algorithm9.

Algorithm 9 FORS treehash

Require: SK.seed, s, z, PK.seed, ADRS
Ensure: Stack.push(node)
1: for i = 0, ..., 2z do
2: sk ← PRF(Sk.seed, ADRS)
3: node ← F(Pk.seed, ADRS, sk)
4: while Top node on Stack has same height as node do
5: node ← H(Pk.seed, ADRS, (Stack.pop() ∥ node)
6: end while
7: Stack.push(node)
8: end for
9: return Stack.pop()

FORS Sign(M, SK.seed, Pk.seed, ADRS) computes the FORS.Sig. This
function uses the authentication path AUTH generated by fors treehash as the
part of the signature. The details of the function is shown in Algorithm10.

Algorithm 10 FORS Sign

Require: M , SK.seed, Pk.seed, ADRS
Ensure: FORS.Sig

1: for i = 1, ..., k do
2: FORS.Sig = FORS.Sig ∥ PRF(Sk.seed, ADRS)
3: for j = 0, .., a do
4: s=⌊ind/2j⌋
5: AUTH[j] = FORS treehash(Sk.seed, i · k + s · 2j , j, Pk.seed, ADRS)
6: end for
7: FORS.Sig = FORS.Sig ∥ AUTH
8: end for
9: return FORS.Sig

FORS PkFromSig(FORS.Sig, M, PK.seed, ADRS) function computes the pub-
lic key from FORS signature FORS.Sig. It first computes the root nodes of k
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hash trees using FORS treehash, then the roots are hashed. The details of the
function is shown in Algorithm 11.

Algorithm 11 FORS PkFromSig

Require: FORS.Sig, M , PK.seed, ADRS
Ensure: pk
1: sk ← Get sk from FORS.Sig

2: AUTH ← Get AUTH from FORS.Sig

3: for i = 1, ..., k do
4: node[0] ← F(Sk.seed, ADRS, sk)
5: for j = 0, .., a do
6: if (⌊ ind

2j
⌋ mod 2) == 0 then

7: node[1] = H(Pk.seed, ADRS, (node[0]∥ AUTH[j]))
8: else
9: node[1] = H(PK.seed, ADRS,(AUTH[j] ∥ node[0]))
10: end if
11: node[0] = node[1]
12: end for
13: root[i] = node[0]
14: end for
15: pk = Tk(PK.seed, ADRS, root)
16: return pk

FIBS Key generation The FIBS private key consists of two elements. The
n-byte secret seed Sk.seed, which is used to generate all WOTS+ and FORS
private key elements, and the n-byte pseudorandom function key Sk.prf, which
is used to generate random values for random message hashes. The FIBS public
key contains two elements. The XMSS public key, i.e. the root of the tree at the
top level, Pk.root, and a randomly sampled n-byte public seed value Pk.seed,
which generate random value used WOTS+ and hyper-tree. The details of the
function is shown in Algorithm 12.

Algorithm 12 FIBS KeyGen

Require:
Ensure: Pk.root, Pk.seed, Sk.seed,Sk.prf

1: Sk.seed
$← {0, 1}n

2: Sk.prf
$← {0, 1}n

3: Pk.seed
$← {0, 1}n

4: for i = 1, ..., 2h/d do
5: WOTS.Sk[i], WOTS.Pk[i] ← WOTS KeyGen(Sk.seed, Pk.seed, ADRS)
6: end for
7: Pk.root ← XMSS PkGen(SK.seed, PK.seed, ADRS)
8: return Pk.root, Pk.seed, Sk.seed, Sk.prf
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FIBS Signature Generation algorithm The process of the FIBS signature
algorithm is as follows: First, it generates a random value R using the message
and Sk.prf as the private key. These values are included in the signature. Then,
it creates a message digest of R, Pk.seed, and Pk.root, using the Hmsg func-
tion. The message digest is truncated to a certain length by using the function
Split md. The outputs to the function Split md are md, ind.tree, and ind.leaf.
md is later used as a input to the FORS signature. ind.tree indicates the number
of trees to be signed, and ind.leaf indicates the number of leaves to be signed.
Through this step, the algorithm generates a random index for the message.
After a signature FORS is generated using md, Sk.seed, and Pk.seed values,
the algorithm repeats the WOTS+ signature and hypertree operations for the
signature value of FORS. The details of the function is shown in Algorithm13.

Algorithm 13 FIBS Signature Generation

Require: M , Sk.seed, Sk.prf, Pk.seed, Pk.root

Ensure: FIBS.Sig

1: OptRand
$← {0, 1}n

2: R← PRFmsg(Sk.prf, OptRand, M)
3: FIBS.Sig = FIBS.Sig ∥ R
4: Digest ← Hmsg(R, Pk.seed, Pk.root, M)
5: md, ind.tree, ind.leaf ← Split md(Digest)
6: FORS.Sign ← FORS Sign(md, Sk.seed, Pk.seed, ADRS)
7: FIBS.Sig = FIBS.Sig ∥ FORS.Sign
8: FORS.Sign ← FORS PkFromSig(FORS.Sign, M , Pk.seed, ADRS)
9: Sign.tmp ← XMSS Sign(FORS.Sign, SK.seed, ind.leaf, PK.seed, ADRS)
10: HT.Sig ← HT.Sig ∥ Sign.tmp
11: root ← XMSS PkFromSig(ind.leaf, Sig.tmp, M , Pk.seed, ADRS)
12: for j = 1, ..., d− 1 do
13: Sig.tmp = XMSS Sign(root, Sk.seed, ind.leaf, Pk.seed, ADRS)
14: HT.Sig = HT.Sig ∥ Sig.tmp
15: if j < d− 1 then
16: root = XMSS PkFromSig(ind.leaf, Sig.tmp, root, PK.seed, ADRS)
17: end if
18: end for
19: FIBS.Sig = FIBS.Sig ∥ HT.sig
20: return FIBS.Sig
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FIBS Verification algorithm FIBS signature verification algorithm proceeds
as follows: First, it recomputes the message digest and index, and computes a
FORS public key. Then it verifies the XMSS tree that public key. The details of
the function is shown in Algorithm14.

Algorithm 14 FIBS Signature Verification

Require: M , FIBS.Sig, pk
Ensure: 0 or 1
1: R ← Get R from FIBS.Sig
2: FORS.Sig ← Get FORS.Sig from FIBS.Sig
3: HT.Sig ← Get HT.Sig from FIBS.Sig
4: Sig.tmp ← Get Sig.tmp from HT.sig
5: Digest ← Hmsg(R, Pk.seed, Pk.root, M)
6: md, ind.tree, ind.leaf ← Split md(Digest)
7: FORS.Pk ← FORS PkFromSig(FORS.Sig, md, Pk.seed, ADRS)
8: node ← XMSS PkFromSig(ind.leaf, Sig.tmp, M , Pk.seed, ADRS)
9: for j = 1, ..., d− 1 do
10: node ← XMSS PkFromSig(ind.leaf, Sig.tmp, node, Pk.seed, ADRS)
11: end for
12: if node == PK.root then
13: return true
14: else
15: return false
16: end if

4 Performance analysis

4.1 Parameter sets

Parameter for the CGL hash function For the CGL hash function, we use
the 607-bit prime p = 2607−1. Over finite field Fp2 = Fp(i) for i

2 = −1, we used
the supersingular Montgomery curve of the form as the base curve:

M : y2 = x3 + x.

Let P,Q be the generator of E[2607]. Then the x-coordinate of P,Q is denoted
as Px,Qx which is as follows:

Px = 5 + i

Qx = 15 + i

Parameter for FIBS Using the parameters for the CGL hash function as
defined above, FIBS uses the following parameters for NIST security level 1.
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Table 3: FIBS parameter for NIST security level 1

n h d log t k w

FIBS 128 16 66 22 6 33 16

4.2 Performance

We evaluate our reference implementation on the Intel Core i9-10980XE running
Ubuntu 20.04.5 LTS. For our parameter, the resulting cycle counts are listed
below.

Table 4: Key and signature size in bytes

Public Key Private Key Signatrue

FIBS 128 32 64 17,088

Table 5: Performance results of FIBS

Keygen Sig. Gen. Sig. Ver.

FIBS 128 121.66 s 2837.04 s 172.37 s

5 Security Evaluation

The SPHINCS+ security is based on the assumption that the PRF used within
the instantiation of the tweakable hash function to generate the bitmask and
the standard properties of the function family used can be modeled as a random
oracle.
In this section, we give a security analysis for FIBS based on the above claim.
The security reduction of SPHINCS+ is described [1,3]. We explain the security
reduction for FIBS based on SPHINCS+. In reduced security, we assume that
each call for a hash function used to instantiate an adjustable hash is given a
different value and is XORed with a bitmask before the input is processed and
assume that a bitmask is created using PRF called PRFBM . We assume the
following statistical properties of the hash function F. The CGL Hash function
used in FIBS is F, and all elements of the image must have at least two preimages,
i.e,

(∀k ∈ {0, 1}n)(∀y ∈ IMG(Fk))(∃x, x′ ∈ {0, 1}n) : x ̸= x′ ∧ Fk(x) = fk(x
′). (1)

We will prove the following theorem, where F,H, and T.
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Theorem 1. For security parameter n ∈ N, parameters w, h, d, m, t, k as
described above, FIBS is existentially unforgeable under post-quantum adaptive
chosen message attacks if

– F, H, and T are post-quantum distinct-function multi-target second-preimage
resistant function families,

– F fulfills the requirement of equation 1,

– PRF, PRFmsg are post-quantum pseudorandom function families,

– PRFBM is modeled as a quantum-accessible random oracle,

– Hmsg is a post-quantum interleaved target subset resilient hash function fam-
ily.

The security function InSecPQ−EU−CMA(FIBS;ξ, 2h) describing the maximum
success probability over all adversaries running in time ≤ ξ against the PQ-EU-
CMA security of FIBS is bounded by

InSecPQ−EU−CMA(FIBS; ξ) ≤
2(InSecPQ−PRF (PRF ; ξ) + InSecPQ−PRF (PRFmsg; ξ)

+ InSecpq−itsr(Hmsg; ξ) + InSecPQ−DM−SPR(F ; ξ)+

InSecPQ−DM−SPR(H; ξ) + InSecPQ−DM−SPR(T ; ξ)) (2)

5.1 Considering Security by PQ-DM-SPR, PQ-itsr

SPHINCS+ defines two properties to bounded the success probability of ad-
versary A for PQ-EU-CMA security in SPHINCS+ [1]. The first is a variant
of post-quantum multi-function multi-target second-preimage resistance called
post-quantum distinct-function multi-target second-preimage resistance, and the
second is a variant of subset-resilience which captures the use of FORS in
SPHINCS+ called (post-quantum) interleaved target subset resilience. FIBS also
proves this way as we bounded the probability of success for PQ-EU-CMA se-
curity in SPHINCS+.

5.2 Security Against Generic Attacks

The security of FIBS depends on the properties of the functions used to hash
functions. In this section, we consider only generic attacks on the assumption
that the CGL hash function used in FIBS is structurally secure.

Distinct-Function Multi-Target Second Preimage Resistance When eval-
uating the complexity of a generic attack on a hash function, the hash function
is usually modeled as a random function family. As shown in [16] it was shown
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that the success probability of any classical qhash-query adversary against multi-
function multi-target second-preimage resistance of a random function of range
{0, 1}8n is exactly qhash+1/28n.For qhash-query quantum adversaries the success
probability is Θ((qhash + 1)2/28n).

Pseudorandomness of Function Families An exhaustive search is generally
considered as the most common attack on pseudorandomness of the function
family. According to [16], the probability of success of classical adversaries eval-
uating function family for function with key space {0, 1}8n in qkey is bounded
by qkey + 1/28n. For qkey-query quantum adversaries, the probability of success
of the exhaustive search is Θ((qkey + 1)2/28n).

Interleaved Target Subset Resilience The interleaved target subset re-
silience for FORS is described in [1]. Assume that the used hash function is
a random function. For any classical adversary which makes qhash queries to
function family Hn the success probability is

(qhash + 1)
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)(
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5.3 Security Level

Let q denote the number of adversarial signature queries. For classical adversaries
that make no more than qhash queries to the cryptographic hash function used,
this leads to

InSecPQ−EU−CMA(FIBS; qhash) ≤

2(
qhash + 1

28n
+
qhash + 1

28n

+ InSecpq−itsr(Hmsg; qhash) +
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For quantum adversaries that make no more than qhash queries to the crypto-
graphic hash function used, this leads to

InSecPQ−EU−CMA(FIBS; qhash) ≤

2(
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+
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6 Security of CGL hash

In the previous sections, we assume that the used CGL hash function has
preimage-resistant and collision-resistant properties. Recently, it turned out that
there exists a efficient attack to construct a collision pair of CGL hash using
the KLTP algorithm if the endomorphism ring of a starting elliptic curve is
known [18]. In such cases our proposed scheme is insecure, therefore we require
that either the endomorphism ring of the starting elliptic curve is unknown or
there exists a secure way of computing the isogeny chain defending against such
attacks. Currently, there is no known algorithm to generate a random supersin-
gular elliptic curve with an unknown endomorphism ring from a random seed.
So if we choose this setting we need to assume a trusted third party that pro-
vides such elliptic curves securely. However, it is clearly undesirable to use a
domain parameter with such a trapdoor in it. So we do not assume unawareness
of the endomorphism ring. L. Panny proposed a secure way of computing CGL
hash despite known endomorphisms [17]. We rewrite the proposals of [17] here.
Panny’s method proposes to choose only r(< ℓ) isogenies from ℓ possibilities at
each step of computing an isogeny chain. Then if the length of the chain is n,
the probability that an attacker can transform a given random isogeny cycle into
two colliding CGL hash function inputs is approximately bound by

n ·
(r
ℓ

)n
If we assume n ≈ logℓ p then taking the cost of finding cycle by KLTP algorithm
as Ω(log p) ≥ n, the estimation of total attacking cost is(r

ℓ

)n
≈
(r
ℓ

)logℓ p

=
(
ℓ1−logℓ r

)logℓ p

= p1−logℓ r

For a target security level λ, there is a trade-off curve between the size of p
and the relative size of ℓ and r. If we take r2 < ℓ, the cycle finding attack is
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infeasible. Therefore, to protect the CGL hash function against both the Petit-
Lauter attack and generic collision finding attack, the choice of p and logℓ p
should satisfy

log2 p ≥ max
{
2λ,

λ

1− logℓ r

}
(3)

7 Optimizing parameter choices

We rewrite the discussion about optimizing parameters of CGL hash of [17]. For
the performance of the CGL hash function, we need to choose smaller p and
larger logℓ r as possible. For the efficient computation of isogeny, p = ℓn · f − 1
with ℓ = 2 where f is a small cofactor is a popular choice. With the starting
supersingular curve E0/Fp2 : y2 = x3 + x, the ℓn-isogeny can be evaluated
efficiently using tree-based strategy using O(log log n) operations. For a fixed
choice of log p, ℓ, and r, the cost per bit of evaluating CGL hash function is
scaled as

(log p)2(n log n)/ log r ≈ (log p)2(log log p)/ logℓ r

The optimization is to minimize this function under the condition (3).

λ p ℓ r

128 2256 · 45− 1 2256 2128

192 2291 · 3− 1 2390 2195

256 2512 · 243− 1 2512 2256

Table 6: Optimal choices of p, ℓ, and r for security level λ
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