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Abstract. Post-quantum signature schemes based on the MPC-in-the-Head (MPCitH) paradigm are
recently attracting significant attention as their security solely depends on the one-wayness of the
underlying primitive, providing diversity for the hardness assumption in post-quantum cryptography.
Recent MPCitH-friendly ciphers have been designed using simple algebraic S-boxes operating on a
large field in order to improve the performance of the resulting signature schemes. Due to their simple
algebraic structures, their algebraic immunity should be comprehensively studied.
In this paper, we refine algebraic cryptanalysis of power mapping based S-boxes over binary extension
fields, and cryptographic primitives based on such S-boxes. In particular, for the Gröbner basis attack
over F2, we experimentally show that the exact number of Boolean quadratic equations obtained from
the underlying S-boxes is critical to correctly estimate the theoretic complexity based on the degree of
regularity. Similarly, it turns out that the XL attack might be faster when all possible quadratic equa-
tions are found and used from the S-boxes. This refined cryptanalysis leads to more precise estimation
on the algebraic immunity of cryptographic primitives based on algebraic S-boxes.
Considering the refined algebraic cryptanalysis, we propose a new one-way function, dubbed AIM, as
an MPCitH-friendly symmetric primitive with high resistance to algebraic attacks. The security of
AIM is comprehensively analyzed with respect to algebraic, statistical, quantum, and generic attacks.
AIM is combined with the BN++ proof system, yielding a new signature scheme, dubbed AIMer.
Our implementation shows that AIMer significantly outperforms existing signature schemes based on
symmetric primitives in terms of signature size and signing time.

Keywords: Signature Scheme, MPC-in-the-Head, One-way Function, Algebraic Cryptanaysis

1 Introduction

With a substantial amount of research on quantum computers in recent years, the security threats posed
by quantum computers are rapidly becoming a reality. Cryptography is considered particularly risky in the
quantum computing environment since the security of most widely used public key schemes relies on the
hardness of factoring or discrete logarithm, which is solved in polynomial time with a quantum computer [67].
This encourages the cryptographic community to investigate post-quantum cryptographic schemes which are
resilient to quantum attacks. NIST initiated a competition for post-quantum cryptography (PQC) standard-
ization, and recently announced its selected algorithms: CRYSTALS-Kyber [65] as a public key encryption
scheme, and CRYSTALS-Dilithium [60], Falcon [62], and SPHINCS+ [45] as digital signature schemes.

MPC-in-the-Head based Signature. MPC-in-the-Head (MPCitH), proposed by Ishai et al. [46], is a
paradigm to construct a zero-knowledge proof (ZKP) system from a multiparty computation (MPC) proto-
col. Its practicality is demonstrated by the ZKBoo scheme, the first efficient MPCitH-based proof scheme
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proposed by Giacomelli et al. [37]. One of the main applications of the MPCitH paradigm is to construct
a post-quantum signature as follows. Given a one-way function f and an input-output pair (x, y) such that
f(x) = y, one can construct a digital signature scheme with secret key x, public key y, and non-interactive
zero-knowledge proof of the knowledge (NIZKPoK) of the secret x as a signature.

The main advantage of MPCitH-based signature schemes is that their security solely depends on the
security of the one-way function used in key generation, which makes them more reliable compared to
the schemes whose security is based on the hardness assumption of certain mathematical problems with a
potential gap in the security reduction. For example, a multivariate signature scheme Rainbow [27] has been
recently broken by exploiting the gap between its hardness assumption and the actual security [13]. Also,
an isogeny-based key exchange algorithm SIKE [47] reveals its weakness as its security assumption does
not hold for a certain class of curves [16]. In this context, MPCitH-based signature schemes are attracting
significant attention as they provide diversity for the underlying hardness assumption. The recent call of
NIST for additional digital signature schemes1 also expressed primary interest in signature schemes that are
not based on structured lattices. The internal function of an MPCitH-based scheme can be easily updated
when any weakness is found in it, which can be seen as an advantage in terms of cryptographic agility.

Picnic [17] is the first and the most famous signature scheme based on the MPCitH paradigm; it combines
an MPC-friendly block cipher LowMC [2] and an MPCitH proof system called ZKB++, which is an optimized
variant of ZKBoo. Katz et al. [50] proposed a new proof system KKW by further improving the efficiency of
ZKB++ with pre-processing, and updated Picnic accordingly. The updated version of Picnic was the only
ZKP-based scheme that advanced to the third round of the NIST PQC competition.

LowMC is relatively a new design which can be computed efficiently in the MPC environment, where the
AND operation is significantly expensive compared to XOR. There have been various attacks on LowMC,
partially motivated by the LowMC challenge2, some of which have worked effectively [6, 7, 29, 31, 56–58,63],
and the LowMC parameters have been modified accordingly. Due to the security concern on LowMC, there
have been attempts to construct MPCitH-based signature schemes from the one-wayness of the standard
AES block cipher. In this way, the hardness of key recovery from a single evaluation of AES is reduced to
the security of the basing signature scheme. BBQ [24] and Banquet [11] are AES-based signature schemes,
where BBQ employs the KKW proof system and Banquet improves BBQ by using an MPCitH proof system
optimized for an arithmetic circuit over a large field F232 .

To fully exploit efficient multiplication over a large field in the Banquet proof system, Dobraunig et al.
proposed MPCitH-friendly ciphers LS-AES and Rain. They are substitution-permutation ciphers based on
the inverse S-box over a large field [32]. This design strategy increases the efficiency of the resulting MPCitH-
based signature scheme, while the number of rounds should be carefully determined by comprehensive anal-
ysis on any possible aglebraic attack due to their simple algebraic structures. Kales and Zaverucha [48]
proposed a number of optimization techniques to further improve the efficiency of the Baum and Nof’s proof
system [10], and their variant is called BN++. When Rain is combined with BN++, the resulting signature
scheme enjoys the shortest signature size for the same level of signing/verification time (compared to existing
MPCitH-based signatures) to the best of our knowledge.

1.1 Our Contribution

In this work, we refine algebraic cryptanalysis of power mapping based S-boxes over binary extension fields,
and cryptographic primitives based on such S-boxes. In particular, we focus on the Gröbner basis and the
XL (eXtended Linearization) attacks since they allow one to solve a system of equations from only a single
evaluation of a one-way function, which is the case when it is used in an MPCitH-based signature scheme.
Most of previous works on symmetric primitives over large fields analyzed their security against the Gröbner
basis attack only over the large fields [1, 3, 32, 39]. Dobraunig et al. consider the analysis over F2 [32], but
only deal with the equations of high degrees. We apply the Gröbner basis attack to the system of quadratic

1 https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.
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equations over F2 using intermediate variables. When it comes to the Gröbner basis attack over F2, we
experimentally show that the exact number of Boolean quadratic equations obtained from the underlying
S-boxes is critical to correctly estimate the theoretic complexity based on the degree of regularity. Similarly,
it turns out that the XL attack might be faster when all possible quadratic equations are found and used
from the S-boxes. These results lead to more precise estimation on the algebraic immunity of cryptographic
primitives based on algebraic S-boxes. Our refined algebraic cryptanalysis will be given in Appendix A as
the main focus of this paper is put on the design of a one-way function and a signature scheme based on it.

With a design rationale based on the refined algebraic cryptanalysis, we propose a new one-way function,
dubbed AIM3, as an MPCitH-friendly symmetric primitive with high resistance to algebraic attacks. AIM
uses Mersenne S-boxes based on power mappings with exponents of the form 2e−1. Compared to the typical
inverse S-box, Mersenne S-boxes turn out to provide higher resistance to algebraic attacks. The security of
AIM is comprehensively analyzed with respect to algebraic, statistical, quantum and generic attacks. AIM is
combined with the BN++ proof system, one of the state-of-the-art MPCitH proof systems working on large
fields, yielding a new signature scheme, dubbed AIMer. The AIM function has been designed to fully exploit
various optimization techniques of the BN++ proof system to reduce the overall signature size without
significantly sacrificing the signing and the verification time.

We implement the AIMer signature scheme and compare its benchmark to existing post-quantum signa-
tures on the same machine. We present a brief list of our C standalone implementation results in Table 1.
The detailed values can be found in Section 6. We also implement AIMer with AVX2 instructions and com-
pare the performance to existing post-quantum digital signature schemes in Appendix E. Compared to the
signature schemes based on the BN++ proof system combined with the 3-round (resp. 4-round) Rain, which
is the state-of-the-art MPCitH-based signature scheme, AIMer enjoys not only 8.21% (resp. 21.15%) shorter
signature size but also 1.22% (resp. 13.41%) improved signing performance at 128-bit security level with the
number of parties N being set to 16.

Scheme N τ
Keygen Sign Verify pk Size sk Size sig Size

(ms) (ms) (ms) (B) (B) (B)

AIMer-I
16 33 0.06 2.26 2.17 32 16 5 904

1615 13 0.06 86.62 85.99 32 16 3 840

AIMer-III
16 49 0.13 4.75 4.58 48 24 13 080

1621 19 0.13 178.72 174.64 48 24 8 352

AIMer-V
16 65 0.31 10.88 10.50 64 32 25 152

1623 25 0.31 395.65 391.87 64 32 15 392

Table 1: Brief list of performance of AIMer reference implementation.

2 Preliminaries

2.1 Notation

For two vectors a and b over a finite field, their concatenation is denoted by a∥b. For a positive integer n,
hw(n) denotes the Hamming weight of n in its binary representation, and we write [n] = {1, · · · , n}.

In the multiparty computation setting, x(i) denotes the i-th party’s additive share of x, which implies
that

∑
i x

(i) = x.

3 This name is an abbreviation of Affine-Interleaved Mersenne S-boxes.
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For a set S, we will write a← S to denote that a is chosen uniformly at random from S. For a probability
distribution D, a← D denotes that a is sampled according to the distribution D. The binomial distribution
with the number of trials n and the success probability p is denoted by Bin(n, p).

Unless stated otherwise, all logarithms are to the base 2. The complexity of matrix multiplication of two
n× n matrices is O(nω) for some ω such that 2 ≤ ω ≤ 3. The constant ω is called the matrix multiplication
exponent, and it will be conservatively set to 2 in this paper.

2.2 Algebraic Attacks

An algebraic attack on a symmetric primitive is to model it as a system of multivariate polynomial equations
and to solve it using algebraic techniques. A straightforward way of establishing a system of equations is
to represent the output of the primitive as a polynomial of the input including the secret key. In order to
reduce the degree of the system of equations, intermediate variables might be introduced. For example, all
the inputs and outputs of the underlying S-boxes can be regarded as independent variables.

One of the well-known methods of solving a system of equations is to define a system of linear equations
by replacing every monomial of degree greater than one by a new variable and solve it, which is called
trivial linearization. In the linearizaton, a large number of new variables might be introduced, and that
many equations are also needed to determine a solution to the system of (linear) equations. However, in
most ZKP-based digital signature schemes, one is given only a single evaluation of the underlying primitive,
which limits the total number of equations thereof. For this reason, our focus will be put on algebraic attacks
possibly using a small number of equations such as the Gröbner basis attack and the XL attack.

Gröbner Basis Attack. The Gröbner basis attack is to solve a system of equations by computing its
Gröbner basis. The attack consists of the following steps.

1. Compute a Gröbner basis in the grevlex (graded reverse lexicographic) order.
2. Change the order of terms to obtain a Gröbner basis in the lex (lexicographic) order.
3. Find a univariate polynomial in this basis and solve it.
4. Substitute this solution into the Gröbner basis and repeat Step 3.

When a system of equations has only finitely many solutions in its algebraic closure, its Gröbner basis in the
lex order always contains a univariate polynomial. When a single variable of the polynomial is replaced by
a concrete solution, the Gröbner basis still remains a Gröbner basis of the “reduced” system, allowing one
to obtain a univariate polynomial again for the next variable. We refer to [64] for more details on Gröbner
basis computation.

The complexity of Gröbner basis computation can be estimated using the degree of regularity of the
system of equations [8]. Consider a system of m equations in n variables {fi}mi=1. Let di denote the degree
of fi for i = 1, 2, . . . ,m. If the system of equations is over-defined, i.e., m > n, then the degree of regularity
can be estimated by the smallest of the degrees of the terms with non-positive coefficients for the following
Hilbert series under the semi-regular assumption [36].

HS(z) =
1

(1− z)n

m∏
i=1

(1− zdi).

Given the degree of regularity dreg, the complexity of computing a Gröbner basis of the system is known to
be

O

((
n+ dreg
dreg

)ω)
.

In the Gröbner basis attack, one always obtains an over-defined system of equations since each variable
x should be contained in a finite field Fpe for some characteristic p, and hence x satisfies xpe −x = 0 called a
field equation. By including field equations in the system of equations, one can remove any possible solution
outside Fpe (in the algebraic closure). For some symmetric primitives, the field equations have not been taken
into account in their analysis of the Gröbner basis attack [2,3,32,39]. It does not mean that they are broken
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under the modified analysis, while considering the field equations would lead to more precise analysis of the
Gröbner basis attack.

XL Attack. The XL algorithm, proposed by Courtois et al. [20], can be viewed as a generalization of
the relinearization attack [52]. For a system of m quadratic equations in n variables over F2, the trivial
linearization does not work if m is smaller than the number of monomials appearing in the system.

The XL algorithm extends the system of equations by multiplying all the monomials of degree at most
D − 2 for some D > 2 to obtain a larger number of linearly independent equations. Since the number of

monomials of degree at most D − 2 is
∑D−2

i=1

(
n
i

)
, the resulting system consists of

(∑D−2
i=1

(
n
i

))
m equations

of degree at most D with at most
∑D

i=1

(
n
i

)
monomials of degree at most D. When the number of equations

equals the number of monomials as D grows, one can solve the extended system of equations by linearization.
In contrast to the Gröbner basis attack, it is not easy to precisely estimate the complexity of the XL

attack since there is no theoretic estimation for the number of linearly independent equations obtained from
the XL algorithm. Instead, we can loosely upper bound the number of linearly independent equations by
(
∑D−2

i=1

(
n
i

)
)m. Under the assumption that all the equations obtained from the XL algorithm are linearly

independent, which is in favor of the attacker, we can search for the (smallest) degree D such that(
D−2∑
i=1

(
n

i

))
m ≥ T (1)

where T denotes the exact number of monomials appearing in the extended system of equations, which is
upper bounded by

∑D
i=1

(
n
i

)
. Once D is fixed, the extended system of equations can be solved by trivial

linearization whose time complexity is given as

O (Tω) .

2.3 BN++ Zero-knowledge Protocol

In this section, we briefly review the BN++ proof system [48], one of the state-of-the-art MPCitH zero-
knowledge protocols. The BN++ protocol will be combined with our symmetric primitive AIM to construct
the AIMer signature scheme which is fully described in Section 5. At a high level, BN++ is a variant of the
BN protocol [10] with several optimization techniques applied to reduce the signature size.

Protocol Overview. The BN++ protocol follows the MPCitH paradigm [46]. In order to check C mul-
tiplication triples (xj , yj , zj = xj · yj)Cj=1 over a finite field F in the multiparty computation setting with N

parties, helping values ((aj , bj)
C
j=1, c) are required, where aj ← F, bj = yj , and c =

∑C
j=1 aj · bj . Each party

holds secret shares of the multiplication triples (xj , yj , zj)
C
j=1 and helping values ((aj , bj)

C
j=1, c). Then the

protocol proceeds as follows.

– A prover is given random challenges
ϵ1, · · · , ϵC ∈ F.

– For i ∈ [N ], the i-th party locally sets

α
(i)
1 , · · · , α(i)

C

where α
(i)
j = ϵj · x(i)

j + a
(i)
j .

– The parties open α1, · · · , αC by broadcasting their shares.
– For i ∈ [N ], the i-th party locally sets

v(i) =

C∑
j=1

ϵj · z(i)j −
C∑

j=1

αj · b(i)j + c(i).

– The parties open v by broadcasting their shares and output Accept if v = 0.
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The probability that there exist incorrect triples and the parties output Accept in a single run of the above
steps is upper bounded by 1/|F|.

Signature Size. By applying the Fiat-Shamir transform [33], one can obtain a signature scheme from the
BN++ proof system. In this signature scheme, the signature size is given as

6λ+ τ · (3λ+ λ · ⌈log2(N)⌉+M(C)),

where λ is the security parameter, C is the number of multiplication gates in the underlying symmetric
primitive, andM(C) = (2C + 1) · log2(|F|). In particular,M(C) has been defined so from the observation
that sharing the secret share offsets for (zj)

C
j=1 and c, and opening shares for (αj)

C
j=1 occurs for each

repetition, using C, 1, and C elements of F, respectively. For more details, we refer to [48].

Optimization Techniques. If multiplication triples use an identical multiplier in common, for example,
given (x1, y, z1) and (x2, y, z2), then the corresponding α values can be batched to reduce the signature size.
Instead of computing α1 = ϵ1 · x1 + a1 and α2 = ϵ2 · x2 + a2, α = ϵ1 · x1 + ϵ2 · x2 + a is computed, and v is
defined as

v = ϵ1 · z1 + ϵ2 · z2 − α · y + c,

where c = a ·y. This technique is called repeated multiplier technique. Our symmetric primitive design allows
us to take full advantage of this technique to reduce the number of α values in each repetition of the protocol.

If the output of the multiplication zi can be locally generated from each share, then the secret share
offset is not necessarily included in the signature.

3 AIM: Our New Symmetric Primitive

3.1 Specification

AIM is designed to be a “tweakable” one-way function so that it offers multi-target one-wayness. Given
input/output size n and an (ℓ + 1)-tuple of exponents (e1, . . . , eℓ, e∗) ∈ Zℓ+1, AIM : F2n × F2n → F2n is
defined by

AIM(iv, pt) = Mer[e∗] ◦ Lin[iv] ◦Mer[e1, . . . , eℓ](pt)⊕ pt

where each function will be described below. See Figure 1 for the pictorial description of AIM with ℓ = 3.

Mer[e1]

Mer[e2]

Mer[e3]

Linpt Mer[e∗] ct

XOF[iv]

Fig. 1: The AIM-V one-way function with ℓ = 3. The input pt (in red) is the secret key of the signature
scheme, and (iv, ct) (in blue) is the corresponding public key.
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S-boxes. In AIM, S-boxes are exponentiation by Mersenne numbers over a large field. More precisely, for
x ∈ F2n ,

Mer[e](x) = x2e−1

for some e. Note that this map is a permutation if gcd(e, n) = 1. As an extension, Mer[e1, . . . , eℓ] : F2n → Fℓ
2n

is defined by
Mer[e1, . . . , eℓ](x) = Mer[e1](x)∥ . . . ∥Mer[eℓ](x).

Linear Components. AIM includes two types of linear components: an affine layer and feed-forward. The
affine layer is multiplication by an n × ℓn random binary matrix Aiv and addition by a random constant
biv ∈ Fn

2 . The matrix
Aiv =

[
Aiv,1

∣∣ . . . ∣∣Aiv,ℓ

]
∈ (Fn×n

2 )ℓ

is composed of ℓ random invertible matrices Aiv,i. The matrix Aiv and the vector biv are generated by an
extendable output function (XOF) with the initial vector iv. Each matrix Aiv,i can be equivalently represented

by a linearized polynomial Liv,i on F2n . For x = (x1, . . . , xℓ) ∈ (F2n)
ℓ
,

Lin[iv](x) =
∑

1≤i≤ℓ

Liv,i(xi)⊕ biv.

By abuse of notation, we will denote Ax as the same meaning as
∑

1≤i≤ℓ Liv,i(xi). Feed-forward operation,
which is addition by the input itself, makes the entire function non-invertible.

Recommended Parameters. Recommended sets of parameters are given in Table 2. The number of S-
boxes is determined by taking into account the complexity of the XL attack, which is described in Section 4.1.
Exponents e1 and e∗ are chosen as small numbers to provide smaller differential probability, and exponent
e2 is chosen so that e2 · e∗ ≥ λ, while all the exponents are distinct in the same set of parameters. The
irreducible polynomials for extension fields F2128 , F2192 , and F2256 are the same as those used in Rain [32].

Scheme λ n ℓ e1 e2 e3 e∗

AIM-I 128 128 2 3 27 - 5

AIM-III 192 192 2 5 29 - 7

AIM-V 256 256 3 3 53 7 5

Table 2: Recommended sets of parameters of AIM.

3.2 Design Rationale

Choice of Field. When a symmetric primitive is built upon field operations, the field is typically binary
since bitwise operations are cheap in most of modern architectures. However, when the multiplicative com-
plexity of the primitive becomes a more important metric for efficiency, it is hard to generally specify which
type of field has merits with respect to security and efficiency.

Focusing on a primitive for MPCitH-style zero-knowledge protocols, a primitive over a large field generally
requires a small number of multiplications, leading to shorter signatures. However, any primitive operating
on a large field of large prime characteristic might permit algebraic attacks since the number of variables and
the algebraic degree will be significantly limited for efficiency reasons. On the other hand, binary extension
fields enjoy both advantages from small and large fields. In particular, matrix multiplication is represented
by a polynomial of high algebraic degree without increasing the proof size.
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Algebraically Sound S-boxes. In an MPCitH-style zero-knowledge protocol, the proof size of a circuit
is usually proportional to the number of nonlinear operations in the circuit. In order to minimize the number
of multiplications, one might introduce intermediate variables for some wires of the circuit. For example, the
inverse S-box (S(x) = x−1) has high (bitwise) algebraic degree n − 1, while it can be simply represented
by a quadratic equation xy = 1 by letting the output from the S-box be a new variable y. When an S-box
is represented by a quadratic equation of its input and output, we will say it is implicitly quadratic. In
particular, we consider implicitly quadratic S-boxes which are represented by a single multiplication over
F2n . This feature makes the proof size short and mitigates algebraic attacks at the same time.

The inverse S-box is one of the well-studied implicitly quadratic S-boxes. The inverse S-box has been
widely adopted to symmetric ciphers [4, 23, 66] due to its nice cryptographic properties. It is invertible, is
of high-degree, has good enough differential uniformity and nonlinearity. Recently, it is used in symmet-
ric primitives for advanced cryptographic protocols such as multi-party computation and zero-knowledge
proof [32,39,40].

Meanwhile, the inverse S-box has one minor weakness; a single evaluation of the n-bit inverse S-box as a
form of xy = 1 produces 5n− 1 linearly independent quadratic equations over F2 [21]. The complexity of an
algebraic attack is typically bounded (with heuristics) by the degree and the number of equations, and the
number of variables. In particular, an algebraic attack is more efficient with a larger number of equations,
while this aspect has not been fully considered in the design of recent symmetric ciphers based on algebraic
S-boxes. When the number of rounds is small, this issue might be critical to the overall security of the cipher.
For more details, see Appendix A and Section 4.1.

With the above observation, we tried to find an invertible S-box of high-degree which is moderately
resistant to differential/linear cryptanalysis as well as implicitly quadratic, and producing only a small number
of quadratic equations. Since our attack model does not allow multiple queries to a single instance of AIM, we
allow a relaxed condition on the DC/LC resistance, not being necessarily maximal. As a family of S-boxes
that beautifully fit all the conditions, we choose a family of Mersenne S-boxes; they are exponentiation by
Mersenne numbers. A Mersenne S-box whose exponent is of the form 2e − 1 such that gcd(n, e) = 1, is
invertible, is of high-degree, needs only one multiplication for its proof, produces only 3n Boolean quadratic
equations with its input and output, and provides moderate DC/LC resistance. Furthermore, when the
implicit equation xy = x2e of a Mersenne S-box is computed in the BN++ proof system, it is not required
to broadcast the output share since the output of multiplication x2e can be locally computed from the share
of x.

Repetitive Structure. The efficiency of the BN++ proof system partially comes from the optimization
technique using repeated multipliers. When a multiplier is repeated in multiple equations to prove, the proof
can be done in a batched way, reducing the overall signature size. In order to maximize the advantage of
repeated multipliers, we put S-boxes in parallel at the first round in order to make the S-box inputs the same.
Then, we put only one S-box at the second round with feed-forward. In this way, all the implicit equations
have the same multiplier.

Affine Layer Generation. The main advantage of using binary affine layers in large S-box-based con-
structions is to increase the algebraic degree of equations over the large field. Multiplication by a random
n× n binary matrix can be represented as (2). Similarly, our design uses a random affine map from Fℓn

2 to
Fn
2 . In order to mitigate multi-target attacks (in the multi-user setting), the affine map is uniquely generated

for each user; each user’s iv is fed to an XOF, generating the corresponding linear layer.

4 Security Analysis of AIM

In order for the basing signature scheme to be secure, AIM with fixed iv should be preimage-resistant. An
adversary is given a randomly chosen iv and an output ct that is defined by iv and a randomly chosen input
pt∗. Given such a pair (iv, ct), the adversarial goal is to find any pt (not necessarily the same as pt∗) such
that AIM(iv, pt) = ct. In the multi-user setting, the adversary is given multiple IV-output pairs {(ivi, cti)}i,
and tries to find any pt such that AIM(ivi, pt) = cti for some i.
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4.1 Algebraic Attacks

Since our attack model does not allow multiple evaluations for a single instance of AIM, we do not consider
interpolation, higher-order differential, and cube attacks. Instead, as mentioned in Section 2.2, we mainly
consider the Gröbner basis attack and the XL attack using a single evaluation of AIM. In particular, we
exploit the implicit Boolean representations of power mapping based S-boxes over F2n , obtaining a refined
algebraic analysis for these attacks.

Representation in F2 and its Extension Field. When a symmetric primitive is defined with arithmetic
in a large field, it is straightforward to establish a system of equations from a single evaluation of the primitive
using the same field arithmetic. If the underlying field is a binary extension field F2n for some n, then it
is also possible to establish a system of equations over F2. Suppose that {1, β, . . . , βn−1} is a basis of F2n

over F2. Then each variable x ∈ F2n can be represented as n variables x0, x1, . . . , xn−1 ∈ F2 by setting
x =

∑n−1
i=0 xiβ

i. Using the representation of βn with respect to this basis, every polynomial equation over
F2n can be transformed into n equations over F2.

On the other hand, a linear equation over F2 is represented by a linearized polynomial over F2n :

n−1∑
i=0

aix
2i = a0x+ a1x

21 + a2x
22 + · · ·+ an−1x

2n−1

(2)

where a0, a1, . . . , an−1 ∈ F2n .

Suppose that variables x and y in F2n are represented by {xi}n−1i=0 and {yi}n−1i=0 , respectively, in F2. If
y = xa for some a, then each yi is represented as a polynomial of xi’s of degree hw(a). For instance, the
inverse S-box y = x2n−2 can be represented as a system of n equations of degree n− 1.

Most of previous works on symmetric primitives over a large field, their security against the Gröbner basis
attack have been analyzed only over the large field [1, 3, 32, 39]. However, when the primitives are defined
over the binary extension fields, it is also possible to represent them by systems of equations over F2. For
example, Dobraunig et. al. consider the representation of Rain over F2 using the above description of the
inverse S-box [32], obtaining equations of the highest degree that make the algebraic analysis infeasible. We
apply the Gröbner basis attack to the system of quadratic equations over F2 using intermediate variables as
described below.

Number of Quadratic Equations. The efficiency of algebraic cryptanalysis heavily depends on the
number of variables, the number of equations, and their degrees for the system of equations. As discussed
above, a powering function y = xa over F2n can be represented as a system of n equations of degree hw(a)
over F2. The resulting equations are explicit ones in a sense that each output variable is represented by an
equation only in the input variables. However, their implicit representation might consist of equations of
degree smaller than the explicit ones. For example, y = x2n−2 obtained from the inverse S-box is equivalent
to the quadratic equation xy = 1 over F2n , assuming the input x is nonzero, or a certain set of n quadratic
equations in n variables over F2.

Implicit representation over F2 might also increase the number of (linearly independent) equations. There
has been a significant amount of research on the number of linearly independent quadratic equations obtained
from power functions over F2n [19,21,42,61]. For example, it is known that one has 5n quadratic equations
over F2 from xy = 1 over F2n [19]. However, the relation xy = 1 holds for the inverse S-box only when x and
y are nonzero. Courtois et al. [21] shows that 5n− 1 linearly independent quadratic equations are obtained
from the exact representation of the inverse S-box. See Appendix A for the details of how the number of
quadratic equations affects the complexity of the Gröbner basis attack and the XL attack.

The Gröbner Basis Attack on AIM. A single equation of an input pt to AIM over F2n is of high degree,
so it is infeasible to solve this type of system using the Gröbner basis attack. Alternatively, one can construct
a system of equations over F2n using certain intermediate variables. Let ui denote the output of the S-box
Mer[ei] and let vi denote the output of the linear component Liv,i for i = 1, 2, . . . , ℓ. Then, we obtain the
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following system of equations
ui = pt2

ei−1 for i = 1, 2, . . . , ℓ,

vi = Liv,i(ui) for i = 1, 2, . . . , ℓ,

pt⊕ ct = (v1 ⊕ . . .⊕ vℓ ⊕ biv)
2e∗−1

where Liv,i(·) denotes the linearized polynomial of degree 2n−1 (with high probability), induced from the
random matrix Aiv,i. Together with 2ℓ+ 1 field equations, we obtain the following Hilbert series.

ℓ∏
i=1

(
1− z2

ei−1

1− z

)(
1− z2

e∗−1

1− z

)(
1− z2

n−1

1− z

)ℓ

(1− z2
n

)2ℓ+1.

So the degree of regularity is estimated to be greater than 2n, obtaining the complexity(
(2ℓ+ 1) + 2n

2n

)ω

> 2n

for ℓ ≥ 2.
We can also construct a system of implicit Boolean quadratic equations over F2 as described above. The

corresponding Hilbert series is as follows.

HS(z) =
1

(1− z)(ℓ+1)n
(1− z2)(1+ν)(ℓ+1)n = (1 + z)(ℓ+1)n(1− z2)(ℓ+1)νn

where ν = 3 in case of AIM. We perform Gröbner basis computation on AIM with ℓ = 2, 3 for toy parameters,
summarizing the result in Figure 2. Being the same as the single-round Even-Mansour cipher, the solving
degrees for the both basic and full systems of AIM are also close to the estimated values for the full system.
The estimated degrees of regularity and corresponding time complexities to compute a Gröbner basis for the
full system of AIM are summarized in Table 3.
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Fig. 2: Degree of regularity dreg estimated by (7) and the solving degree sd for AIM with ℓ = 2, 3 using
Mersenne S-boxes.
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Scheme n ν
Gröbner Basis XL

dreg Time (bits) D Time (bits)

AIM-I 128 20 222.8 12 148.0

AIM-III 192 3 27 310.8 15 194.1

AIM-V 256 45 530.3 19 266.1

Rain3

128 14 168.5 10 127.9†

192 5 19 235.9 12 162.1†

256 24 303.1 13 183.9†

Rain4

128 17 219.2 11 147.3

192 5 24 303.1 13 183.9†

256 30 385.9 15 219.2†

Table 3: Analyses of the Gröbner basis attack and the XL attack for AIM and Rain. dreg is the estimated
value for the degree of regularity and D is the target degree of the XL attack to obtain equations more than
the number of monomials (under the independence assumption) for the full systems of AIM and Rain. †We
note that the time complexity for the XL attack is a lower bound that is smaller than the actual complexity
due to the independence assumption and the use of ω = 2, so that this values does not imply that the Rain
parameters are broken.

The XL Attack on AIM. The XL attack complexity can be loosely bounded in terms of the number of
monomials T appearing in the extended system of the target degree D. We observe that the systems of
equations defined by the inverse and the Mersenne S-boxes are dense for toy parameters (see Appendix A.2).

Letting T =
∑D

i=1

(
n
i

)
, we can find the smallest degree D satisfying (1). We emphasize again that the

time complexity computed from the smallest degree D is rather loose since the estimation is based on the
assumption that all the equations obtained by the XL algorithm are linearly independent, which might not
be the case in general. The degree D and the corresponding time complexity of the XL attack on the full
system of AIM are summarized in Table 3. We observe that AIM is secure for all the parameter sets even
with this (loose) lower bound on the complexity of the XL attack.

AIM vs. Rain. We perform experiments for the 3-round Rain (denoted Rain3) with toy parameters. It can
be viewed as a 3-round Even-Mansour-type cipher based on the inverse S-box, so the degree of regularity is
estimated by (7) with r = 3 and ν = 5. Figure 3 shows the estimated degree of regularity and the solving
degree for Rain3. The result suggests that the exact number of quadratic equations should be considered to
estimate the degree of regularity.

We note that the number of variables, the number of equations and their degrees are the same for the
basic systems of Rain3 and AIM with ℓ = 2, and for the basic systems of Rain4 and AIM with ℓ = 3. This
implies that the difference of algebraic cryptanalysis between the full systems of AIM and Rain only comes
from the values of ν, determined by the number of linearly independent quadratic equations of their S-boxes.
Table 3 compares the complexities of the Gröbner basis and the XL attacks for the full systems of AIM and
Rain. Compared to Rain, AIM provides stronger security against the Gröbner basis and the XL attacks.

4.2 Quantum Attacks

Quantum attacks are classified into two types according to the attack model. In the Q1 model, an adversary
is allowed to use quantum computation without making any quantum query, while in the Q2 model, both
quantum computation and quantum queries are allowed [70].

As a generic algorithm for exhaustive key search, Grover’s algorithm has been known to give quadratic
speedup compared to the classical brute-force attack [41]. In this section, we investigate if any specialized
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Fig. 3: Degree of regularity dreg estimated by (7) and the solving degree sd for the Rain3 cipher.

quantum algorithm targeted at AIM might possibly achieve better efficiency than Grover’s algorithm in the
Q1 model.

Quantum Algebraic Attack. When an algebraic root-finding algorithm works over a small field, the
guess-and-determine strategy might be effectively combined with Grover’s algorithm, reducing the overall
time complexity.

The GroverXL algorithm [12] is a quantum version of the FXL algorithm [20], which solves a system
of multivariate quadratic equations over a finite field. A single evaluation of AIM can be represented by
Boolean quadratic equations using intermediate variables. Precisely, we have a system of 4(ℓ+1)n equations
(including field equations) in (ℓ+1)n variables. For this system of equations, the complexity of GroverXL is
given as O(2(0.3687+o(1))(ℓ+1)n), which is worse than Grover’s algorithm.

The QuantumBooleanSolve algorithm [35] is a quantum version of the BooleanSolve algorithm [9], which
solves a system of Boolean quadratic equations. In [35], its time complexity has been analyzed only for a
system of equations with the same number of variables and equations. A single evaluation of AIM can be
represented by (ℓ+1)n equations in (ℓ+1)n variables. In this case, the complexity of QuantumBooleanSolve
is given as O(20.462(ℓ+1)n), which is worse than Grover’s algorithm.

In contrast to the algorithms discussed above, Chen and Gao [18] proposed a quantum algorithm to
solve a system of multivariate equations using the Harrow-Hassidim-Lloyd (HHL) algorithm [43] that solves
a sparse system of linear equations with exponential speedup. In brief, Chen and Gao’s algorithm solves a
system of linear equations from the Macaulay matrix by the HHL algorithm. It has been claimed that this
algorithm enjoys exponential speedup for a certain set of parameters. When applied to AIM, the hamming
weight of the secret key should be smaller than O(log n) to achieve exponential speedup [26]. Otherwise, this
algorithm is slower than Grover’s algorithm [26].

Quantum Generic Attack. A generic attack does not use any particular property of the underlying
components (e.g., S-boxes for AIM). The underlying smaller primitives are typically modeled as public random
permutations or functions. The Even-Mansour cipher [34], the FX-construction [51] and a Feistel cipher [59]
have been analyzed in the classic and generic attack model. As their quantum analogues, the Even-Mansour
cipher [14, 54], the FX-construction [44, 55] and a Feistel cipher [53] have been analyzed in the Q1 or Q2
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model. Most of these attacks can be seen as a combination of Simon’s period finding algorithm [68] (in the
Q2 model), and Grover’s/offline Simon’s algorithms [14] (in the Q1 model). Since Simon’s period finding
algorithm requires multiple queries to a keyed construction (which is not the case for AIM), we believe that
the above attacks do not apply to AIM in a straightforward manner.

4.3 Statistical Attacks

The adversary is allowed to evaluate AIM with an arbitrary input pair (pt, iv) in an offline manner. However,
such an evaluation is independent of the actual secret key pt∗, so the adversary is not able to collect a
sufficient amount of statistical data which are related to pt∗. Furthermore, the linear layer of AIM is generated
independently at random for every user. For this reason, we believe that our construction is secure against
any type of statistical attacks including (impossible) differential, boomerang, and integral attacks.

That said, to prevent any unexpected variant of differential and linear cryptanalysis, we summarize
differential and linear probabilities in this section. For more details, see Appendix B and C.

Differential Cryptanalysis. For the differential probability, we bound the maximum differential prob-
ability without expectation as AIM is a key-less primitive. We bound the probability

MDPAIM = max
∆x ̸=0,∆y

Pr
x
[AIM(x⊕∆x)⊕ AIM(x) = ∆y] .

As MDPAIM cannot be less than 2−λ for security parameter λ, The values of log γ such that

Pr
A,b

[
MDPAIM > γ

]
< 2−λ

is summarized in Table 4 according to the security level, where A (resp. b) are the random matrix (resp.
vector) in the affine layer. We remark that γ > 2−λ does not imply the feasibility of differential cryptanalysis
for each λ.

λ 128 192 256

log γ -118.4 -178.0 -245.9

Table 4: log γ such that PrA,b

[
MDPAIM > γ

]
< 2−λ for each security level λ.

Linear Cryptanalysis. In contrast to differential cryptanalysis, security against linear cryptanalysis has
been rarely evaluated for key-less primitives. For this reason, we find the condition when the bias of a
correlation trail are less than 2−λ assuming the masked sums of inputs and outputs are independent. When

min
1≤i≤ℓ

(2ei − 2)2(2e∗ − 2)2 < 2n,

the bias of a correlation trail in AIM is smaller 2−n, and the amount of data required for linear cryptanalysis
becomes at least 2n.

4.4 Security Proof

In this section, we prove the one-wayness of AIM when the underlying S-boxes are modeled as public random
permutations and iv is (implicitly) fixed. For simplicity, we will assume that ℓ = 2. The security of AIM with
ℓ > 2 is similarly proved.
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In the public permutation model and in the single-user setting, AIM is defined as

AIM(pt) = S3(A1 · S1(pt)⊕A2 · S2(pt)⊕ b)⊕ pt

for pt ∈ {0, 1}n, where S1, S2, S3 are independent public random permutations, and A1 and A2 are fixed
n× n invertible matrices, and b is a fixed n× 1 vector over F2.

An adversary A is allowed to choose any value ct ∈ {0, 1}n on its own, and then make a certain number
of forward and backward queries to S1, S2 and S3. Specifically, suppose that A makes q permutation queries
in total. If A succeeds in finding all the S-box evaluations that make up an evaluation AIM(pt) = ct for some
pt ∈ {0, 1}n, then we say that A wins the preimage-finding game, breaking the one-wayness of AIM. The
goal of our security proof is to show that A’s winning probability, denoted Advpre

AIM(q), is small.
We will assume that A is information-theoretic, and hence deterministic. Furthermore, we assume that

A does not make any redundant query. We will also slightly modify A so that whenever A makes a (forward
or backward) query to S1 (resp. S2) obtaining S1(x) = y (resp. S2(x) = y), A makes an additional forward
query to S2 (resp. S1) with x for free. This additional query will not degrade A’s preimage-finding advantage
since A is free to ignore it.

An evaluation AIM(pt) = ct consists of three S-box queries. Among the three S-box queries, the lastly
asked one is called the preimage-finding query. We distinguish two cases.

Case 1. The preimage-finding query is made to either S1 or S2. Since A consecutively obtains a pair of
queries of the form S1(x) = y1 and S2(x) = y2, any preimage-finding query to either S1 or S2 should be
forward. If it is S1(x) (without loss of generality), then there should be queries S2(x) = y for some y and
S3(z) = x⊕ct for some z that have already been made by A. In order for S1(x) to be the preimage-finding
query, it should be the case that

S3(A1 · S1(x)⊕A2 · S2(x)⊕ b) = x⊕ ct

or equivalently,
S1(x) = A−11 · (z ⊕ b⊕A2 · y)

which happens with probability at most 1
2n−q . Therefore, the probability of this case is upper bounded

by q
2n−q .

Case 2. The preimage-finding query is made to S3. In order to address this case, we use the notion of a
wish list, which was first introduced in [5]. Namely, whenever A makes a pair of queries S1(x) = y1 and
S2(x) = y2, the evaluation

S3 : A1 · y1 ⊕A2 · y2 ⊕ b 7→ x⊕ ct

is included in the wish listW. In order for an S3-query to complete an evaluation AIM(pt) = ct for any pt,
at least one ”wish” in W should be made come true. Each evaluation in W is obtained with probability
at most 1

2n−q , and |W| ≤ q. Therefore, the probability of this case is upper bounded by q
2n−q .

Overall, we conclude that

Advpre
AIM(q) ≤

2q

2n − q
.

The lesson of this security proof is that one cannot break the one-wayness of AIM in O(2n) time without
exploiting any particular properties of the underlying S-boxes.

In the multi-user setting with u users, A is given u different target images. The proof of the multi-
user security follows the same line of argument as the single-user security proof. The difference is that the
probability that each query to either S1 or S2 becomes the preimage-finding one is upper bounded by uq

2n−q
and the size of the wish list (in the second case) is upper bounded by uq. Overall, the adversarial preimage
finding advantage in the multi-user setting is upper bounded by

2uq

2n − q
.

It does not mean that AIM provides only the birthday-bound security in the multi-user setting. The straight-
forward birthday-bound attack is mitigated since AIM is based on a distinct linear layer for every user.
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5 The AIMer Signature Scheme

5.1 Specification

The AIMer signature scheme consists of three algorithms: key generation, signing, and verification algorithms.
The key generation takes as input a security parameter and outputs a public key (iv, ct) and a secret key pt
such that ct = AIM(iv, pt). The signing algorithm takes as input the pair of secret and public keys (pt, (iv, ct))
and a message m and outputs the corresponding signature σ. The verification algorithm takes as input the
public key (iv, ct), a message m and a signature σ and outputs either Accept or Reject. We describe the AIMer
signing and verification algorithms in Algorithm 1 and 2, respectively.

In Algorithm 1 and 2, the SHAKE128 (resp. SHAKE256) XOF is used to instantiate hash functions
Commit, H1, H2 and pseudorandom generators Expand and ExpandTape in the signature scheme for λ = 128
(resp. λ ∈ {192, 256}). Sample(tape) samples an element from a random tape tape, which is an output of
ExpandTape, tracking the current position of the tape.

5.2 Optimization Technique

The BN++ proof system is combined with AIM, yielding the AIMer signature scheme. The AIM function has
been designed to fully exploit the optimization techniques of the BN++ proof system using repeated multi-
pliers for checking multiplication triples and locally computed output shares to reduce the overall signature.

Repeated Multiplier. If multiplication triples share the same multiplier, then the α values in the multi-
plication checking protocol can be batched as mentioned in Section 2.3. The ℓ+ 1 S-box evaluations in AIM
produce the ℓ+ 1 multiplication triples that needs to be verified, reformulated as follows.

pt · ti = pt2
ei

for i = 1, . . . , ℓ, and
pt · Lin[iv](t) = (Lin[iv](t))2

e∗
+ ct · Lin[iv](t)

where ti, i = 1, 2, . . . , ℓ, is the output of the i-th S-box and t
def
= [t1| . . . |tℓ]. Since every multiplication triple

shares the same multiplier pt, a single value of α can be included in the signature instead of ℓ+ 1 different
values.

Locally Computed Output Shares. For the above multiplication triples, every multiplication output
share on the right-hand side can be locally computed without communication between parties. Hence, it is
possible to remove the share ∆z in the signature. This technique is similar with multiplications with public
output, suggested in BN++.

For the first ℓ multiplications, each party computes the output as (pt(i))2
ei

based on their input share
pt(i) using linear operations. For the last multiplication output, the output is determined as follows.{

(Aiv · t(i) + biv)
2e∗ + ct · (Aiv · t(i) + biv) for i = 1,

(Aiv · t(i))2
e∗

+ ct · (Aiv · t(i)) for i ≥ 2,

where t(i) ∈ Fℓn
2 is the output shares of the first ℓ S-boxes for the i-th party: t(i) = [t

(i)
1 | . . . |t

(i)
ℓ ].

With the above optimization techniques applied, the signature size is given as

6λ+ τ · (λ · ⌈log2(N)⌉+ (ℓ+ 5) · λ).

5.3 Security Proof of AIMer

We prove that AIMer is EUF-CMA-secure (existential unforgeable under adaptive chosen-message attacks [38]).
We first prove that AIMer is secure against key-only attack (EUF-KO) where the adversary is given the public
key and no access to signing oracle in Theorem 1. Then, we show AIMer is also EUF-CMA-secure by showing
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Algorithm 1: Sign(pt, (iv, ct),m) - AIMer signature scheme, signing algorithm.

// Phase 1: Committing to the seeds and the execution views of the parties.

1 Sample a random salt salt
$←− {0, 1}2λ.

2 Compute the first ℓ S-boxes’ outputs t1, . . . , tℓ.

3 Derive the binary matrix Aiv ∈ (Fn×n
2 )ℓ and the vector biv ∈ Fn

2 from the initial vector iv.
4 for each parallel execution k ∈ [τ ] do

5 Sample a root seed : seedk
$←− {0, 1}λ.

6 Compute parties’ seeds seed
(1)
k , . . . , seed

(N)
k as leaves of binary tree from seedk.

7 for each party i ∈ [N ] do

8 Commit to seed: com
(i)
k ← Commit(salt, k, i, seed

(i)
k ).

9 Expand random tape: tape
(i)
k ← ExpandTape(salt, k, i, seed

(i)
k ).

10 Sample witness share: pt
(i)
k ← Sample(tape

(i)
k ).

11 Compute witness offset and adjust first witness: ∆ptk ← pt−
∑

i pt
(i)
k , pt

(1)
k ← pt

(1)
k +∆ptk.

12 for each S-box with index j do
13 if j ≤ ℓ then

14 For each party i, sample a S-box output: t
(i)
k,j ← Sample(tape

(i)
k ).

15 Compute output offset and adjust first share: ∆tk,j = tj −
∑

i t
(i)
k,j , t

(1)
k,j ← t

(1)
k,j +∆tk,j .

16 For each party i, set x
(i)
k,j = t

(i)
k,j and z

(i)
k,j = (pt

(i)
k )2

ej
.

17 if j = ℓ+ 1 then

18 For i = 1, set x
(i)
k,j = Aiv · t(i)k,∗ + biv where t

(i)
k,∗ = [t

(i)
k,1| . . . |t

(i)
k,ℓ] is the output shares of the first ℓ

S-boxes.
19 For each party i ∈ [N ]\{1}, set x(i)

k,j = Aiv · t(i)k,∗

20 For each party i, set z
(i)
k,j = (x

(i)
k,j)

2e∗ + ct · x(i)
k,j .

21 For each party i, set a
(i)
k ← Sample(tape

(i)
k ).

22 Compute ak =
∑N

i=1 a
(i)
k .

23 Set ck = ak · pt.
24 For each party i, set c

(i)
k ← Sample(tape

(i)
k ).

25 Compute offset and adjust first share : ∆ck = ck −
∑

i c
(i)
k , c

(1)
k ← c

(1)
k +∆ck.

26 Set σ1 ←
(
salt, ((com

(i)
k )i∈[N ],∆ptk,∆ck, (∆tk,j)j∈[ℓ])k∈[τ ]

)
.

// Phase 2: Challenging the checking protocol.

27 Compute challenge hash: h1 ← H1(m, iv, ct, σ1).
28 Expand hash: ((ϵk,j)j∈[ℓ+1])k∈[τ ] ← Expand(h1) where ϵk,j ∈ F2n .

// Phase 3. Commit to the simulation of the checking protocol.

29 for each repetition k do
30 Simulate the triple checking protocol as in Section 2.3 for all parties with challenge ϵk,j . The inputs are

((x
(i)
k,j , pt

(i)
k , z

(i)
k,j)j∈[ℓ+1], a

(i)
k , b

(i)
k , c

(i)
k ), where b

(i)
k = pt

(i)
k , and let α

(i)
k and v

(i)
k be the broadcast values.

31 Set σ2 ←
(
salt, ((α

(i)
k , v

(i)
k )i∈[N ])k∈[τ ]

)
.

// Phase 4. Challenging the views of the MPC protocol.

32 Compute challenge hash: h2 ← H2(h1, σ2).
33 Expand hash: (̄ik)k∈[τ ] ← Expand(h2) where īk ∈ [N ].

// Phase 5. Opening the views of the MPC and checking protocols.

34 for each repetition k do

35 seedsk ← {⌈log2(N)⌉ nodes to compute seed
(i)
k for i ∈ [N ]\{̄ik}}.

36 Output σ ← (salt, h1, h2, (seedsk, com
(̄ik)
k ,∆ptk,∆ck, (∆tk,j)j∈[ℓ], α

(̄ik)
k )k∈[τ ]).

16



Algorithm 2: Verify((iv, ct),m, σ) - AIMer signature scheme, verification algorithm.

1 Parse σ as

(
salt, h1, h2,

(
seedsk, com

(̄ik)
k ,∆ptk,∆ck, (∆tk,j)j∈[ℓ], α

(̄ik)
k

)
k∈[τ ]

)
.

2 Derive the binary matrix Aiv ∈ (Fn×n
2 )ℓ and the vector biv ∈ Fn

2 from the initial vector iv.
3 Expand hashes: ((ϵk,j)j∈[ℓ+1])k∈[τ ] ← Expand(h1) and (̄ik)k∈[τ ] ← Expand(h2).
4 for each parallel repetition k ∈ [τ ] do

5 Uses seedsk to recompute seed
(i)
k for i ∈ [N ] \ {̄ik}.

6 for each party i ∈ [N ] \ {̄ik} do
7 Recompute com

(i)
k ← Commit(salt, k, i, seed

(i)
k ),

8 tape
(i)
k ← ExpandTape(salt, k, i, seed

(i)
k ) and

9 pt
(i)
k ← Sample(tape

(i)
k ).

10 if i = 1 then

11 Adjust first share: pt
(i)
k ← pt

(i)
k +∆ptk

12 for each S-box with index j do
13 if j ≤ ℓ then

14 Sample a S-box output: t
(i)
k,j ← Sample(tape

(i)
k ).

15 if i = 1 then

16 Adjust first share: t
(1)
k,j ← t

(1)
k,j +∆tk,j .

17 Set x
(i)
k,j = t

(i)
k,j and z

(i)
k,j = (pt

(i)
k )2

ej
.

18 if j = ℓ+ 1 then
19 if i = 1 then

20 Set x
(i)
k,j = Aiv · t(i)k,∗ + biv where t

(i)
k,∗ = [t

(i)
k,1| . . . |t

(i)
k,ℓ] is the output shares of the first ℓ

S-boxes.

21 else

22 Set x
(i)
k,j = Aiv · t(i)k,∗.

23 Set z
(i)
k,j = (x

(i)
k,j)

2e∗ + ct · x(i)
k,j .

24 Set a
(i)
k ← Sample(tape

(i)
k ) and c

(i)
k ← Sample(tape

(i)
k ).

25 if i = 1 then

26 Adjust first share c
(i)
k ← c

(i)
k +∆ck.

27 Set σ1 ←
(
salt,

(
(com

(i)
k )i∈[N ],∆ptk,∆ck, (∆tk,j)j∈[ℓ]

)
k∈[τ ]

)
.

28 Set h′
1 ← H1(m, iv, ct, σ1).

29 for each parallel execution k ∈ [τ ] do
30 for each party i ∈ [N ] \ {̄ik} do
31 Simulate the triple checking protocol as defined in Section 2.3 for all parties with challenge ϵk,j . The

inputs are ((x
(i)
k,j , pt

(i)
k , z

(i)
k,j)j∈[ℓ+1], a

(i)
k , b

(i)
k , c

(i)
k ), where b

(i)
k = pt

(i)
k , and let α

(i)
k and v

(i)
k be the

broadcast values.

32 Compute v
(̄ik)
k = 0−

∑
i ̸=īk

v
(i)
k .

33 Set σ2 ←
(
salt, ((α

(i)
k , v

(i)
k )i∈[N ])k∈[τ ]

)
34 Set h′

2 = H2(h1, σ2).
35 Output Accept if h1 = h′

1 and h2 = h′
2.

36 Otherwise, output Reject.
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that the signature can be simulated without using the secret key in Theorem 2. We assume that all adver-
saries are probabilistic polynomial time(in λ) algorithms. Many parts of the proofs are identical to [48], and
we give full credit to it.

Theorem 1 (EUF-KO Security of AIMer). Let Commit, H1 and H2 be modeled as random oracles, Expand
be modeled as a random function, and let (N, τ, λ) be parameters of the AIMer signature scheme. Let A be an
adversary against the EUF-KO security of AIMer that makes a total of Q random oracle queries. Assuming
that KeyGen is an ϵOWF-hard one-way function, then A’s advantage in the EUF-KO game is

ϵKO ≤ ϵOWF +
(τN + 1)Q2

22λ
+ Pr[X + Y = τ ], (3)

where Pr[X + Y = τ ] is as described in the proof.

Proof. We build an algorithm B to retrieve a pre-image for the key generation one-way function AIM using
the EUF-KO adversary A. Let the random oracles (RO) Hc (shorthand for Commit), H1 and H2, and the
respective RO query lists Qc, Q1 and Q2. We expand the output lengths of random oracles H1 and H2

instead of making the calls to Expand() in our analysis, since Expand is a random function used to expand
outputs from H1 and H2.

Algorithm B takes the one-way function value (iv, ct) as an input, and forwards it to A as a AIMer public
key for the EUF-KO game. B manages a set Bad to keep track of all the outputs of three random oracles and
two tables to maintain the values derived from A’s RO queries as follows :

– Tsh to store secret shares of the parties, and
– Tin to store inputs to the MPC protocol.

We also program the random oracles for A as follows :

– Hc : When A queries the commitment random oracle, B records the query to find out which commitment
corresponds to which seed. See Algorithm 3.

– H1 : When A commits to seeds and sends the offsets for the secret key pt and the multiplication triples,
B check the query list Qc to see if the commitments were output by its simulation of Hc. If B finds
matching results for all i’s in some repetition k, then it can recover pt. See Algorithm 4.

– H2 : See Algorithm 5.

When A terminates, B checks whether there is ptk ∈ Tin satisfying AIM(iv, ptk) = ct. If B finds a match ptk,
B outputs it as a pre-image for the AIM, otherwise B outputs ⊥.

Algorithm 3: Hc(qc = (salt, k, i, seed):

1 r
$←− {0, 1}2λ.

2 if r ∈ Bad then
3 abort.

4 r → Bad.
5 (qc, r)→ Qc.
6 Return r.

Given the algorithm of B as above, the probability that A wins is bounded as below.

Pr[A wins] = Pr[A wins ∧ B aborts] + Pr[A wins ∧ B outputs ⊥] + Pr[A wins ∧ B outputs pt]

≤ Pr[B aborts] + Pr[A wins | B outputs ⊥] + Pr[B outputs pt] (4)
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Algorithm 4: H1(q1 = σ1):

1 Parse σ1 as
(
salt, ((com

(i)
k )i∈[N ],∆ptk,∆ck, (∆tk,j)j∈[ℓ])k∈[τ ]

)
.

2 for k ∈ [τ ], i ∈ [N ] do

3 com
(i)
k → Bad.

// If the committed seed is known for some k, i, then B records the shares of the secret key

and the multiplication output values for that party, derived from that seed and the

offsets in σ1

4 for k ∈ [τ ], i ∈ [N ] : ∃seed(i)k : ((salt, k, i, seed
(i)
k ), com

(i)
k ) ∈ Qc do

5 pt
(i)
k , a

(i)
k , c

(i)
k , (t

(i)
k,j)j∈[ℓ] ← ExpandTape(salt, k, i, seed

(i)
k ).

6 if i = 1 then

7 pt
(i)
k ← pt

(i)
k +∆ptk, c

(i)
k ← c

(i)
k +∆ck and (t

(i)
k,j ← t

(i)
k,j +∆tk,j)j∈[ℓ]

8 (pt
(i)
k , c

(i)
k , (t

(i)
k,j))j∈[ℓ] → Tsh[q1, k, i]

// If the shares of the various elements are known for every party in that repetition, B
records the resulting secret key, multiplication inputs and S-box outputs

9 for each k : ∀i, Tsh[q1, k, i] ̸= ∅ do
10 ptk ←

∑
i pt

(i)
k , ck ←

∑
i c

(i)
k , ak ←

∑
i a

(i)
k , (tk,j ←

∑
i t

(i)
k,j)j∈[ℓ] and t

(i)
k,ℓ+1 = Aiv · t(i)k,∗ + biv where

t
(i)
k,∗ = [t

(i)
k,1| . . . |t

(i)
k,ℓ] is the output shares of the first ℓ S-boxes.

11 Derive the binary matrix Aiv ∈ (Fn×n
2 )ℓ and the vector biv ∈ Fn

2 from the initial vector iv.
12 for j ∈ [ℓ] do

13 Set xk,j = tk,j and zk,j = (ptk)
2
ej
.

14 for j = ℓ+ 1 do
15 Set xk,j = Aiv · tk,∗ + biv where tk,∗ = [tk,1| . . . |tk,ℓ] is the output shares of the first ℓ S-boxes and

zk,j = (xk,j)
2e∗ + ct · xk,j .

16 (ptk)→ Tin[q1, k].

17 r
$←− {0, 1}2λ.

18 if r ∈ Bad then
19 abort.

20 r → Bad.
21 (q1, r)→ Q1.

// Compute the multiplication check protocol values.

22 (ϵk,j)j∈[ℓ+1] ← Expand(r).
23 for each k : Tin[q1, e] ̸= ∅ do
24 αk =

∑
j∈[ℓ+1] ϵj · xj + ak.

25 vk =
∑

j∈[ℓ+1] ϵj · zk,j − αk · pt+ ck.

26 Return r.

Algorithm 5: H2(q2 = (h1, σ2)):

1 h1 → Bad.

2 r
$←− {0, 1}2

λ

.
3 if r ∈ Bad then
4 abort.

5 r → Bad.
6 (q2, r)→ Q2.
7 Return r.
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Let Qc, Q1 and Q2 denote the number of queries made by A to random oracles Hc, H1, H2, respectively.
Then we can bound the probability that B aborts (The first term on the RHS of (4)) as follows.

Pr[B aborts] = (#times an r is sampled) · Pr[B aborts at that sample]

≤ (Qc +Q1 +Q2) ·
max |Bad|

22λ
= (Qc +Q1 +Q2) ·

Qc + (τN + 1)Q1 + 2Q2

22λ

≤ (τN + 1)(Qc +Q1 +Q2)
2

22λ
=

(τN + 1)Q2

22λ
, (5)

where Q = Qc +Q1 +Q2.
We now analyze Pr[A wins | B outputs ⊥] (The second term on the RHS of (4)), which means pt corre-

sponding to (iv, ct) is not found. We parse it into two cases, which correspond to cheating in the first round
and the second round.

Cheating in the first round. Let q1 ∈ Q1 be the query to H1, and h1 = ((ϵk,j)j∈[ℓ+1])k∈[τ ] be its
corresponding answer. We collect the set of indices k ∈ [τ ] representing “good executions” such that Tin[q1, k]
is nonempty and vk = 0, say G1(q1, h1). For k ∈ G1(q1, h1), the challenges (ϵk,j)j∈[ℓ+1] were sampled such
that the multiplication check presented in the Section (2.3) is passed in that repetition. By Lemma (1), since
h1 is sampled uniformly at random, this happens with probability at most 1/2λ.

Lemma 1. If the secret-shared input (xj , y, zj)j∈[C] contains an incorrect multiplication triple, or if the
shares of ((aj , y)j∈[C], c) form an incorrect dot product, then the parties output Accept in the sub-protocol

with probability at most 1/2λ.

Proof. Let ∆zj = zj − xj · y and ∆c = −
∑

j∈[C] aj · y + c. Then

v =
∑
j∈[C]

ϵj · zj − α · y + c

=
∑
j∈[C]

ϵj · zj −
∑
j∈[C]

ϵj · xj · y −
∑
j∈[C]

aj · y + c

=
∑
j∈[C]

ϵj · (zj − xj · y)−
∑
j∈[C]

aj · y + c

=
∑
j∈[C]

ϵj ·∆zj +∆c

Define a multivariate polynomial

Q(X1, . . . , XC) = X1 ·∆z1 + · · ·+XC ·∆zC +∆c

over F2λ and note that v = 0 iff Q(ϵ1, . . . , ϵC) = 0. In the case of a cheating prover, Q is nonzero, and by the
multivariate version of the Schwartz-Zippel lemma, the probability that Q(ϵ1, . . . , ϵC) = 0 is at most 1/2λ,
since Q has total degree 1 and (ϵ1, . . . , ϵC) is chosen uniformly at random. □

Given B outputs ⊥, the number of elements #G1(q1, h1)|⊥ ∼ Xq1 where Xq1 = B(τ, p1), where B(τ, p1) is
the binomial distribution with τ events, each with success probability p1 = 1/2λ. We select the query-response
pair (qbest1 , hbest1) such that #G1(q1, h1) is the maximum. Then, the following holds.

#G1(qbest1 , hbest1)|⊥ ∼ X = max
q1∈Q1

{Xq1}.

Cheating in the second round. Let q2 = (h1, σ2) be the query toH2. Note that q2 can only be used in the
winning EUF-KO game when the corresponding (q1, h1) ∈ Q1 exists. For the bad repetition k ∈ [τ ]\G1(q1, h1),
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either Tin[q1, k] is empty (which means verification fails so that A loses) or vk ̸= 0 but the verification passes.
Hence, it should be the case that one of the N parties cheated. Since h2 = (̄ik)k∈[τ ] ∈ [N ]τ is distributed
uniformly at random, the probability that one of the N parties have cheated for all bad executions k is(

1

N

)τ−#G1(q1,h1)

≤
(

1

N

)τ−#G1(qbest1 ,hbest1
)

.

To sum up, we can analyze the probability that A wins conditioning on B outputting ⊥ is

Pr[A wins | B outputs ⊥] ≤ Pr[X + Y = τ ], (6)

where X is as before, and Y = maxq2∈Q2
{Yq2} where Yq2 variables are independently and identically dis-

tributed as B(τ −X, 1/N).
Finally, combining (4), (5) and (6) all together, we obtain the following.

Pr[A wins] ≤ (τN + 1) ·Q2

22λ
+ Pr[X + Y = τ ] + Pr[B outputs pt],

where Q = Qc + Q1 + Q2, X and Y are defined as above. Setting KeyGen as an ϵOWF-secure OWF, we
achieve (3) as desired. □

In our EUF-CMA theorem, we assume ExpandTape is a secure pseudorandom generator (PRG). This
implies the unopened seed is hidden to a computationally bounded adversary, and it holds in the random
oracle model as proven in [69].

Theorem 2 (EUF-CMA Security of AIMer). The AIMer signature scheme is EUF-CMA-secure, assuming
that Commit, H1, H2 and Expand are modeled as random oracles, ExpandTape is a secure PRG, the seed tree
construction is computationally hiding, the (N, τ, λ) parameters are appropriately chosen, and that the key
generation is a secure one-way function.

Proof. Let A be an EUF-CMA adversary for given (iv, ct). Let G0 be the original EUF-CMA game and B be
an EUF-KO adversary that simulates the EUF-CMA game to A. When A queries random oracles, B checks if
the query has been recorded so that it sends back the recorded answer if so, and otherwise, it records a pair
of the query and the result it retrieves and forwards the answer to A.

– G0: B knows the secret key pt for the forwarded public key (iv, ct);
– G1: B replaces real signatures with simulated ones no longer using pt. B uses the EUF-KO challenge

pt∗(̸= pt) in its simulation with A.

We define G0(resp. G1) be a probability that A succeeds in Game G0(resp. G1). The advantage of A is
ϵCMA = G0 = (G0 − G1) + G1.

Hybrid Arguments. We bound (G0 − G1) by defining a sequence of games to connect G0 and G1 and
constructing hybrid arguments. Upon receiving a signing query from A, B simulates a signature using ran-
domly sampled pt∗, selects one of the party Pi∗ for cheating in the verification and broadcast of the output

shares v
(i)
k so that it passes multiplication checking protocols. We show that the signature values are sam-

pled from a distribution that is computationally indistinguishable from that of real signatures while it is
sampled independently of pt∗. B sets the random oracle H1 and H2 to output uniform random challenges
((ϵk,j)j∈[ℓ+1])k∈[τ ] and (̄ik)k∈[τ ], respectively. The definition of subgames and hybrid arguments are the same
as in the EUF-CMA proof in [48] (Theorem 7 in Appendix) except that we do not have to cheat on the

broadcast of party Pīk ’s output share ct
(̄ik)
k , since the output broadcast is implicit in our protocol.

1. B knows pt so that it computes signatures honestly. B aborts if the salt that it samples in Phase 1 has
already been queried.
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2. B randomly choose h2 and programs the random oracle H2 to output h2 when queried in Phase 4. The
unopened parties (̄ik)k∈[τ ] is derived by expanding h2. Simulation is aborted if the queries to H2 have
been made previously.

3. B replaces the seed of the unopened parties seed
(̄ik)
k in the binary tree by a random element.

4. B replaces the outputs of ExpandTape(salt, k, īk, seed
(̄ik)
k )) by random elements. Since we assume that

ExpandTape is a secure PRG, this is indistinguishable from the previous subgame.

5. B replaces the commitments of the unopened parties com
(̄ik)
k with random values. B aborts if the replaced

value is collide with Commit(x) where x is queried by A.
6. B randomly choose h1 and programs the random oracle H1 to output h1 in Phase 2. The checking values

((ϵk,j)j∈[ℓ+1])k∈[τ ] is derived by expanding h1. Simulation is aborted if the queries to H1 have been made
previously.

7. B replaces α
(̄ik)
k with a uniformly random value and sets v

(̄ik)
k ← −

∑
i ̸=īk

v
(i)
k . Note that if the multipli-

cation triple is wrong, then v
(̄ik)
k ← −

∑
i ̸=īk

v
(i)
k is different from an honest value derived from legitimate

calculation. However (̄ik) is an unopened and the multiplication check is still passed.
8. B sets (∆tk,j)j∈[ℓ] and ∆ck to random values in Phase 1.

9. B replaces the real pt by a random key pt∗ as pt
(̄ik)
k is independent from the seeds A observes. The

distribution of ∆ptk is not changed and A has no information about pt∗.

If the algorithm is not aborted, above games are all indistinguishable to each other, which results the
simulated signatures in G1 and the real signatures in G0 are indistinguishable. The abort happens when:

– A1 : The salt it sampled has been used before.
– A2 : The committed value it replaces is queried.
– A3 : Queries to H1 and H2 have been made previously.

Let Qsalt be the number of different salts queried during the game (by both A and B), Qc be the number
of queries made to Commit by A including those made during signature queries and Q1(resp. Q2) be the
number of queries made to H1(resp. H2) during the game. Then the probability of each event occurring is
bounded by Pr[A1] ≤ Qsalt/2

2λ, Pr[A2] ≤ Qc/2
λ, and Pr[A3] ≤ Q1/2

2λ +Q2/2
2λ.

Therefore

Pr[B aborts] ≤ Qsalt/2
2λ +Qc/2

λ +Q1/2
2λ +Q2/2

2λ

= (Qsalt +Q1 +Q2)/2
2λ +Qc/2

λ

≤ (Q1 +Q2)/2
2λ−1 +Qc/2

λ (∵ Qsalt ≤ Q1 +Q2)

≤ Q/2λ (where Q = Q1 +Q2 +Qc)

and

G0 − G1 ≤Qs · (τ · ϵPRG + ϵTREE + Pr[B aborts])

≤Qs · (τ · ϵPRG + ϵTREE +Q/2λ),

where Qs be the total number of signature queries.

Bounding G1. If A outputs a valid signature in G1, then B outputs a valid signature in the EUF-KO game.
Finally we have

G1 ≤ ϵKO ≤ ϵOWF +
(τN + 1)Q2

22λ
+ Pr[X + Y = τ ],

where the bound on the advantage ϵKO of a EUF-KO attacker follows from Theorem 1. We conclude that
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ϵCMA ≤ ϵOWF +
(τN + 1)Q2

22λ
+ Pr[X + Y = τ ] +Qs · (τ · ϵPRG + ϵTREE +Q/2λ).

Assuming that ExpandTape is a secure PRG that is ϵPRG-close to uniform, that the seed tree construction
is hiding (so that ϵTREE is negligible), that key generation is a one-way function and that parameters (N, τ, λ)
are appropriately chosen implies that ϵCMA is negligible in λ. □

6 Performance Evaluation of Reference Implementations

6.1 Environment.

The benchmark is performed in Intel Xeon E5-1650 v3 @ 3.50GHz CPU with 128GB memory with GNU C
7.5.0 compiler on the Ubuntu 18.04.1 operating system. For the instantiation of the XOF, we use SHAKE in
XKCP library4. We use SHAKE128 for AIMer-I, and SHAKE256 for AIMer-III and AIMer-V. All the implemen-
tations used in the experiments are compiled at the -O3 optimization level. Our experiments are measured
by the average clock cycles executed 103 times. For a fair comparison, we measure the execution time for
signature scheme on the same CPU using the taskset command with Hyper-Threading and Turbo Boost
features disabled.

6.2 Performance of AIMer.

In this section, we provide the performance of C standalone implementation of the AIMer signature scheme
in Table 5. The performance of signature scheme is represented as milliseconds (ms) and CPU clock cycles
(cc) and the size of public key, secret key, and signature is represented as bytes (B). For the implementation
results of AVX2 version and comparison to other signature schemes, we refer to Appendix E.

Scheme N τ
Keygen Sign Verify pk Size sk Size sig Size

(ms) (cc) (ms) (cc) (ms) (cc) (B) (B) (B)

AIMer-I

16 33 0.06 210 332 2.26 7 927 283 2.17 7 587 588 32 16 5 904

57 23 0.06 216 316 5.45 19 073 690 5.36 18 774 645 32 16 4 880

256 17 0.06 215 055 17.91 62 701 819 17.86 62 505 586 32 16 4 176

1615 13 0.06 214 695 86.62 303 154 431 85.99 300 970 342 32 16 3 840

AIMer-III

16 49 0.13 438 963 4.75 16 618 659 4.58 16 015 373 48 24 13 080

64 33 0.13 438 550 12.31 43 099 886 12.24 42 827 096 48 24 10 440

256 25 0.13 439 356 37.24 130 342 111 36.76 128 664 878 48 24 9 144

1621 19 0.13 439 751 178.72 625 520 404 174.64 611 255 371 48 24 8 352

AIMer-V

16 65 0.31 1 078 521 10.88 38 085 070 10.50 36 763 832 64 32 25 152

62 44 0.31 1 076 379 27.16 95 067 716 26.56 92 970 531 64 32 19 904

256 33 0.31 1 080 828 80.77 282 682 033 80.50 281 757 450 64 32 17 088

1623 25 0.31 1 081 808 395.65 1 384 758 687 391.87 1 371 544 537 64 32 15 392

Table 5: Performance of AIMer reference implementation for various parameter sets.

4 https://github.com/XKCP/XKCP
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A Refining Algebraic Cryptanalysis of Power Functions over Binary Fields

In this section, we will study how the number of quadratic equations obtained from a power mapping based
S-box affects the complexity of the Gröbner basis attack and the XL attack on a symmetric primitive based
on the S-box.

A.1 Gröbner Basis Attack over F2

In order to see how the number of quadratic equations from a power mapping based S-box affects the time
complexity of the Gröbner basis computation, we compare the theoretic estimation of the degree of regularity
and the solving degree [28], which is the highest degree reached during the actual Gröbner basis computation,
for toy parameters. The solving degrees are obtained with grevlex order.

Consider an r-round Even-Mansour cipher [34] based on S-boxes, each of which defines νn linearly
independent quadratic equations for some ν ≥ 1. By introducing intermediate variables between rounds, we
can establish a system of νrn quadratic equations in rn variables. Adding rn field equations to this system,
we obtain the Hilbert series as follows.

HS(z) =
1

(1− z)rn
(1− z2)(1+ν)rn = (1 + z)rn(1− z2)νrn. (7)

We consider four types of S-boxes with different values for the constants ν: the inverse S-box y = x2n−2,
a Mersenne S-box y = x2e−1 for some e, an S-box y = x2s+1+2s−1−1 for n = 2s, and a Niho S-box y = xa,
where a, called a Niho exponent, is defined as follows [30].

a =

{
2s + 2

s
2 − 1 if n = 2s+ 1 for some even s,

2s + 2
3s+1

2 − 1 if n = 2s+ 1 for some odd s.

In this paper, an S-box of the form y = x2s+1+2s−1−1 with n = 2s will be called an NGG S-box (after the
authors of [61] that studied its properties). Each S-box is a powering function of the form y = xk where
hw(k + 1) ∈ {1, 2}. Since xk+1 is linear or quadratic over F2, each S-box defines n quadratic equations over
F2 from an implicit equation xy = xk+1.

Using the algorithm proposed in [61], we can find e such that the Mersenne S-box y = x2e−1 defines 3n
quadratic equations over F2. It is known that the NGG and the Niho S-boxes define 2n and n quadratic
equations over F2 if n ≥ 8, respectively [61]. When it comes to the inverse S-box, we will assume that it
defines 5n quadratic equations over F2 from the quadratic relation xy = 1 over F2n [19].5

For each S-box, we consider two different types of systems of equations: the basic system containing only
n quadratic equations directly obtained from the implicit quadratic relation such as xy = 1 and xy = x2e ,
and the full system containing the exact number of quadratic equations induced from the S-box definition.
For the Niho S-box, we do not distinguish the basic and the full systems since both systems contain the same
number of quadratic equations. The exact quadratic equations describing the full system can be computed
by the algorithm proposed in [42].

We computed a Gröbner basis for a system of equations defined by a single evaluation of a single-round
Even-Mansour cipher based on each of the four S-boxes, using MAGMA [15]. Figure 4 compares the degree
of regularity estimated by (7) and the solving degree sd. We observe that for both the basic and the full
systems, their solving degrees are close to the theoretically estimated values for the full system.

The four S-boxes differ in the actual running time of Gröbner basis computation as shown in Figure 5.
We observe that Gröbner basis computation becomes faster given a larger number of quadratic equations.

Table 6 compares the degree of regularity estimated by (7) for an evaluation of a single-round Even-
Mansour cipher, and the corresponding time complexity for Gröbner basis computation for various values
of ν and n ∈ {128, 192, 256}. We observe that the time complexity significantly decreases as ν grows. We
conclude that the exact number of quadratic equations from an S-box, represented by the constant ν, is
critical to algebraic cryptanalysis of a primitive built on the S-box.

5 More precisely, the inverse S-box defines 5n− 1 quadratic equations [21], while one can assume that the input to
the S-box is nonzero for a large field, in which case 5n quadratic equations are obtained.
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Fig. 4: Degree of regularity dreg estimated by (7) and the solving degree sd for the basic and the full systems
of equations constructed from a single evaluation of a single-round Even-Mansour cipher built on top of each
of the inverse, Mersenne, NGG and Niho S-boxes.
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n
Degree of Regularity Complexity (bits)

ν = 1 ν = 2 ν = 3 ν = 4 ν = 5 ν = 1 ν = 2 ν = 3 ν = 4 ν = 5

128 17 11 9 8 7 144.6 104.9 90.1 82.2 74.0

192 23 15 12 10 9 204.0 148.8 125.5 108.9 100.3

256 29 19 14 12 10 263.1 192.6 152.5 135.2 117.0

Table 6: Degree of regularity estimated by (7) for a single-round Even-Mansour cipher and the corre-
sponding time complexity for computing a Gröbner basis according to the value of ν and the block size
n ∈ {128, 192, 256}.

A.2 XL Attack over F2

To see the impact of the number of quadratic equations of the S-box on the XL attack, we experiment with
the XL algorithm for a single-round Even-Mansour cipher for toy parameters. Figure 6 shows the ratio of
a rank to the number of monomials in the extended system according to the target degree D of the XL
algorithm for the basic and the full systems of equations constructed from a single evaluation of a single-
round Even-Mansour cipher of blocksize n = 20 using the inverse, Mersenne, and NGG S-boxes. The dashed
lines show the results for the basic systems, and the solid lines show those for the full systems. We observe
that, as expected, applying the XL algorithm for the full system results in a smaller target degree D achieving
a rank equal to the number of monomials than the basic system. We also find that all the systems induced
by those S-boxes are dense; all the monomials of degrees up to D appear in the experiment.
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B Differential Cryptanalysis

Resistance of a substitution-permutation cipher against differential cryptanalysis is typically estimated by
the maximum expected probability of differential trails [22]. As AIM is a key-less primitive, we bound the
maximum differential probability without expectation.

Given a pair (∆x,∆y), the differential probability of f : {0, 1}m → {0, 1}n is defined by

DPf (∆x,∆y)
def
= Pr

x
[f(x⊕∆x)⊕ f(x) = ∆y] .

The maximal differential probability is defined as follows.

MDPf def
= max

∆x ̸=0,∆y
DPf (∆x,∆y).

So DPMer[e](∆x,∆y) is determined by the number of solutions to Mer[e](X ⊕∆x)⊕Mer[e](X) = ∆y, which
is an equation of degree 2e − 2. Therefore, there are at most 2e − 2 solutions to this equation, which implies

MDPMer[e] ≤ 2e − 2

2n
.

Now, we can bound the differential probability of the entire function. See Figure 7 for the notations used
in the following argument. We will write ∆y = (∆y1, . . . ,∆yℓ), and simply

DP(∆x,∆z) = DPLin◦Mer[e1,...,eℓ](∆x,∆z)
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where the function in superscript is omitted if it is obvious (e.g., Lin ◦Mer[e1, . . . , eℓ] for ∆x → ∆z). Then
we want to upper bound

MDPAIM = max
∆x∗ ̸=0,∆v∗

DP(∆x∗, ∆v∗).

Let Img(∆x∗) = {∆y : ∆x = ∆x∗}x∈F2n
. Note that |Img(∆x∗)| ≤ 2n for any ∆x∗. For a fixed n× ℓn-matrix

A, we have

DP(∆x∗, ∆z∗) =
∑

∆y∈Img(∆x∗)∩A−1(∆z∗)

DP(∆x∗, ∆y)

≤
∑

∆y∈Img(∆x∗)∩A−1(∆z∗)

min
1≤i≤ℓ

MDPMer[ei].

Let ε = min1≤i≤ℓ MDPMer[ei]. Let δ > 0 and let A be a block-wise invertible matrix as in AIM. Assuming an
event ∆y ∈ A−1(∆z∗) is independent for each ∆y ∈ Img(∆x∗), we have

Pr
A
[DP(∆x∗, ∆z∗) > (1 + δ)ε] ≤ Pr

X∼B
[X > 1 + δ]

where B = Bin
(
|Img(∆x∗)|,PrA[∆y ∈ A−1(∆z∗)]

)
is a binomial distribution. The probabilities PrA[∆y ∈

A−1(∆z∗)] for ℓ ∈ {2, 3} are summarized in Table 7, and the proof is given in Appendix D.

∆z∗ = 0 ∆z∗ ̸= 0

ℓ = 2
1

2n − 1

2n − 2

(2n − 1)2

ℓ = 3
2n − 2

(2n − 1)2
(2n − 2)2

(2n − 1)3
+

1

(2n − 1)2

Table 7: PrA[∆y ∈ A−1(∆z∗)] for ℓ ∈ {2, 3}.

31



For a binomial distribution B′ = Bin(2n, 1/2n + 2/22n), we have

Pr
A
[DP(∆x∗, ∆z∗) > (1 + δ)(1 + 2/2n)ε] ≤ Pr

X∼B
[X > (1 + δ)(1 + 2/2n)]

≤ Pr
X′∼B′

[X ′ > (1 + δ)(1 + 2/2n)]

<

(
eδ

(1 + δ)1+δ

)1+2/2n

by the Chernoff bound. Now, DP(∆x∗, ∆v∗) can be expressed in terms of DP(∆x∗, ∆z∗) as follows.

– If ∆v∗ = ∆x∗, then
DP(∆x∗, ∆v∗) = DP∆x→∆z(∆x∗, 0).

– Otherwise, for a fixed B ∈ Fn
2 ,

DP(∆x∗, ∆v∗) =
∑
∆z

(
DP(∆x∗, ∆z) · Pr

x

[
Hb(X ⊕∆x∗)⊕Hb(X)

= ∆x∗ ⊕∆v∗

∣∣∣∣F (X ⊕∆x∗)⊕ F (X)
= ∆z

])
where F (x) = A ·Mer[e1, . . . , eℓ](x), G = Mer[e∗], and Hb(x) = G(F (x)⊕ b). The vector b ∈ Fn

2 is from
the constant addition in affine layers.

We remark that
Eb[DP(∆x∗, ∆v∗)] =

∑
∆z

DP(∆x∗, ∆z)DP(∆z,∆v∗)

but we do not use this equation since b is public. For δ′ > 0, assuming the independence, we have

Pr
b
[DP(∆x∗, ∆v∗) > (1 + δ′)(2e∗ − 2)max

∆z
DP(∆x∗, ∆z)] ≤ Pr

X′′∼B′′
[X ′′ > (1 + δ′)(2e∗ − 2)]

≤

(
eδ

′

(1 + δ′)1+δ′

)2e∗−2

where B′′ = Bin (2n,max∆z ̸=0 DP(∆z,∆v∗)) is a binomial distribution.
For any ∆x∗ ̸= 0, ∆v∗, we have

Pr
A,B

[DP(∆x∗, ∆v∗) > (1 + δ)(1 + 2/2n)(1 + δ′)(2e∗ − 2)ε]

≤ Pr
A
[max
∆z

DP(∆x∗, ∆z) > (1 + δ)(1 + 2/2n)ε] ·

(
eδ

′

(1 + δ′)1+δ′

)2e∗−2

<

(
eδ

(1 + δ)1+δ

)1+2/2n
(

eδ
′

(1 + δ′)1+δ′

)2e∗−2

.

We set the bound at (
eδ

(1 + δ)1+δ

)1+2/2n
(

eδ
′

(1 + δ′)1+δ′

)2e∗−2

= 2−λ

for security parameter λ and summarize the values of log γ such that

Pr
A,B

[
MDPAIM > γ

]
< 2−λ

according to its security level in Table 4. We remark that γ > 2−λ for each λ does not imply the feasibility
of differential cryptanalysis.
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C Linear Cryptanalysis

In contrast to differential cryptanalysis, security against linear cryptanalysis has been rarely evaluated for
key-less primitives. The reason is that differential cryptanalysis helps finding a collision or a second preimage
while linear cryptanalysis does not. That said, in order to prevent any possible variant of linear cryptanalysis,
we briefly compute the bias of a correlation trail assuming the masked sums of inputs and outputs are
independent.

Given a pair (α, β) ∈ F2n × F×2n , the linear probability of Mer[e] is defined by

LPMer[e](α, β)
def
=

2

2n
·
∣∣{x ∈ F2n : α⊤x = β⊤Mer[e](x)}

∣∣− 1.

The maximal linear probability is defined as follows.

MLPMer[e] def
= max

α,β ̸=0
LPMer[e](α, β).

For a non-power-of-2 exponent d such that xd is invertible, the maximum linear probability of f(x) = xd

on Fn
2 has a generic bound MLPf ≤ (d − 1)/2n/2 [49]. Specifically, the maximum linear probability of a

Mersenne S-box is bounded by

MLPMer[e] ≤ 2e − 2

2n/2
.

Now, we can bound the linear probability of the entire function. See Figure 7 for the notations used in
the following argument. We will simply write

LP(α, γ) = LPLin◦Mer[e1,...,eℓ](α, γ)

where the function in superscript is omitted if it is obvious (e.g., Lin ◦Mer[e1, . . . , eℓ] for α → γ). Then the
bias of a trail

α∗ → β∗ → γ∗ → δ∗ → ϵ∗

is computed as

(LP(α∗, β∗) LP(β∗, γ∗) LP(γ∗, δ∗) LP(δ∗, ϵ∗))
2 ≤ (LP(α∗, β∗) LP(γ∗, δ∗))

2

≤
(

min
1≤i≤ℓ

MLPMer[ei]MLPMer[e∗]

)2

≤ min
1≤i≤ℓ

(2ei − 2)2(2e∗ − 2)2

22n

assuming independence of each edge. When

min
1≤i≤ℓ

(2ei − 2)2(2e∗ − 2)2 < 2n,

the bias of AIM is smaller 2−n, and the amount of data required for linear cryptanalysis becomes at least
2n.

D Computing PrA[∆y ∈ A−1(∆z∗)]

Let Ln denote a set of n× n invertible matrices over F2. Then we have

Pr
L←Ln

[Lx = y] =
1

2n − 1

for nonzero vectors x, y ∈ Fn
2 . Note that the zero vector is a fixed point of any linear transformation.
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Case ℓ = 2. The n× 2n matrix A is written as

A = [A1|A2]

where A1, A2 ∈ Ln. Then

Pr
A
[A∆y = ∆z∗] = Pr

A1,A2

[A1∆y1 ⊕A2∆y2 = ∆z∗]

= Pr
A1,A2

 A2∆y2 ̸= ∆z∗

∧
A1∆y1 = A2∆y2 ⊕∆z∗


since ∆y1 ̸= 0 for ∆x ̸= 0. If ∆z∗ = 0 then A2∆y2 ̸= ∆z∗ for every ∆y2 ̸= 0, and hence

Pr
A
[A∆y = 0] = Pr

A
[A1∆y1 = A2∆y2] =

1

2n − 1
.

On the other hand, if ∆z∗ ̸= 0 then

Pr
A
[A∆y = ∆z∗] = Pr

A2

[A2∆y2 ̸= ∆z∗] Pr
A
[A1∆y1 = A2∆y2 ⊕∆z∗|A2∆y2 ⊕∆z∗ ̸= 0]

=
2n − 2

(2n − 1)2
.

Case ℓ = 3. The n× 3n matrix A is written as

A = [A1|A2|A3]

where A1, A2, A3 ∈ Ln. Then

Pr
A
[A∆y = ∆z∗] = Pr

A1,A2,A3

[A1∆y1 ⊕A2∆y2 ⊕A3∆y3 = ∆z∗]

= Pr
A1,A2,A3

 A2∆y2 ⊕A3∆y3 ̸= ∆z∗

∧
A1∆y1 = A2∆y2 ⊕A3∆y3 ⊕∆z∗


since ∆y1 ̸= 0 for ∆x ̸= 0.

If ∆z∗ = 0, then we have

Pr
A2,A3

[A2∆y2 ̸= A3∆y3] =
2n − 2

2n − 1
. (8)

For any nonzero a, we have

Pr
A
[A1∆y1 = a|A2∆y2 ⊕A3∆y3 = a] =

1

2n − 1
. (9)

Combining (8) and (9), we obtain

Pr
A
[A∆y = 0] = Pr

A2,A3

[A2∆y2 ̸= A3∆y3] Pr
A
[A1∆y1 = A2∆y2 ⊕A3∆y3|A2∆y2 ̸= A3∆y3]

=
2n − 2

(2n − 1)2
.

Suppose that ∆z∗ ̸= 0. Since ∆y2 is nonzero, we have

Pr
A2,A3

[A2∆y2 ⊕A3∆y3 ̸= ∆z∗] = Pr
A2,A3

 A3∆y3 ̸= ∆z∗

∧
A2∆y2 ̸= A3∆y3 ⊕∆z∗

+ Pr
A3

[A3∆y3 = ∆z]

=

(
2n − 2

2n − 1

)2

+
1

2n − 1
.

Therefore, we obtain

Pr
A
[A∆y = ∆z∗] =

(2n − 2)2

(2n − 1)3
+

1

(2n − 1)2
.
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E Performance Evaluation of AVX2-Optimized Implementations

E.1 Environment.

The source codes are developed in C++17, using the GNU C++ 8.4.0 (GNU C 7.5.0 for running the
algorithms in the third round submission packages for NIST PQC standardization) compiler with the AVX2
instructions on the Ubuntu 18.04 operating system. All the implementations used in the experiments are
compiled at the -O3 optimization level. For the instantiation of the XOF, we use SHAKE in XKCP library6.
We use SHAKE128 for AIMer-I, and SHAKE256 for AIMer-III and AIMer-V. Our experiments are measured
in Intel Xeon E5-1650 v3 @ 3.50GHz with 128 GB memory. For a fair comparison, we measure the execution
time for each signature scheme on the same CPU using the taskset command with Hyper-Threading and
Turbo Boost features disabled.

E.2 Performance of AIMer.

As mentioned in Section 2.3, AIM has been designed to take full advantage of optimization by repeated
multipliers to reduce the number of α values. Due to this technique, the overall performance of the signature
scheme is improved in terms of both the signature size and the signing time. The performance of AIMer is
summarized in Table 8. Parameter sets (i.e., the number of parties N and the number of parallel repetitions
τ) for various security levels are chosen in the same way of [48]. We observe that AIMer enjoys the best
trade-off between the signature size and the signing/verification time.

Scheme N τ
Sign Verify Size

(ms) (ms) (B)

AIMer-I 16 33 0.82 0.78 5 904

AIMer-I 57 23 1.82 1.77 4 880

AIMer-I 256 17 5.96 5.90 4 176

AIMer-I 1615 13 29.62 29.17 3 840

AIMer-III 16 49 1.57 1.48 13 080

AIMer-III 64 33 3.86 3.62 10 440

AIMer-III 256 25 10.57 10.42 9 144

AIMer-III 1621 19 58.70 58.10 8 352

AIMer-V 16 65 2.87 2.78 25 152

AIMer-V 62 44 6.60 6.54 19 904

AIMer-V 256 33 19.21 19.19 17 088

AIMer-V 1623 25 98.49 98.64 15 392

Table 8: Performance of AIMer for various parameter sets with AVX2 instruction set.

In Table 9, AIMer is compared to the state-of-the-art Rainier signature scheme combined with the BN++
proof system (denoted BN++Rainr, where r ∈ {3, 4}) with all the optimizations from [48] applied at the
128-bit security level. AIMer-I enjoys 5.14 to 8.21% shorter signature size than BN++Rain3 with similar
signing and verification time. Compared to BN++Rain4, AIMer achieves more significant improvement with
13.98 to 21.15% shorter signature size and 5.59 to 14.84% improved signing and verification performance for
all the parameter sets.

6 https://github.com/XKCP/XKCP
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Scheme N τ
Sign Verify Size

(ms) (ms) (B)

BN++Rain3 [48] 16 33 0.83 0.77 6 432

BN++Rain3 [48] 57 23 1.83 1.77 5 248

BN++Rain3 [48] 256 17 5.92 5.94 4 448

BN++Rain3 [48] 1615 13 28.95 28.33 4 048

BN++Rain4 [48] 16 33 0.93 0.86 7 488

BN++Rain4 [48] 57 23 2.09 2.01 5 984

BN++Rain4 [48] 256 17 6.45 6.23 4 992

BN++Rain4 [48] 1615 13 32.85 31.86 4 464

AIMer-I 16 33 0.82 0.78 5 904

AIMer-I 57 23 1.82 1.77 4 880

AIMer-I 256 17 5.96 5.90 4 176

AIMer-I 1615 13 29.62 29.17 3 840

Table 9: Performance of AIMer, BN++Rain3, and BN++Rain4 at 128-bit security level.

E.3 Comparison.

We compare the performance of AIMer to existing post-quantum signature schemes at the 128-bit security
level in Table 10. In the first group, we provide the performance of three selected algorithms in the NIST
competition for PQC standardization - CRYSTALS-Dilithium [60], Falcon [62], and SPHINCS+ [45].

CRYSTALS-Dilithium and Falcon are lattice-based signature schemes with high efficiency in both band-
width (signature size plus public key size) and signing/verification time. We implemented SPHINCS+ using
the SHAKE256 hash function for a fair comparison between symmetric primitives based signature schemes.
Compared to any of the small and the fast variants of SPHINCS+, AIMer obviously provides smaller band-
width and faster signing time at the cost of slightly slower verification.

In the second group, we compare existing ZKP-based signature schemes based on symmetric primitives:
Picnic [69], Limbo [25], Banquet7, Rainier8, and BN++Rain9. In particular, Picnic is one of the alternate
candidates of the third round of the NIST competition. For Limbo-AES128, we cited the numbers from the
paper as its public implementation is not available (to the best of our knowledge). When the number of
parties N is set to 16, these schemes require bandwidth of 12,495 to 30,957 bytes, while AIMer requires 5,936
bytes with comparable performance in signing and verification time.

7 https://github.com/dkales/banquet
8 https://github.com/IAIK/rainier-signatures
9 https://github.com/IAIK/bnpp_helium_signatures
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Scheme
|pk| |sig| Sign Verify

(B) (B) (ms) (ms)

Dilithium2 [60] 1312 2 420 0.10 0.03

Falcon-512 [62] 897 690 0.27 0.04

SPHINCS+-128s∗ [45] 32 7 856 315.74 0.35

SPHINCS+-128f∗ [45] 32 17 088 16.32 0.97

Picnic1-L1-full [69] 32 30 925 1.16 0.91

Picnic3-L1 [69] 32 12 463 5.83 4.24

Banquet [11] 32 19 776 7.09 5.24

Limbo-AES128† [25] 32 21 520 2.70 2.00

Rainier3 [32] 32 8 544 0.97 0.89

BN++Rain3 [48] 32 6 432 0.83 0.77

AIMer-I 32 5 904 0.82 0.78

*: -SHAKE-simple

†: measurements are from this paper.

Table 10: Comparison of AIMer to existing (post-quantum) signature schemes at 128-bit security level. The
number of parties N is set to 16 for ZKP-based signature schemes.
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