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KPQC ROUND 2 –LATTICE-BASED SCHEMES

 Among Round 1 candidates, 3 KEMs and 5 signatures were lattice-based schemes. 

 2 KEMs and 2 signatures are selected as Round 2 candidates 

Category Name Base problem Note 

KEM NTRU+ NTRU/RLWE • RLWE with ternary secrets/errors

• Analysis Reported (6/14/23)

SMAUG-T MLWE/MLWR • MLWE/MLWR with sparse secrets

• Analysis Reported (6/14/24)

Signature HAETAE MLWE/MSIS

NCC-Sign RLWE/RSIS



IMPROVED MEET-LWE ATTACK VIA TERNARY TREES
LEE, EUNMIN, JOOHEE LEE, YONGHA SON, AND YUNTAO WANG. "IMPROVED MEET-LWE ATTACK VIA 
TERNARY TREES." CRYPTOLOGY EPRINT ARCHIVE (2024).



TERNARY LWE PROBLEM

 Asymptotically, Brute Force < Odlyzko’s MitM < Meet-LWE < Ours

 Meet-LWE and our attack are applicable to all KpqC Round 2 Lattice-based KEMs

 SMAUG-T uses sparse secrets

 NTRU+ uses the ternary LWE problem

[Ternary LWE problem]

  Given;  𝐴 ∈ 𝑍𝑞
𝑛×𝑛, 𝑏 ∈ 𝑍𝑞

𝑛 such that 𝐴 ⋅ 𝑠 = 𝑏 + 𝑒 for 𝒔, 𝒆 ∈ 𝟎, ±𝟏 𝒏,

  Find;    𝑠 ∈ 0, ±1 𝑛

A s eb

+=



BRUTE FORCE ATTACK FOR TERNARY LWE

 Equation : 𝐴 ⋅ 𝑠 = 𝑏 + 𝑒 𝑚𝑜𝑑 𝑞

 𝑆 = 3𝑛; search space size for ternary keys 

 Running time is 𝑇 = 𝑆 

[Brute Force]

• Input : 𝐴 ∈ 𝑍𝑞
𝑛×𝑛, 𝑏 ∈ 𝑍𝑞

𝑛

• For all 𝑠 ∈ 0, ±1 𝑛:

• If 𝐴 ⋅ 𝑠 − 𝑏 ∈ 0, ±1 𝑛 then output 𝑠

A s eb

+=



ODLYZKO’S MITM

 Equation : 𝐴1 ⋅ 𝑠1 = −𝐴2 ⋅ 𝑠2 + 𝑏 + 𝑒 𝑚𝑜𝑑 𝑞

 i.e. 𝐴1 ⋅ 𝑠1 ≈ −𝐴2 ⋅ 𝑠2 + 𝑏 𝑚𝑜𝑑 𝑞

 𝑆 = 3𝑛; search space size for ternary keys

 Running time is 𝑇 = 3𝑛/2 = 𝑆1/2 with same memory 

[Odlyzko’s MitM]

• Input : 𝐴 = (𝐴1|𝐴2) ∈ 𝑍𝑞
𝑛×𝑛, 𝑏 ∈ 𝑍𝑞

𝑛

• For all 𝑠1 ∈ 0, ±1 𝑛/2:

• Construct L1 with entries (𝑠1, ℎ 𝐴1𝑠1 )
• For all 𝑠2 ∈ 0, ±1 𝑛/2:

• Construct L2 with entries (𝑠2, ℎ −𝐴2𝑠2 + 𝑏 )
• Output 𝑠1 𝑠2  with ℎ 𝐴1𝑠1 = ℎ −𝐴2𝑠2 + 𝑏

𝑠1

eb

+=

𝐴1 𝐴2

𝑠2
+

A

=

𝐴1 𝐴2

* ℎ: locality sensitive hash



REPRESENTATIONS (HOWGRAVE-GRAHAM, JOUX ‘10)

 Idea ; 𝑠 ≔ 𝑠1 + 𝑠2 for 𝑠1, 𝑠2 ∈ 0, ±1 𝑛

 Allows redundancy

 (1,0,1,-1,0) = (1,0,0,-1,0) + (0,0,1,0,0)

= (1,0,1,0,0) + (0,0,0,-1,0)

                = (0,0,1,0,0) + (1,0,0,-1,0)

                = (0,0,1,-1,0) + (1,0,0,0,0)

𝑠1 eb

+=

𝑠2

+

AA

1 0 -1

REP-0 • 1+0

• 0+1

- • (-1)+0

• 0+(-1)

REP-1 • 1+0

• 0+1

• 1+(-1)

• (-1)+1

• (-1)+0

• 0+(-1)

REP-2 • 1+0

• 0+1

• 2+(-1)

• (-1)+2

• 1+(-1)

• (-1)+1

• 2+(-2)

• (-2)+2

• (-1)+0

• 0+(-1)

• 1+(-2)

• (-2)+1



MEET LWE ATTACK [MAY21]

[Meet LWE (high-level idea)]

• Input : 𝐴 ∈ 𝑍𝑞
𝑛×𝑛, 𝑏 ∈ 𝑍𝑞

𝑛

• Choose representation REP-0, REP-1, REP-2

• Guess 𝑟 coordinates of 𝑒 (say 𝑡)

• For 𝑠1, construct L1 with entries 𝑠1, ℎ 𝐴𝑠1

• For 𝑠2, construct L2 with entries 𝑠2, ℎ −𝐴𝑠2 + 𝑏

• Output s1 + s2 s.t. 

• 𝜋𝑟 𝐴𝑠1 + 𝑒1 = 𝑡 = 𝜋𝑟 −𝐴𝑠2 + 𝑏 + 𝑒2

• ℎ 𝐴𝑠1 = ℎ −𝐴𝑠2 + 𝑏  for n − 𝑟 coordinates

▪ Equation: 𝐴1 ∙ 𝑠1 = −𝐴2 ∙ 𝑠2 + 𝑏 + 𝑒 𝑚𝑜𝑑 𝑞
i.e. 𝐴1 ∙ 𝑠1 ≈ −𝐴2 ∙ 𝑠2 + 𝑏 𝑚𝑜𝑑 𝑞

𝑒 = 𝑒2 − 𝑒1

Tree

𝐿1
(1)

𝑡

Tree

𝐿2
(1)

𝑡

𝑛 − 𝑟

𝑟

𝐿(0)

randomly chosen target 

vector 𝑡 ∈ 𝕫𝑞
𝑟

3:

𝑞𝑟 = 𝑞 𝑙𝑜𝑔𝑞𝑅(1)
≈ 𝑅(1)

𝑟 = 𝑙𝑜𝑔𝑞𝑅(1)
1:

2: 𝜋𝑟 𝐴𝑠1 + 𝑒1 =  𝑡 mod q 

𝑠1 eb

+=

𝑠2

+

AA



MEET LWE ATTACK [MAY21]

 By using representations s = 𝑠1 + 𝑠2, the number of solutions (≔ 𝑹) increases

 We can reduce the list (L1, 𝐿2) sizes with a factor of 𝑅 (by guessing 𝑟 coordinates of 𝑒), expecting at least 

one solution exists

 This strategy can be recursively applied to 𝑠1, 𝑠2, respectively (lists can be obtained by tree-based construction)

 Run-time 𝑇 = 𝑇𝑔 ⋅ 𝑇ℓ where 𝑇𝑔; guessing complexity, 𝑇ℓ; list construction complexity

𝑻



OUR IDEA

 Idea ; 𝑠 ≔ 𝑠1 + 𝑠2 + 𝑠3 for 𝑠1, 𝑠2, 𝑠3 ∈ 0, ±1 𝑛

 Increased diversity of representations

𝑠1 eb

+=

𝑠2

+

AA A

+

𝑠3

1 0 -1

REP-0 • 1+0+0

• 0+1+0

• 0+0+1

• 0+0+0 • (-1)+0+0

• 0+(-1)+0

• 0+0+(-1)

REP-1-0 • 1+0+0

• 0+1+0

• 0+0+1

• 0+1+(-1)

• 0+(-1)+1

• 1+0+(-1)

• 1+(-1)+0

• (-1)+0+1

• (-1)+1+0

• (-1)+0+0

• 0+(-1)+0

• 0+0+(-1)

REP-1-1 • 1+0+0

• 0+1+0

• 0+0+1

• 1+1+(-1)

• (-1)+1+1

• 1+(-1)+1

• 0+1+(-1)

• 0+(-1)+1

• 1+0+(-1)

• 1+(-1)+0

• (-1)+0+1

• (-1)+1+0

• (-1)+0+0

• 0+(-1)+0

• 0+0+(-1)

• (-1)+1+(-1)

• (-1)+(-1)+1

• 1+(-1)+(-1)



OUR IDEA

[Extended Meet-LWE Attack (high-level idea)]

• Input : 𝐴 ∈ 𝑍𝑞
𝑛×𝑛, 𝑏 ∈ 𝑍𝑞

𝑛

• Choose representation REP-0, REP-1-0, REP-1-1

• Guess 𝑟 coordinates of 𝑒1, 𝑒2 (say 𝑡1, 𝑡2)

• For 𝑠1, construct L1 with entries 𝑠1, ℎ 𝐴𝑠1

• For 𝑠2, construct L2 with entries 𝑠2, ℎ 𝐴𝑠2

• For 𝑠3, construct L3 with entries 𝑠3, ℎ 𝑏 − 𝐴𝑠3

• Output s1 + s2 + 𝑠3 s.t. 

• 𝜋𝑟 𝐴𝑠1 + 𝑒1 = 𝑡1, 𝜋𝑟 𝐴𝑠2 + 𝑒2 = 𝑡2

• 𝜋𝑟 −𝐴𝑠3 + 𝑏 + 𝑒3 = 𝑡1 + 𝑡2 = 𝜋𝑟 𝐴𝑠1 + 𝑒1 + 𝜋𝑟 𝐴𝑠2 + 𝑒2

• ℎ 𝐴𝑠1 ⊕ ℎ 𝐴𝑠2 = ℎ −𝐴𝑠3 + 𝑏  for n − 𝑟 coordinates

▪ Equation: 𝐴1 ∙ 𝑠1 + 𝐴2 ⋅ 𝑠2 = −𝐴3 ∙ 𝑠3 + 𝑏 + 𝑒 𝑚𝑜𝑑 𝑞
i.e. 𝐴1 ∙ 𝑠1 + 𝐴2 ⋅ 𝑠2 ≈ −𝐴3 ∙ 𝑠3 + 𝑏 𝑚𝑜𝑑 𝑞

𝑒 = 𝑒3 − 𝑒1 − 𝑒2

Tree

𝐿1
(1)

𝑡1

Tree

𝐿2
(1)

𝑡2

𝑛 − 𝑟

𝑟

𝐿(0)

randomly chosen target 

vector 𝑡1, 𝑡2 ∈ 𝕫𝑞
𝑟

3:

𝑞2𝑟 = 𝑞 𝑙𝑜𝑔𝑞𝑅(1)
≈ 𝑅(1)

2𝑟 = 𝑙𝑜𝑔𝑞𝑅(1)
1:

2: 𝜋𝑟 𝐴𝑠1 + 𝑒1 =  𝑡1 mod q 

𝑠1 eb

+=

𝑠2

+

AA A

+

𝑠3

𝐿3
(1)

𝑡1 + 𝑡2

Tree

𝜋𝑟 𝐴𝑠2 + 𝑒2 =  𝑡2 mod q 

Range of 𝜋𝑟
2 has size 



OUR IDEA

[Extended Meet-LWE Attack (high-level idea)]

• Input : 𝐴 ∈ 𝑍𝑞
𝑛×𝑛, 𝑏 ∈ 𝑍𝑞

𝑛

• Choose representation REP-0, REP-1-0, REP-1-1

• Guess 𝑟 coordinates of 𝑒1, 𝑒2 (say 𝑡1, 𝑡2)

• For 𝑠1, construct L1 with entries 𝑠1, ℎ 𝐴𝑠1

• For 𝑠2, construct L2 with entries 𝑠2, ℎ 𝐴𝑠2

• For 𝑠3, construct L3 with entries 𝑠3, ℎ 𝑏 − 𝐴𝑠3

• Output s1 + s2 + 𝑠3 s.t. 

• 𝜋𝑟 𝐴𝑠1 + 𝑒1 = 𝑡1, 𝜋𝑟 𝐴𝑠2 + 𝑒2 = 𝑡2

• 𝜋𝑟 −𝐴𝑠3 + 𝑏 + 𝑒3 = 𝑡1 + 𝑡2 = 𝜋𝑟 𝐴𝑠1 + 𝑒1 + 𝜋𝑟 𝐴𝑠2 + 𝑒2

• ℎ 𝐴𝑠1 ⊕ ℎ 𝐴𝑠2 = ℎ −𝐴𝑠3 + 𝑏  for n − 𝑟 coordinates

▪ Equation: 𝐴1 ∙ 𝑠1 + 𝐴2 ⋅ 𝑠2 = −𝐴3 ∙ 𝑠3 + 𝑏 + 𝑒 𝑚𝑜𝑑 𝑞
i.e. 𝐴1 ∙ 𝑠1 + 𝐴2 ⋅ 𝑠2 ≈ −𝐴3 ∙ 𝑠3 + 𝑏 𝑚𝑜𝑑 𝑞

𝑒 = 𝑒3 − 𝑒1 − 𝑒2

Tree

𝐿1
(1)

𝑡1

Tree

𝐿2
(1)

𝑡2

𝑛 − 𝑟

𝑟

𝐿(0)

randomly chosen target 

vector 𝑡1, 𝑡2 ∈ 𝕫𝑞
𝑟

3:

𝑞2𝑟 = 𝑞 𝑙𝑜𝑔𝑞𝑅(1)
≈ 𝑅(1)

2𝑟 = 𝑙𝑜𝑔𝑞𝑅(1)
1:

2: 𝜋𝑟 𝐴𝑠1 + 𝑒1 =  𝑡1 mod q 

𝑠1 eb

+=

𝑠2

+

AA A

+

𝑠3

𝐿3
(1)

𝑡1 + 𝑡2

Tree

𝜋𝑟 𝐴𝑠2 + 𝑒2 =  𝑡2 mod q 

Range of 𝜋𝑟
2 has size 

Problem: LSH is not additively homomorphic!



OUR IDEA

[Extended Meet-LWE Attack (high-level idea)]

• Input : 𝐴 ∈ 𝑍𝑞
𝑛×𝑛, 𝑏 ∈ 𝑍𝑞

𝑛

• Choose representation REP-0, REP-1-0, REP-1-1

• Guess 𝑟 coordinates of 𝑒1, 𝑒2 (say 𝑡1, 𝑡2)

• For 𝑠1, construct L1 with entries 𝑠1, 𝐴𝑠1

• For 𝑠2, construct L2 with entries 𝑠2, 𝐴𝑠2

• For 𝑠3, construct L3 with entries 𝑠3, ℎ 𝑏 − 𝐴𝑠3

• Output s1 + s2 + 𝑠3 s.t. 

• 𝜋𝑟 𝐴𝑠1 + 𝑒1 = 𝑡1, 𝜋𝑟 𝐴𝑠2 + 𝑒2 = 𝑡2

• 𝜋𝑟 −𝐴𝑠3 + 𝑏 + 𝑒3 = 𝑡1 + 𝑡2 = 𝜋𝑟 𝐴𝑠1 + 𝑒1 + 𝜋𝑟 𝐴𝑠2 + 𝑒2

• ℎ 𝐴𝑠1 + 𝐴𝑠2 = ℎ −𝐴𝑠3 + 𝑏  for n − 𝑟 coordinates

▪ Equation: 𝐴1 ∙ 𝑠1 + 𝐴2 ⋅ 𝑠2 = −𝐴3 ∙ 𝑠3 + 𝑏 + 𝑒 𝑚𝑜𝑑 𝑞
i.e. 𝐴1 ∙ 𝑠1 + 𝐴2 ⋅ 𝑠2 ≈ −𝐴3 ∙ 𝑠3 + 𝑏 𝑚𝑜𝑑 𝑞

𝑒 = 𝑒3 − 𝑒1 − 𝑒2

Tree

𝐿1
(1)

𝑡1

Tree

𝐿2
(1)

𝑡2

𝑛 − 𝑟

𝑟

𝐿(0)

randomly chosen target 

vector 𝑡1, 𝑡2 ∈ 𝕫𝑞
𝑟

3:

𝑞2𝑟 = 𝑞 𝑙𝑜𝑔𝑞𝑅(1)
≈ 𝑅(1)

2𝑟 = 𝑙𝑜𝑔𝑞𝑅(1)
1:

2: 𝜋𝑟 𝐴𝑠1 + 𝑒1 =  𝑡1 mod q 

𝑠1 eb

+=

𝑠2

+

AA A

+

𝑠3

𝐿3
(1)

𝑡1 + 𝑡2

Tree

𝜋𝑟 𝐴𝑠2 + 𝑒2 =  𝑡2 mod q 

Range of 𝜋𝑟
2 has size 

Changed L_1, L_2 and the 

matching criteria!

(reflected in our latest 

eprint version)



OUR IDEA

 By using ternary representations s = 𝑠1 + 𝑠2 + 𝑠3, the number of solutions (≔ 𝑹) even 

more increases 

 We can also reduce the list (L1, 𝐿2, 𝐿3) sizes with a factor of this increased 𝑅 (by guessing 𝑟 

coordinates of 𝑒), expecting at least one solution exists

 𝑟 ≈
1

2
⋅ log𝑞 𝑅 rather than 𝑟 ≈ log𝑞 𝑅 in the original Meet-LWE ; note that 𝑟 determines guessing 

complexity

→ Putting all these together, the extended Meet-LWE via ternary tree shows lower complexity than the that 

of the Meet-LWE attack. 



REP-0

𝑤(2) =
𝑤(1)

2

𝑤(0) =
𝑤

2

𝑤(1) =
𝑤(0)

2

𝑤(2) =
𝑤(1)

2

𝑤(0) =
𝑤

2

𝑤(1) =
𝑤(0)

3

1 0 -1

REP-0 • 1+0+0

• 0+1+0

• 0+0+1

- • (-1)+0+0

• 0+(-1)+0

• 0+0+(-1)



REP-0 : RESULTS



REP-0 : RESULTS

[May21]: REP-0 vs. [Ours]:  REP-0



REP-1 [MAY21] → REP-1-0, 1-1 [OURS] 

1 0 -1

REP-1-0 • 1+0+0

• 0+1+0

• 0+0+1

• 1+(-1)+0

• (-1)+1+0

• 0+1+(-1)

• 0+(-1)+1

• 1+0+(-1)

• (-1)+0+1

• (-1)+0+0

• 0+(-1)+0

• 0+0+(-1)

1 0 -1

REP-1-1 • 1+0+0

• 0+1+0

• 0+0+1

• 1+(-1)+1 

• (-1)+1+1

• 1+1+(-1)

• 1+(-1)+0

• (-1)+1+0

• 0+1+(-1)

• 0+(-1)+1

• 1+0+(-1)

• (-1)+0+1

• (-1)+0+0

• 0+(-1)+0

• 0+0+(-1)

• (-1)+(-1)+1

• (-1)+1+(-1)

• 1+(-1)+(-1)

1 0 -1

REP-1 • 1+0

• 0+1

• 1+(-1)

• (-1)+1

• (-1)+0

• 0+(-1)



REP-1 : RESULTS

[Ours] REP-1-0 vs. REP-1-1



REP-1 : RESULTS

[May21]: REP-2 vs. [Ours]: REP-1



REP-1 : RESULTS

• The claimed security using the ‘beyond core-SVP’ from SMAUG-T document were 135.3 bits, 144.7 bits, 

202.0 bits, and 274.6 bits, respectively.

• For TiMER, SMAUGT192, and SMAUG-T256 parameters, the estimated attack complexities are lower in 

security by 13.3 bits, 20 bits, and 43.6 bits than claimed.

[May]: REP-2 vs. [Ours]: REP-1



MINOR COMMENTS FOR THE SECURITY PROOF OF 

NTRU+ (ROUND 2 DOCUMENT VERSION)



SUMMARY ON NTRU+ KEM

 Security based on the NTRU, RLWE assumptions

 RLWE here uses (random) binary secrets and ternary errors

 Uses NTT-friendly rings

 𝑅𝑞 = 𝑍𝑞[𝑥]/(𝑓(𝑥)), where 𝑓(𝑥) = 𝑥𝑛  −  𝑥𝑛/2  +  1 and 𝑛 = 2𝑖3𝑗 [1,2]

 Uses a new encoding named SOTP (Semi-generalized One Time Pad)

 In the CCA-secure KEM, they remove re-encryption in decapsulation by adjusting Fujisaki-Okamoto transform

Parameters Securit

y level
n q Sizes (Bytes) Cycles(ref) Cycles(AVX2)

pk ct sk Keygen Encaps Decaps Keygen Encaps Decaps

NTRU+576 1 576 3,457 864 864 1,728 321,405 110,754 163,277 17,440 14,307 12,445

NTRU+768 1 768 3,457 1,152 1,152 2,304 313,669 145,658 227,028 16,032 17,514 15,848

NTRU+864 3 864 3,457 1,296 1,296 2,592 339,912 169,634 262,017 14,068 19,293 17,671

NTRU+1152 5 1,152 3,457 1,728 1,728 3,456 905,131 230,448 348,076 42,993 25,592 24,063

• [1] Vadim Lyubashevsky and Gregor Seiler. NTTRU: Truly fast NTRU using NTT. IACR Transactions on 

Cryptographic Hardware and Embedded Systems, 2019 (https://tches. iacr.org/index.php/TCHES/article/view/8293). 

• [2] Julien Duman, Kathrin Hövelmanns, Eike Kiltz, Vadim Lyubashevsky, Gregor Seiler, and Dominique Unruh. A 

thorough treatment of highly-efficient NTRU instantiations. Public-Key Cryptography – PKC 
2023 (https://eprint.iacr.org/2021/1352).



COMMENTS FOR THE SECURITY PROOF

[FO transform without Re-Encryption (Lemma 4.3)]

 To show: For input ciphertext 𝑐,  

   𝑐 = 𝐸𝑛𝑐’(𝑝𝑘, 𝑚’; 𝑅’) if and only if 𝑟’ = 𝑟’’

 (→) Assume 𝑐 = 𝐸𝑛𝑐’(𝑝𝑘, 𝑚’; 𝑅’) in Decaps. 

By the definition of 𝐸𝑛𝑐’, 𝑐 = 𝐸𝑛𝑐(𝑝𝑘, 𝑆𝑂𝑇𝑃(𝑚’, 𝐺 𝑟′′ ); 𝑟′′) holds where 𝑟′′ ← 𝜓𝑅 is sampled using 𝑅’

Also, since 𝑀′ = 𝐷𝑒𝑐 𝑠𝑘, 𝑐 ∈ and 𝑟′ = 𝑅𝑅𝑒𝑐 𝑝𝑘, 𝑀′, 𝑐 ∈ , the rigidity of the PKE leads to

𝑐 = 𝐸𝑛𝑐(𝑝𝑘, 𝑀′; 𝑟′).  

⋮
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They assumed that, for 𝑐 (input of Decaps), 𝑴′ = 𝑫𝒆𝒄 𝒔𝒌, 𝒄 ∈ and 𝒓′ = 𝑹𝑹𝒆𝒄 𝒑𝒌, 𝑴′, 𝒄 ∈      .  

But, there is no guarantee for that. 



SECURITY EVALUATION OF {LWE, LWR}-BASED SCHEMES 

USING LATTICE ESTIMATOR

▪ Lattice Estimator — Lattice Estimator 0.1 documentation (lattice-estimator.readthedocs.io)

▪ Albrecht, Martin R., Rachel Player, and Sam Scott. "On the concrete hardness of learning with errors." Journal of 

Mathematical Cryptology 9.3 (2015): 169-203.
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https://lattice-estimator.readthedocs.io/en/latest/


GOAL

 Better understanding for the security estimation of KpqC Round 2 candidates

 Analysis reports for the respective attacks 

 Estimate the security for all the LWE/LWR based schemes {NTRU+, SMAUG-T, HAETAE, NCC-Sign}

40



METHODS

Lattice Estimator — Lattice Estimator 0.1 documentation (lattice-estimator.readthedocs.io)

Lattice Estimator — Lattice Estimator 0.1 documentation (lattice-estimator.readthedocs.io)

▪ Lattice estimator
 For LWE/LWR security analysis, M. Albrecht's Lattice Estimator (Lattice Estimator — Lattice Estimator 0.1 documentation

(lattice-estimator.readthedocs.io)) is used. Lattice Estimator is a Sage open source that calculates the attack complexities 

and additional parameters required for attack by taking LWE/LWR parameters as input values.

▪ The BKZ Algorithm Complexity – Core-SVP model
 The principle of the BKZ algorithm is to repeatedly apply the SVP solver, an algorithm that finds the shortest vector, for a 

sub-lattice of dimension (𝛽) smaller than that of a given lattice. 

 The Core-SVP model from the NewHope paper (USENIX’16) is a model for estimating the time complexity of the BKZ 

algorithm. The classical security in bits is estimated as 2𝑐⋅𝛽 using 𝑐 = 0.292, and the quantum security (bit) can be also 

estimated by calculating the classical security (bit) × 𝑐𝑞/0.292 in the Core-SVP model.

Classical Quantum[1]

𝑐 0.292 0.257

𝑇 20.292𝛽 20.257𝛽

[1] Chailloux, A., Loyer, J. Lattice Sieving via 
Quantum Random Walks. ASIACRYPT 2021
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RESULTS - KEMS

 Estimated security for SMAUG-T ; 7.5~13.2 bits lower than claimed for security category 1 and 3

 Estimated security for NTRU+ ; 3.1~14.3 bits lower than claimed 



RESULTS - SIGNATURES

 Estimated security for HAETAE ; 7~17.8 bits lower than claimed



RESULTS - SIGNATURES

 Estimated security for NCC-Sign ; 3.7~21.4 bits lower than claimed



SUMMARY

 We generalize the Meet LWE attack via ternary trees which implies  

 Increased diversity of representations and

 Decreased guessing complexity

 By analyzing and optimizing the attack complexities, we show that our approach gives better time complexity in 
the regime of practical parameters compared to May. 

 For SMAUG-T, by exploiting the sparsity of the LWE secrets, we achieve the reduced attack complexity estimation 
for parameters {TiMER, SMAUGT192, SMAUGT256}. 

 the estimated attack complexities are lower in security by 13.3 bits, 20 bits, and 43.6 bits than claimed, respectively.

 For NTRU+, we point out some (minor) bugs in the security proof. 

 Additionally, we report the discrepancies between estimated and claimed security bits, when estimating the 
security of each scheme using the Albrecht’s lattice estimator. 



THANKYOU! 
ANY QUESTIONS OR COMMENTS? 

JOOHEELEE@SUNGSHIN.AC.KR
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